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Featured Application: The production of algal biomass or of a product associated with biomass
growth can be optimized by manipulating the dilution rate and the incident light intensity in
indoor photo-bioreactors. However, model-based optimization is delicate in view of the time
and experimental efforts required to develop sufficiently accurate dynamic models. Extremum
seeking provides an alternative real-time optimization approach, where prior model knowledge
is not required, and only a measurable (or estimable) performance index is needed online.

Abstract: This paper investigates the application of adaptive slope-seeking strategies to dual-input
single output dynamic processes. While the classical objective of extremum seeking control is to
drive a process performance index to its optimum, this paper also considers slope seeking, which
allows driving the performance index to a desired level (which is thus sub-optimal). Moreover, the
consideration of more than one input signal allows minimizing the input energy thanks to the degrees
of freedom offered by the additional inputs. The actual process is assumed to be locally approachable
by a Hammerstein model, combining a nonlinear static map with a linear dynamic model. The
proposed strategy is based on the interplay of three components: (i) a recursive estimation algorithm
providing the model parameters and the performance index gradient, (ii) a slope generator using
the static map parameter estimates to convert the performance index setpoint into slope setpoints,
and (iii) an adaptive controller driving the process to the desired setpoint. The performance of
the slope strategy is assessed in simulation in an application example related to lipid productivity
optimization in continuous cultures of micro-algae by acting on both the incident light intensity
and the dilution rate. It is also validated in experimental studies where biomass production in a
continuous photo-bioreactor is targeted.

Keywords: extremum seeking control; real-time optimization; optimal control; data-driven control;
Wiener-Hammerstein model; recursive estimation; biotechnology

1. Introduction

Extremum Seeking Control (ESC) is a Real-Time Optimization (RTO) technique used
to drive a measurable process performance index to its optimum following direct input
adaptation [1]. In the classical scheme proposed in [2], a sinusoidal dither signal ensures the
persistency of excitation of the input and filters are used to extract the gradient information
from output measurements. This gradient is forced to zero on average so as to converge to
a close neighborhood of the optimal operating point. An interesting feature of ESC is that
limited a priori knowledge about the process under consideration is required in order to
perform RTO. Although this approach has become popular following the stability proof
provided in [3] and the intrinsic simplicity of the scheme [4–6], it suffers from the three
time-scale separation (implying slow convergence) and its heuristic tuning procedure.
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Various approaches have been proposed to improve the convergence rate. In [7], a
proportional integral scheme is introduced to improve the transient behavior while [8]
uses a recursive least square (RLS) algorithm to estimate online the parameters of a linear
model approximating the process input/output static map. However, in [9], the authors
point out that the latter approach generally leads to a biased estimation of the optimal
operating point when dealing with dynamic systems. It is therefore necessary to account
for those dynamics, and in order to preserve simplicity and avoid the need for extensive
prior knowledge about the process, a black-box approach is preferable, for instance using
Wiener–Hammerstein models [10,11].

Extension of ESC to multiple-inputs–single-output (MISO) process optimization has
also provided interesting results both in simulation and experiments. In [12], the classical
scheme is extended to achieve maximum power tracking of PV panels with an experimental
validation. In [13], an extended Kalman filter is used to estimate the gradient and Hessian
of a static quadratic dual-input–single-output (DISO) map to remove thermo-acoustic
instabilities in an atmospheric combustor test rig. In applications such as PV panels or
wind turbine power generation, it is sometimes required to operate at a given sub-optimal
operating point so as to adjust the production to the actual load/demand. In this regard,
slope seeking control (SSC) [14] provides the possibility of optimal and suboptimal setpoint
tracking. In [15,16], the authors propose an adaptive SSC for a class of SISO dynamic
processes, and a numerical validation is provided with biomass productivity optimization
in microalgae cultures.

In this work, an extension of adaptive slope seeking a DISO dynamic processes is
proposed. To this end, the process under consideration is assumed to be approachable
at least locally with a quadratic block-oriented model in the form of a Hammerstein
model. Adaptive slope seeking allows driving the process either at the extremum of the
measurable performance index or an intermediate operating point specified via the slope of
the performance index. The degrees of freedom offered by the additional input can be used
in various ways, for instance, to minimize the input energy. A recursive extended least
squares (RELS) algorithm is used to estimate online the model parameters. To alleviate the
tedious and generally heuristic integrator gain tuning procedure of the classical filter-based
ES/SOP control, a pole placement controller (PPC) is used, which was introduced by the
authors in [15,16].

The performance of the slope seeking strategy is first assessed in a simulation example
related to lipid productivity optimization in continuous cultures of micro-algae by acting
on both the incident light intensity and the dilution rate. During the last decade, microalgae
cultures have indeed received some attention from the real-time optimization research
community (see for instance [17–21]) .

The proposed strategy is then further validated in a lab-scale experimental study of the
cultures of the micro-algae Scenedesmus obliquus in a flat-panel photo-bioreactor (PBR).

