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Generation of ultrashort laser pulses through a
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Modulation instability followed by generation of subpicosecond pulses could be obtained with quasi-continuous
wave packets propagating in optical fibers with running refractive index wave. We report on comprehensive stud-
ies of this process demonstrating that the peak power of the pulses exceeds the power of the pumping radiation by
orders of magnitude. Practically, the effect could be implemented through interaction of the surface optical wave
with an acoustic wave in a 2 cm cylindrical waveguide in a robust all-fiber format. ©2019Optical Society of America
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1. INTRODUCTION

Fibers with running refractive index wave (RRIW) could
enable effects never observed in the fibers with static index
inhomogeneity or periodicity [1,2]. In particular, RRIW
could provoke a switch of polarization and shift of carrier fre-
quency of quasi-monochromatic wave packets [3–5]. Temporal
pulse compression, a drastic increase of the pulse peak power
accompanied by a decrease of the pulse duration, is a typical
behavior for the pulses propagating in fibers with RRIW [1,2,5].
However, classical nonlinear effects, such as modulation insta-
bility, have not been studied comprehensively in such fibers yet
[6–12].

Amplitude instabilities of CW radiation arising during its
propagation in nonlinear media due to a cooperative action of
nonlinear and dispersive effects support formation of localized
waves [6] are referred to as modulation instabilities (MIs). The
fundamental nature of the effect and its practical application for
control of the laser radiation are both of great interest [11–16].
In particular, new designs of the laser systems delivering trains
of picosecond and subpicosecond pulses with terahertz repeti-
tive rate are of great demand for optical communication and
metrology [17–24].

In this paper, we report on generation of subpicosecond pulse
trains achieved through MI in optical fibers comprising running
refractive index wave. Importantly, the generated pulses can
reach the peak power by several orders of magnitude exceeding

the power of the pumping radiation. We propose a scheme
enabling synchronization of a wave packet propagating as a
surface tunneling wave (similar to whispering gallery mode) and
RRIW generated in a waveguide by their velocities.

2. BASIC EQUATIONS

Let us consider an interaction of the frequency-modulated
Gaussian pulse A(t, z)with RRIW n(t, z) induced in the fiber.
The refractive index is described as

n(t, z)= n0[1−m cos(�t − q z)], (1)

where � is the modulation frequency, q = 2π/3 is the
wavenumber, 3 is the wave period, m =1n/n0 is the modu-
lation depth, and 1n is the RRIW amplitude. The RRIW
propagation velocity is νm =�/q . The co-propagating
Gaussian pulse is introduced into the fiber with the following
initial conditions:

A(t, z= 0)= A0 exp(−(τ−2
0 + iα0)t2/2), (2)

where A0, τ0, and α0 are the pulse peak amplitude, pulse dura-
tion, and chirp, respectively, at the fiber input.

In the case when the light wave packet propagates syn-
chronously with RRIW (their group velocities are equal), the
envelope evolution is described as
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where vg = (∂ω/∂β)ω0 is the wave packet group velocity,
dn = (∂

nβ/∂ωn)ω0 are high-order dispersion parameters for
n = 2, 3, R is the cubic (Kerr) nonlinearity coefficient, the
quantity

1β = n0k0m cos(�t − q z) (4)

is a change of the optical mode propagation constant in the fiber
caused by modulation of the refractive index, k0 =ω/c , and τR

is the Raman time constant [6].
In the running time frame (τ = t − z/νg ), Eq. (3) has the

form
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A= iβm cos[�(τ − δτ)]A, (5)

where β = n0ω/c is the wave packet propagation constant in
the unexcited waveguide, c is the speed of light in a vacuum, and
the quantity

τ − δτ = τ − (ν−1
m − ν

−1
g )z

describes a relative delay of the pulse and RRIW. For pulses
with sufficiently low delay (δτ ≤ 10−11 s, at |�|τp � 1,
where τp is the pulse duration) the right-hand side of Eq. (5) is
approximated as

cos[�(τ − δτ)] ≈ 1−�2(τ − δτ)2/2 (6)

and Eq. (5) reduces to the Gross–Pitaevskii type equation (GPE)
comprising high-order dispersion and nonlinear terms,
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with the parameters S j :

S1 =mβ(1−�2δτ 2/2), S2 =mβ�2δτ, S3 =−mβ �2/2.