The paper is organized as follows: Section 2 introduces the main assumptions regard-
ing the dynamic process under consideration and describes the dual-input adaptive slope
seeking strategy. In Section 3, the estimation algorithm used to infer the static map and
dynamic model parameters is presented. Section 4 is devoted to slope reference genera-
tion and proposes two algorithms offering the possibility to minimize one or both inputs.
Section 5 presents a pole placement controller applied to drive the process to the selected
set-point. In Section 6, the performance of the slope-seeking strategy is assessed with
a simulation example related to the optimization of the lipid production in continuous
cultures of micro-algae in photobioreactors, while an experimental validation is proposed
in Section 7. Finally, some conclusions and perspectives are drawn.

2. A DISO Adaptive Slope-Seeking Strategy

The control strategy is built upon the assumption that the process can be described by
a block-oriented model, which is made of the interconnection of nonlinear static building
blocks and linear time-invariant dynamic building blocks. A great variety of configurations
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are possible, including series and parallel structures. In this study, we restrict ourselves
to the classical Hammerstein model, where a nonlinear static block followed by a linear
dynamical model represent process and sensor dynamics. Such block-oriented models
are often used to model nonlinear systems [22], and in the following, we will consider a
class of systems that can be modeled locally using quadratic static building blocks and
second-order linear time invariant dynamic blocks:

Assumption 1. The process input/output static map can be approximated locally by a quadratic
function of the form:

x(k) = uT A u + bT u + c (1)

where u represents the input vector and x the output of the nonlinear static block, A ∈ Rm×m,
b ∈ Rm×1, c ∈ R and u ∈ Rm×1, with m being the number of inputs.

This first assumption implies that (i) driving the system to a stable steady-state mani-
fold is feasible and that (ii) the system in the steady state is likely to be a convex/concave
function of the input. In bioprocess applications, these statements find their justifications
in the bifurcation analysis developed in [23], which can be considered as a basis for further
investigations of bioprocesses [24].

Assumption 2. The actuator, process and sensor dynamics can be approximated locally by linear
time-invariant dynamic blocks. In particular, they can be described by proper and stable second-order
transfer functions with unitary steady-state gains:

G(z−1) = K
1 + γ1 z−1 + γ2 z−2

1 + β1 z−1 + β2 z−2 (2)

with K = 1+β1+β2
1+γ1+γ2

and z−1 the back-shift operator such that z−1 x(k) = x(k− 1).

The relatively slow dynamics of (bio)processes allows considering the latter in steady
state and to consequently isolate the fast actuator dynamics in a separate block. The low-
order approximation of the process nonlinearity and dynamics is justified by the fact that an
adaptive control approach will be developed, where the parameters of the block-oriented
models are estimated online. The estimation of these parameters requires persistency of
excitation of the input signals, which corresponds to the following assumption:

Assumption 3. Input signals are persistently exciting and allow closed-loop parameter estimation
of the block-oriented models.

In practice, this is achieved using appropriate dither signals in the gradient estimation
algorithm, such as pseudo-random binary sequences [25,26]. This point will be further
elaborated in the subsequent sections.

Using the notation of Assumptions 1 and 2, the quadratic DISO Hammerstein model
can be described by the following state-space model:

x(k) =uT A u + bT u + c (3a)

J(k) =− β1 J(k− 1)− β2 J(k− 2)

+ K x(k) + K γ1x(k− 1) + K γ2x(k− 2) (3b)

where J is the measured performance index.
A last assumption is now required regarding the existence of a unique extremum

(maximum) point of the measurable performance index:
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Assumption 4. The performance index is concave, or in other words, there exists a unique set of
inputs uopt ∈ Rm×1 such that:

∇J =

[
∂J

∂u1
∂J

∂u2

]
= 0 (4a)

∇2 J = A≺0 (4b)

ensuring that there exists a stabilizing input vector uopt driving the process performance index to
its maximum Jmax.

As discussed in [27], this restriction can be relaxed in the multi-modal case provided
an adequate dither signal design.

In the adaptive SSC depicted in Figure 1, a RELS algorithm is used to estimate online
the static map matrices [A, b, c], which feed a slope reference generator [15] whose role is
to convert a desired reference Jre f into a corresponding gradient reference ∇J

∣∣
re f .

(NLSB)
x = uT A u + bT u + c

LDB

Recursive Estimation Algorithm+Controller

Slope Reference Generator

+MLRS

x J

[Â, b̂, ĉ]

∇̂J
+

∇J
∣∣
re f

−ε̂û

u

u

PROCESS APPROXIMATION

Figure 1. Illustration of the DISO adaptive slope seeking scheme.

This allows driving the process to the optimal performance index (where ∇J = 0)
or to an intermediate, sub-optimal index (where ∇J 6= 0). The regulation is effected by
comparing the gradient estimate ∇̂J provided by the recursive estimator to the slope
reference. The set-point deviation ε̂ = ∇̂J −∇J

∣∣
re f has to be driven to zero by a controller

such that:

ε = 0 =⇒ ∇J = ∇J
∣∣
re f =⇒ J = Jre f (5)

Note that the optimal value of the performance index does not need to be known a
priori. The controller will achieve optimal performance by enforcing ∇J

∣∣
re f = 0. When

a suboptimal operating point is selected, a non-zero reference is specified for the slope
of the performance index. It is in principle possible to operate the plant to the left of
the optimum (positive slope) or to the right (negative slope), depending on the process
dynamics and stability behavior. As none of these values are a priori known, this procedure
will require some form of trial and error by the process operator. It should also be noticed
that (5) is only valid if Assumption 4 is locally verified, i.e., in a concave neighborhood.
However, information about the achievable optimum and the sensitivity in the vicinity of
the optimum is quickly collected in the course of the first experiment. In addition, when
a suboptimal operation point is selected, the energy of one or both input signals can be
reduced. This is interesting from an economical point of view if the considered process
consumes expensive resources. This latter point will be elaborated in the future.

A detailed stability analysis of this scheme is outside the scope of this paper, but
stability should be guaranteed under Assumptions 1–4. More details on stability analysis
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of discrete-time ESC can be found in [2,28], and some results for multivariable ESC can be
found in [29,30].

3. The Recursive Estimation Algorithm

This section develops a Recursive Extended Least Squares (RELS) estimator of the
parameters of the quadratic Hammertein model.

3.1. Basic Concepts

Consider the output-error auto-regressive (OEAR) system [31]:

y(k) = ys(k) + η(k) (6)

where ys = ψT
s θs is the noise-free output of the process (in the previous developments, it

represents the noise-free performance index J) and

η(k) =
1

C(z−1)
ν(k) (7)

is the output of an Auto-Regressive (AR) process with ν, a white noise with zero mean
and variance σ2, and C(z−1) = 1 + c1 z−1 + c2 z−2 + · · ·+ cnc z−nc is a stable polynomial
of order nc.

Equation (6) can be rewritten as:

y = ψTθ =
[
ψs ψn

]T
[

θs
θn

]
= ψT

s θs + ψT
n θn (8)

where w(k) = ψT
n θn is the noise regression model, where

ψT
n =

[
η(k− 1) η(k− 2) . . . η(k− nc)

]
(9a)

θn =
[
c1 c2 . . . cnc

]T (9b)

In the following, it is assumed that nc = 2.
Given structure (8), the unknown parameters θ can be estimated online using a RELS

algorithm [31] in the form:

e(k) = ymeas(k)− ψ(k− 1)T θ̂(k− 1) (10a)

P(k) =
1
λ

[
P(k− 1)− P(k−1)ψ(k−1)ψ(k−1)T P(k−1)

λ+ψ(k−1)T P(k−1)ψ(k−1)

]
(10b)

θ̂(k) = θ̂(k− 1) + P(k)ψ(k− 1)e(k) (10c)

where e(k) is the a priori estimation error, ymeas(k) the measured output, and P(k) the
covariance matrix of the parameter estimation error θ − θ̂(k) at sample k. As a result,
the RELS computes online estimates of both the noise-free and noise model regression
parameters contained, respectively, in θs and θn. The forgetting factor λ determines how
fast past data are disregarded, and typically 0.85 ≤ λ ≤ 0.99. An estimation of η(k) is
provided by the a posteriori estimation error ε(k) = ymeas(k)− ψ(k− 1)T θ̂(k).

The RELS algorithm is generally coupled with a constant trace algorithm, ensuring a
sufficient correction gain to track slowly time varying parameters. A regularization of the
covariance matrix P(k) is obtained as:

P̄(k) =
k0 P(k)

Trace(P(k))
(11)
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In addition, a projection algorithm [32] can be added to enforce estimator stability by
introducing prior knowledge about some parameter bounds:

θ̂ =

{
θ̂ , i f θ̂ ∈ D
θ̂Proj , i f θ̂ /∈ D (12)

where :

θ̂Proj =

 θ̂ − P(:,i)
P(i,i)

[
θ̂i − θ̂i

+
]

, i f θ̂i > θ̂i
+

θ̂ + P(:,i)
P(i,i)

[
θ̂i
− − θ̂i

]
, i f θ̂i < θ̂i

− (13)

The domain D is defined for i ∈ 1, . . . , nθ , nθ being the number of parameters such that:

D := {θ̂ ∈ D, θ̂i
− ≤ θ̂i ≤ θ̂i

+} (14)

3.2. Application to the Quadratic Hammerstein Model

Using the quadratic Hammerstein model introduced in (3) with m = 2 and without
coupling terms (we consider a12 = 0 to simplify the developments and because we observed

that these terms have little impact on the performance of the controllers), A =

[
a11 0
0 a22

]
∈

R2×2, b =

[
b1
b2

]
∈ R2×1, c ∈ R and u =

[
u1
u2

]
∈ R2×1, the development of (3a) gives:

x(k) = a11 u2
1(k) + b1 u1(k) + a22 u2

2(k) + b2 u2(k) + c (15)

This expression can be inserted into (3b), which yields:

J(k) =− β1 J(k− 1)− β2 J(k− 2) + K [a11 u2
1(k) + b1 u1(k) + a22 u2

2(k)

+ b2 u2(k) + c]

+ K γ1 [a11 u2
1(k− 1) + b1 u1(k− 1) + a22 u2

2(k− 1)

+ b2 u2(k− 1) + c]

+ K γ2 [a11 u2
1(k− 2) + b1 u1(k− 2) + a22 u2

2(k− 2)

+ b2 u2(k− 2) + c] (16)

This equation can be cast in the form of a product between a regressor of informative
signals ψs and the parameter vector θs:

J(k) =ψT
s (k− 1)θs (17a)

ψT
s (k− 1) ={−J(k− 1), −J(k− 2),

u2
1(k), u1(k), u2

2(k), u2(k),

u2
1(k− 1), u1(k− 1), u2

2(k− 1), u2(k− 1),

u2
1(k− 2), u1(k− 2), u2

2(k− 2), u2(k− 2),

1} (17b)

θs ={β1, β2, K a11, K b1, K a22, K b2,

K γ1 a11, K γ1 b1, K γ1 a22, K γ1 b2,

K γ2 a11, K γ2 b1, K γ2 a22, K γ2 b2,

(1 + β1 + β2) c}T (17c)
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The model parameters can be extracted from the vector θs in (17c) as:

β̂1 = θ̂s1 (18a)

β̂2 = θ̂s2 (18b)

γ̂1 =
θ̂s7

θs3
(18c)

γ̂2 =
θ̂s11

θs3
(18d)

â11 =
θ̂s3 + θ̂s7 + θ̂s11

1 + θ̂s1 + θ̂s2
(18e)

b̂1 =
θ̂s4 + θ̂s8 + θ̂s12

1 + θ̂s1 + θ̂s2
(18f)

â22 =
θ̂s5 + θ̂s9 + θ̂s13

1 + θ̂s1 + θ̂s2
(18g)

b̂2 =
θ̂s6 + θ̂s10 + θ̂s14

1 + θ̂s1 + θ̂s2
(18h)

ĉ =
θ̂s15

(1 + θ̂s1 + θ̂s2)
(18i)

The second-order transfer function representing the system dynamics can be consid-
ered with either two, one, or no zeros (which implies, respectively, that γ1 6= 0 and γ2 6= 0,
or γ1 6= 0 and γ2 = 0, or γ1 = γ2 = 0). Let us denote RMnpmz the regression model with
np poles and mz zeros. Table 1 lists some possible simplifications.

Table 1. Model configurations and corresponding simplifications.

Regression Equation Parameters Equal to 0 Parameter Subscript ∆ Length
Model or Signals to be Omitted Changes of θs

RM2p1z (18)
θs11, θs12, θs13, θs14

θs15 → θs11 15→ 11u2
i (k− 1), ui(k− 1), i ∈ {1, 2}

RM2p0z (18)
θs7, θs8, θs9, θs10, θs11, θs12, θs13, θs14

θs15 → θs7 15→ 7u2
i (k− j), ui(k− j), i, j ∈ {1, 2}

3.3. Persistency of Excitation

To avoid practical parameter identifiability issues using the RLS algorithm, it is recom-
mended to use an input signal with a sufficiently rich frequency bandwidth as discussed
in [25,26]. While using a pseudo-random binary signal (PRBS) with limited amplitude and
sufficient signal to noise ratio is generally advised for linear systems, amplitude-modulated
pseudo-random binary signals and multi-levels pseudo-random signals (MPRS) have been
shown to be more appropriate for nonlinear system identification [33,34].

A PRBS is a periodic and deterministic signal with white-noise-like properties [35].
This signal is generated by adding a sequence of shift register specific outputs in a XOR
gate in closed-loop. The sequence length is computed as L = 2N − 1, where N is the
number of shift registers in the sequence. The sequence duration is obtained as L Tprbs
with Tprbs = p Ts, the PRBS sampling period expressed as a multiple p ∈ N+ of the process
sampling time Ts. Further details about PRBS generation can be found in [31,35].

In this work, it is proposed to generate MPRS by adding three PRBS with different
bandwith (sampling time) and shift register sequences inducing a longer period and both
amplitude and holding time modulations. Furthermore, this approach allows maximal
amplitude and minimal holding time specifications. For DISO processes identification,
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using such design procedure may also help reducing spectral overlap between inputs
when required.

4. Slope Reference Generator

As introduced in Section 2, the purpose of the slope reference generator (see Figure 1)
is to convert the desired performance index set-point Jre f ≤ Jmax into corresponding

gradient references ∇J
∣∣
re f(k)

=

[
∂J

∂u1
∂J

∂u2

]∣∣
re fk

.

Consider the quadratic static map, where the dependency on time k is omitted to
simplify the notation, and more importantly, the actuator/sensor dynamics is neglected (as
we are interested in generating the slope reference signals).

J =a11 u2
1 + b1 u1 + a22 u2

2 + b2 u2 + c

=a22 u2
2 + b2 u2 + c′(u1) (19)

where

c′(u1) =a11 u2
1 + b1 u1 + c (20)

The cost function gradient is given by:

∇J =
[

2a11u1 + b1
2a22u2 + b2

]
(21)

A set U2(u1) of control inputs u2 driving the process performance index J to a de-
sired value Jre f can be computed as the set of solutions of the second order polynomial
Equation (19):

U2(u1) =
−b2 ±

√
|b2

2 − 4a22 (c′(u1)− Jre f )|
2 a22

(22)

From an operational and economical point of view, it can be interesting to drive the
process output to a desired set-point while minimizing one of the inputs or both.