Separating the variables z and τ , the amplitude of the wave
packet envelope could be expressed as

A(z)= a(z) exp
[
i(ϕ(z)+ b(z)τ + α(z)τ 2)

]
. (8)

Substituting Eq. (8) into Eq. (7), we come to the equations for
parameters:

∂a
∂z
+ d2(b + 2ατ)

∂a
∂τ
− i

d2

2

∂2a
∂τ 2
+

d3

6

∂3a
∂τ 3

+ i R
(
|a |2 − τR

∂|a |2

∂τ

)
a = γ (z)a , (9a)

∂b
∂z
+ 2αbd2 = S2, (9b)

∂α

∂z
+ 2d2α

2
= S3, (9c)

where

γ (z)= i
(

S1 −
∂ϕ

∂z
− b2d2 + iαd2

)
,

with

a = ā exp[γ (z)dz]. (10)

Fig. 1. (a) Quasi-linear and (b), (c) nonlinear dynamics of
a Gaussian pulse simulated for the following parameters: (a)
τp = 10−10 s, P0 = 0.1 W, d2 =−10−26 s2/m, d3 = 10−40 s3/m,
R = 10−3 (W ·m)−1; (b) τp = 10−9 s, P0 = 10 W, d2 =

−10−26 s2/md3 = 0, R = 10−3 (W ·m)−1; (c) τp = 10−9 s,
τR = 10−14 s, P0 = 10 W, d2 =−10−26 s2/m, d3 = 10−41 s3/m,
R = 10−3 (W ·m)−1,�= 109 s−1,β = 107 m−1,1n = 10−4.
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Equation (9a) is reduced to
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Fig. 2. (a)–(c) Transformation of a quasi-continuous wave
into ultrashort pulse train for different waveguide lengths:
d2 =−10−26 s2/m, d3 = 0, R = 10−3 (W ·m)−1, P0 = 0.1 W,
�= 109 s−1, β = 107 m−1, 1n = 10−4, �mod = 1012 s−1, ζ =

10−3, τR = 5 · 10−15s.

where Re f = f (z)R is the effective nonlinear coefficient.
For the case of anomalous dispersion considered further, the

function f (z) is

f (z)=
1

cos(|�|
√

d2mβz)
. (12)

An analysis of Eq. (9) shows that the fastest temporal com-
pression and perturbation of the pulse (and other nonlinear
processes) occur with the fiber length of

Fig. 3. (a)–(c) Ultrashort pulse train generation at d2 =

−10−26 s2/m d3 = 10−40 s3/m, R = (10−3, 10−2, 10−1)(W ·m)−1,
τR = 5 · 10−15 s; other parameters are the same as in Fig. 2.
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π
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Substituting the running time

τ ′(z)= f (z)τ − d2

∫
f (z)b(z)dz, (14)

Eq. (11) is reduced to
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where d e f
n (z)= f n(z)dn(z) are the effective dispersion parame-

ters. To reduce Eq. (7) to Eq. (15) we used the algorithm similar
to so-called lens transformation [10,11]. Analysis of the derived
equation shows that at z→ zs , the function f (zs )→∞,
and the effective nonlinearity parameter Re f (zs )→∞.
Therefore, a change of zs should drastically change the wave
packet behavior. In particular, at a very short length zs , it experi-
ences over-compression, i.e., τu(zs )→ 0, followed by ultrafast
frequency and amplitude modulations, as shown in Figs. 1–3.

3. NUMERICAL ANALYSIS

Equation (5) differs from the well-known GPE by a parabolic
potential Eq. (7) and is not singular. However, in the considered
case, the numerical simulation demonstrates a strong compres-
sion of the pulse (by more than 2 orders of magnitude) followed
by a sharp wave-breaking. Figure 1(a) presents evolution of a
low-power Gaussian pulse described by Eq. (2) in the fiber with
RRIW. The following fiber and pulse parameters have been used
for simulation: d2 =−10−26 s2/m, d3 = 10−40 s3/m, R =
10−3 (W ·m)−1, P0 = 0, 1 W, �= 109 s−1, β = 107 m−1,
1n = 10−4 with the duration τp = 10−10 s. Numerical sim-
ulation of Eq. (7) has been performed by the split-step Fourier
method (SSFM) with the variable step. The analytical solution
[Eq. (12)] of Eq. (7) is used just to assist numerical simulation
of Eq. (3). Indeed, Eq. (3) is a Gross–Pitaevskii type equation
exhibiting a singularity near the point zs . In the proximity to
zs the step of numerical calculation should be small enough to
simulate the pulse evolution. Equation (12) allows estimation
of the point zs , advancing the simulations by the use of a step of
10 fs (i.e., 1 order of magnitude smaller than the narrowest pulse
width) just in the proximity of zs .