Considering the positiveness of u2, the gradient of U2 with respect to u1 reads:

∂U2

∂u1
=

−b1 − 2 a11 u1√
|b2

2 − 4 a22 (a11 u2
1 + b1 u1 − Jre f + c)|

(23)

The value of u1 minimizing u2 such that J = Jre f is computed by setting

∂U2

∂u1
= 0 (24)

which yields:

us
1 = − b1

2 a11
(25)

and the corresponding minimal value of u2 is computed by replacing u1 by us
1 in (22). It

should be noticed that the positiveness of the inputs u1 and u2, combined with (25) and
the concavity of J (a11 and a22 are strictly negative parameters), imposes that b1 and b2
are positive. Therefore, the derivative (23) is negative when u1 < us

1 and positive when
u1 > us

1, and (22) presents a minimum in us
1.
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These results are compiled in Algorithm 1, which summarizes the design procedure
for slope reference generation either for extremum seeking (ESC) or suboptimal setpoint
(SOP) with minimization/maximization of one input (u2).

Algorithm 1 Adaptive slope reference generation algorithm for DISO processes ESC and
SOP with minimization/maximization of one input

1: procedure ∇J
∣∣
re f(k)

(Â, b̂, ĉ, Objective, Jre f(k) , Model)

2: if Objective == ’ESC’ then
3:

∇J
∣∣∣∣
re f(k)

=

[
0
0

]
4: else . Objective == ’SOP with u2 optimization’
5: Select a desired Performance index set-point: Jre f(k) .
6: Compute us

1k
, the value of u1 minimizing (maximizing) u2k such that J = Jre f(k)

given parameter estimates at iteration k:

us
1k

= − b̂1

2 â11

7: and substitute in (20) and (22) to obtain:

umin
2k

(Jre f(k) ) =
−b̂2 −

√
|b̂′22 − 4â22 (ĉ′(us

1k−1
)− Jre f(k) )|

2 â22
, â22 6= 0

umax
2k

(Jre f(k) ) =
−b̂2 +

√
|b̂′22 − 4â22 (ĉ′(us

1k−1
)− Jre f(k) )|

2 â22
, â22 6= 0

8: Deduce the gradient reference:

∇J
∣∣
re f(k)

=

[
2â11us

1k
+ b̂1

2â22umin
2k

+ b̂2

]

9: endif
10: return ∇J

∣∣
re f(k)

Algorithm 2 considers a suboptimal setpoint tracking with minimization of both
inputs. Starting from arbitrary initial conditions u10 and u20 , the algorithm iterates to
estimate the minimal values umin

1k
and umin

2k
based on the previous estimates umin

2k−1
and umin

1k−1
and the static map parameter estimates at time k.
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Algorithm 2 Adaptive slope reference generation algorithm for DISO processes—SOP with
minimization of both inputs

1: procedure ∇J
∣∣
re f(k)

(Â, b̂, ĉ, Jre f(k) , Model)

2: Select a desired Performance index set-point: Jre f(k) .

3: Compute umin
1k

and umin
2k

, respectively, based on umin
2k−1

and umin
1k−1

as:

umin
ik

(Jre f(k) ) =
−b̂′i −

√
|b̂2

i − 4âii (ĉ′(umin
jk−1

)− Jre f(k) )|
2 âii

, âii 6= 0

i, j ∈ {1, 2} with i 6= j.
4: Deduce the gradient reference:

∇J
∣∣
re f(k)

=

[
2â11umin

1k
+ b̂1

2â22umin
2k

+ b̂2

]

5: return ∇J
∣∣
re f(k)

5. Controller Design

The model under consideration requires two parallel SISO controllers: one for the
regulation of the input/output pair u1/ ∂J

∂u1
and another for u2/ ∂J

∂u2
. To this end and to

replace the classical ESC integral controller of Figure 1, a pole placement controller (PPC)
introduced by the authors in [15,16] is investigated.

At time k, the gradient of the performance index with respect to the input signal ui,
i ∈ {1, 2} is given by: (

∂J
∂ui

)
k+1

= 2 aii(k) ui(k− 1) + bi(k) (26)

This expression can be cast into the form of a state-space model

xk+1 = Ad xk + Bd uk + wk
yk = Cd xk

(27)

with the following correspondence: xk =
(

∂J
∂ui

)
k
, Ad = 0, Bd = 2 aii, Cd = 1. bi(k) is

considered as a perturbation wk = bi(k).
To ensure zero steady-state error under step disturbances, an integral action is intro-

duced and pole-placement allows imposing a first-order closed-loop dynamic behavior.
The dominant pole imposes the settling time ts and the non-dominant pole is selected
to be much faster, so as to allow for a fast transient. Using the certainty equivalence
principle [31,36], aii is replaced by its estimate âii and the controller gain is updated at
each innovation.

Although the control algorithm depends on the estimation provided by the recursive
algorithm, the PPC design is based on only one parameter aii, which allows one to maintain
some robustness level. Further, placing the closed-loop poles allows taking the a priori
neglected dynamics into account. There is indeed a three time-scale defined by the estimator
(the fastest), the linear dynamics, and the controller (the slowest), which should be respected
during the pole placement procedure. The following simulation study will highlight
these elements.

6. A Simulation Study: Optimization of Micro-Algae Lipid Productivity

Microalgae growth in a bioreactor can be described by the Droop model [37], which
assumes that extracellular nutrient S is stored in a so-called internal quota Q, before being
used for biomass X growth. The Droop Model is usually the cornerstone of more elaborated
models accounting for light-related phenomena [38].
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For the model under consideration, nutrient uptake ρ is described by a Michaelis–
Menten type kinetics with internal quota limitation:

ρ(S, Q) = ρmax
S

S + KS
(1− Q

Qmax
) (28)

whereas the growth rate is modelled by Droop kinetics and photo-inhibition is incorporated
through Haldane kinetics:

µ(Q, I) = µmax

(
1− Qmin

Q

)
I

I + KsI I + I2

KiI

(29)

In these expressions, KS is the half-saturation constant with respect to substrate S,
Qmin is the quota threshold below which no growth is possible, and Qmax is the maximum
nitrogen quota. ρmax, µmax, KsI and KiI are, respectively, the maximum uptake and growth
rates, the half-saturation and the inhibition constants with respect to incident light intensity.

To keep the model simple, photo-acclimation is described by a first-order dynamics: τI
d Ī
d t = I − Ī

µ(Q, Ī) = µmax

(
1− Qmin

Q

)
Ī

Ī+KsI Ī+ Ī2
KiI

(30)

Mass balances in the chemostat lead to the following set of ordinary differential equations:

dX
dt

= µ(Q, I)X− D X (31a)

dS
dt

= −ρ(S, Q)X + D(Sin − S) (31b)

dQ
dt

= ρ(S, Q)− µ(Q, I)Q (31c)

where Sin represents the concentration of inorganic substrate (nitrogen) in the inlet flow
and D the dilution rate.

The model parameters are partly taken from [39] and listed for convenience in Table 2.

Table 2. Model parameter values.

Parameter Value

µmax 5.1 d−1

ρmax 0.0730 gN·gC−1·d−1

KS 0.0012 gN·m−3

KsI 200 µE/m2·s

KiI 220 µE/m2·s

Qmin 0.05 gN·gC−1

Qmax 0.15 gN·gC−1

τI 4 d

A classical performance index for continuous bioreactor is biomass productivity:

P = D X (32)

However, this index does not reflect the lipid productivity. As lipid and carbohydrate
production increases under nitrogen stress, and thus under internal quota limitation, the
following performance index is introduced:
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Pl =
D X
Q

, (33)

which combines biomass productivity and internal quota depletion. The objective of ESC
is to find in real-time and without prior knowledge about the model, with the inputs (I, D)
maximizing the performance index Pl .

6.1. Bifurcation Analysis

Figure 2 and Table 3 provide the results of a bifurcation analysis. The concave steady-
state manifold validates all the assumptions listed in Section 2. A Hammerstein model
is therefore a valid representation even though other block-oriented structures could be
considered as well (see for instance the discussion in [16] for the SISO case). These results
also show that the optimum of Pl corresponds to a more concentrated outflow (higher
biomass concentration for a smaller dilution rate) than the optimum of P and a smaller
internal nitrogen quota (which can be linked to the production of lipid). For lipid extraction,
it is desirable to work with a concentrated solution to improve the operations [40]. Further-
more, Figure 2 shows that the extremum of P (32) corresponds to operating conditions close
to the wash-out of the reactor. Conversely, the extremum of Pl (33) offers a comfortable
security margin.
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Figure 2. Steady-state productivity maps with respect to dilution rate D and incident light I. Red ’∗’:
Optimal values using P (32) and Blue ’∗’: Optimal values using Pl (33).
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Table 3. Optimal values following bifurcation analysis.

Parameter Value Using P Value Using Pl

Qopt (gN·gX−1) 0.097 0.0747

Xopt (gX·L−1) 1.02 1.3355

Dopt (d−1) 0.85 0.58

Iopt (µE/m2·s) 210 210

Popt (gX·L·d−1) 0.87 0.7746

Popt
l (gX2·gN−1·L·d−1) 8.97 10.37

6.2. Asymptotic Observer Design

In contrast to P, Pl is not directly measurable as Q is an intracellular variable. However,
X and S can be measured online using NIR and UV probes combined with appropriated
spectrometers [41], and a software sensor can be developed for Q̂. To not lose the advantage
of ESC and require prior model knowledge, a robust estimator has to be designed notwith-
standing the lack of knowledge regarding the kinetic structures and model parameter
values. Such a robust estimator of the internal quota has been developed by [42] using
super-twisting observers. Here, for the sake of simplicity, an asymptotic observer (AO) is
proposed as follows:

˙̂Q = ρ̂− µ̂Q̂ (34)

whose rate of convergence is linked to the growth rate. Indeed, defining the estimation
error Q̃ = Q− Q̂:

˙̃Q = ρ− µQ− ρ̂ + µ̂Q̂

= (ρ− ρ̂)− (µ̂ + µ̃)(Q̂ + Q̃) + µ̂Q̂

= ρ̃− µ̂Q̂− µ̂Q̃− µ̃Q̂− µ̃Q̃ + µ̂Q̂

= ρ̃− µ̂Q̃− µ̃Q̂− µ̃Q̃

= ρ̃− µ̃Q̂− µQ̃
˙̃Q→ −µQ̃ if ρ̃→ 0 and µ̃→ 0 fast enough (35)

It is therefore necessary to develop estimators of the reaction rates ρ and µ. This can
be achieved in a simple way using forward discretization (with sampling period Ts) of the
biomass Equation (31a):

Xk = Xk−1 + (µ Xk−1 − D Xk−1) Ts

= µ Ts Xk−1 + (1− D Ts) Xk−1

= ψρ θ + (1− D Te) Xk−1 (36)

with ψρ = Ts Xk−1, θµ = µ. In the same way, a forward discretization of the substrate
Equation (31b) yields:

Sk = Sk−1 +
[
−ρXk−1 + D(Sin − Sk−1)

]
Ts

= −ρ Ts Xk−1) + (1− D Ts) Sk−1 + D SinTs

= ψµ θ + (1− D Ts) Sk−1 + D Sin Ts (37)

ψρ = −Ts Xk−1, θρ = ρ.
RELS with noise model and constant trace algorithm (Equations (6)–(11)) can be

used to estimate online the reaction rates considered as slowly varying parameters. This
pragmatic approach is less rigorous than the solution proposed in [42] but works quite
well in practice and is preferred here for its great simplicity. Moreover, even if a new
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online measurement is required, it can be achieved using an available (at reasonable costs)
substrate probe. This approach is preferred to a dynamic model, which, in essence, would
be uncertain and require the same types of adaptation schemes.

6.3. Numerical Results

Initial conditions are set as X(0) =1 gX·L−1, S(0) = 0.1 gN·L−1, Q(0) = 0.05 gN·gX−1,
D(0) = 0.4 d−1, I(0) = 600 µmol/(m2·s), and Sin = 0.1 gN·L−1. The initial estimates for
the AO and RELS estimating ρ and µ are, respectively, Q̂(0) = 0.07 gN·gX−1, ρ̂(0) = 0.1
gN·gX−1·d−1 and µ̂(0) = 0.2 d−1.

The AO is first run together with the two RELS for ρ̂ and µ̂ during the first 10 days in
open loop. After this initialization period, the adaptive slope-seeking strategy is activated.
SOP is first performed following a step sequence [tswitch, Pl ] = {(10, 8)(15, 6)(20, 7)(25, 8)}.
Then, ESC is performed during the rest of the simulation starting from t = 30 d. The
controller settling time is set to ts = 2 d, and the second eigenvalue of each pole placement
controllers λc = −100 d−1. The constant trace algorithm is defined with k0 = 1000 for the
RELS of the adaptive slope seeking algorithm and the two RELS estimating ρ and µ. Mea-
surement noises on X and S are defined as white noises with σ2

X = 0.0072 and σ2
S = 0.0012

(this corresponds to about 1 % of the variable ranges, which is realistic). The excitation
signals are provided by MPRS obtained by adding 3 PRBS as suggested in Section 3.3.
For the incident light intensity, Tprbsi

= pi Ts, with p1 = 2 (amplitude = 10 µmol/(m2·s)),
p2 = 5 (amplitude = 25 µmol/(m2·s)), p3 = 11 (amplitude = 15 µmol/(m2·s)), whereas
for the dilution rate p1 = 3 (amplitude = 0.02 d−1), p2 = 8 (amplitude = 0.01 d−1),
p3 = 13 (amplitude = 0.02 d−1).

Figure 3 shows that the AO provides a fast and accurate estimation of the internal
quota despite noisy estimates computed by the 2 RELS. It should also be highlighted that
the convergence of the AO is ensured by the good cell growth rate maintained all along
the culture.
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Figure 3. Time evolution of Q, ρ, and µ in black and their estimates provided by the AO and the 2
RELS in blue .

Figure 4 shows that the productivity reference trajectory (i.e., a succession of step
changes) is well followed by the controller (see the evolution after 10 days of open-loop
operation). The incident light intensity is set at the optimum, and its value quickly settles,
whereas the dilution rate is varied so as to achieve the different productivity levels. In this
figure, the blue dashed curves correspond to the suboptimal open-loop signals determined
by the slope generator, while the black continuous lines represent the actual signals gen-
erated by the controller, which also include the PBRS dither signals. Figure 5 shows the
phase plane plot evolution, while Figure 6 shows the gradient evolution.
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Figure 4. Time evolution of productivity Pl , incident light I, and dilution rate D following SOP and
ESC (red: optimal values; blue: estimated references; black: trajectory; magenta: Ī)
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Figure 5. Level lines of the performance index in the plane (D, I) and corresponding productivity Pl .

Figure 7 confirms that PPC with integral action behaves as expected, the latter showing
good performance during the transient phases despite the dependence on the estimate
convergence and accuracy.
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Figure 7. PPC controller performance: Time evolution of productivity Pl , incident light I, and dilution
rate D following SOP and ESC (red: optimal values; solid blue: PPC; The SOC step changes are
indicated by the vertical dashed lines.
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7. An Experimental Validation: Optimization of Micro-Algae Biomass Productivity

Figure 8 shows the lab-scale photobioreactor where the experiments are carried out to
assess the performance of SSC. The PBR is equipped with several plunging probes for the
online monitoring of the micro-algae concentration as well as the control of the temperature
and pH of the medium. To optimize the homogeneity of the micro-algae culture, air-lift
flows are achieved on both PBR sides. The PBR vessel is immersed in a water bath whose
temperature is regulated by a chiller/heater and a pump that circulates the water to the
chiller and back to the water bath. pH is regulated by injecting carbon dioxide. The incident
light is generated by a horticultural light fixture with LED lights providing appropriate
intensity for the micro-algae growth. Quantum sensors are used to measure the light
intensity at the PBR surface, and a PI controller is designed to regulate the incident light
intensity. To ensure a continuous mode operation, two peristaltic pumps control the inlet
and outlet flows so as to achieve some required dilution rate. The control algorithm is
implemented on a LabView platform for real-time computation, and Labjack cards are
used for data acquisition.

To validate the slope-seeking control (SSC) in a practical setting, the dilution rate
and light intensity are used as manipulated inputs, while the measurable productivity
is considered as the performance index. It is therefore a simpler situation than the one
considered in the previous simulation experiments. Here, there is no need to measure
or estimate the internal quota Q, as it is not involved in the cost function. A sample
experiment is described in what follows, which is conducted over 8.6 days, with a sampling
period of Ts = 0.1 d = 2.4 h.

Figure 8. Lab-scale flat-panel photobioreactor.

After inoculation, the culture must first settle until biomass concentration reaches
a steady-state corresponding to a constant dilution rate D(0) = 0.1 d−1 and a con-
stant average incident light Iav = 500 µE/(m2·s). The inlet substrate concentration is
Sin = 0.1 gN·L−1. Temperature and pH are kept constant, respectively, at 26 ◦C and 7.3.
After the steady state has occurred (in this case for X(0) = 0.88 gX·L−1), the slope seeking
control is activated with a productivity setpoint of P = 0.2 gX/(L·d). The dilution rate and
incident light are then manipulated by the controller so as to achieve the desired level of
productivity. After 7.6 days, the setpoint is changed to P = 0.1 gX/(L·d) to challenge the
tracking performance of the SSC. The time evolution of the several signals is shown in
Figures 9 and 10.
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Figure 9. Time evolution of productivity, dilution rate and light intensity during the experimental
validation of the SSC method. Dashed lines, calculated references; continuous lines, measured
productivity and SSC computed inputs.

During the first phase, i.e., when the setpoint P = 0.2 gX/(L·d) is imposed, the system
converges within 1 day to the desired productivity level, but the steady-state is only truly
established after 3 days, as shown by the biomass concentration evolution in Figure 10.
The steady-state values of biomass, dilution rate, and incident light are, respectively,
approximately X = 0.5 gX/L, D = 0.35 d−1 and I = 380 µE/(m2·s). When imposing the
reference P = 0.1 gX/(L·d), the new steady-state is achieved faster, i.e., within 1 day, and
the corresponding values are X = 0.39 gX/L, D = 0.2 d−1 and I = 150 µE/(m2·s). This
behavior can be explained by the fact that the RELS estimates need some time to converge
when the first setpoint is imposed. The second setpoint can be achieved faster as the RELS
estimation is probably close to the correct values and is able to track well the changes. We
can only speculate about this observation as the values of the parameters are not known
a priori.
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Figure 10. Time evolution of the algal biomass during the experimental validation of the SSC method.

Figure 11 shows the evolution of the gradient components with respect to the dilution
rate and light intensity. The latter is to be minimized, that is, pushed to zero, as shown
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in Figure 11, where this objective is achieved within 1 day and maintained despite some
variations due to the slower convergence of the dilution rate component to 0.2 (comparable
to the biomass convergence rate, that is, 3 days). Following the step change in productivity
reference, the gradient experiences a sudden change, but the signal converges fast back to
zero while the dilution component of the gradient reaches the new value of 0.4.
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Figure 11. Time evolution of the gradient components during the experimental validation of the
SSC method. Dashed lines, calculated references; continuous lines, SSC estimates.

Regarding the application of the method in an industrial environment, a short practical
guideline could be established, listing the steps to be achieved in the following order:

• Run first the extremum seeking (tracking a zero gradient) to determine the maximum
achievable productivity level;

• Use the resulting productivity level as a reference to set achievable sub-optimal levels
corresponding to non-zero slopes/gradients calculated by the controller;

• Sequentially reset the controller, setting new sub-optimal productivity levels until the
desired operating conditions are met.

8. Conclusions

In this paper, an adaptive slope seeking strategy that allows extremum seeking control
and suboptimal setpoint tracking for dual-input single-output processes is proposed. In
this setup, the process is represented by Hammerstein models combining a quadratic
static block with a second-order time-invariant dynamic block. A recursive extended least
square algorithm is used to estimate the static map parameters in the presence of noisy
measurements. Based on those estimates, 2 algorithms are provided for the generation of
slope references, with the possibility of minimizing one or both inputs. The slope-seeking
strategy is applied successfully in simulation to the optimization of the lipid productivity
in continuous cultures of micro-algae in photobioreactors. Further, it was validated at a
laboratory scale in experimental tests aiming at biomass productivity optimization. Further
work might consider the extension of this scheme to situations with more than two inputs,
paying particular attention to the selection of appropriate excitation signals.
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