One can see that when the condition |�|τp(0)� 1 is satis-
fied, the pulse is compressed down to subpicosecond durations
at the propagation length close to zs demonstrating an increase
of the peak pulse power by 3 orders of magnitude. One can see
that with the used parameters (i.e., when nonlinear effects are
low), Eq. (9) accurately describe the wave packet evolution and
Eq. (13) determines the pulse compression length zs with high
precision.

In the case of a high-power pulse, its propagation over
long fiber (z> zs ) is affected by high nonlinearity that causes
pulse over-compression and breaking. Figure 1(b) shows evo-
lution of a pulse of relatively long duration τimp = 10−9 s
(|�|τp(0)= 1) over the fiber with d2 =−10−26 s2/m,
d3 = 0, R = 10−3 (W ·m)−1, P0 = 10 W, �= 109 s−1,
β = 107 m−1,1n = 10−4.

Figure 1(c) presents the dynamics of the superpulse forma-
tion under conditions similar to those used in Fig. 1(b), but
with Raman self-scattering (τR = 10−14 s) and high value of the
third-order dispersion d3 = 10−40 s3/m taken into account.
Comparison of two evolutions highlight decrease of the super-
pulse amplitude, pulse shape deformation (with an appearance
of right wing), and more earlier pulse distortion. Importantly,
the pulse compression length zs (≈ 500 m) does not change.
One can see that at the propagation length close to zs [≈ 500 m,
Eq. (3)], the initial pulse experiences a strong compression down
to the durations less than 1 ps along with an increase of the peak
power up to the value higher than 1.5 kW (i.e., more than 2
orders of magnitude). However, at z> zm , the wave packet
breaks into separate noise components.

4. GENERATION OF SUPERPULSES

As shown above, when the velocities of RRIW and the wave
packet are synchronized, ultrafast compression of the wave
packet is possible. Therefore, it is reasonable to analyze evolu-
tion of MI in this case [7–17]. MI of the wave packet induced
by an external parabolic potential [evolution of the wave packet
is described by Eq. (7)] has been described neglecting the
higher-order dispersion effects [10,11].

Numerical simulation of Eq. (5) has been performed by
the SSFM [6] for quasi-continuous wave packet with a weak
amplitude modulation:

A(0, τ )=
√

P0[1+ ζ cos(�mod τ)], (16)

where P0 = |A0|
2 is the input power, ζ is the modulation depth,

and �mod is the wave packet frequency modulation. Figure 2
presents evolution of MI and generation of ultrashort pulse train
with the following simulation parameters: d2 =−10−26 s2/m,
d3 = 0, R = 10−3 (W ·m)−1, P0 = 0.1 W, �= 109 s−1,
β = 107 m−1, 1n = 10−4, ζ = 10−3, �mod = 1012 s−1,
and τR = 5 · 10−15 s. The amplitude of the refractive index
modulation used for simulations is quite realistic.

The scenario of superpulse generation [5,15,16] induced
by MI is as the following. At the first stage shown in Fig. 2(a),
the arising MI causes generation of high-frequency pulse train
(breathers) with the repetition rate �max =

√
Re f P0/|d2e f |

and duration of a single pulse τp ≈ 2π/�max. At this stage, the
harmonic perturbation gain is expressed [6,15] as

g (z, ω)= 2|1�d2e f |

√
2Re f P0/|d2e f | −1�2, (17)

where 1�=ω−ω0, ω is the harmonic perturbation
frequency,ω0 is the carrier frequency of the input wave packet.

At the next stage, breathers are pulled toward the RRIW
areas exhibiting the maximal refractive index, where a bunch of
waves with an energy proportional to Ws ∼ P0/� are gener-
ated. An explosive character of subpicosecond pulse generation
is clearly seen in the figure. For the continuous wave with a
power of 100 mW (and the taken frequencies and modulation
depths), the peak power of superpulses generated at the fiber
length z= zm (that is of the same order of magnitude as zs )
is higher than Pmax > 0, 3 kW. The resulting pulse duration
is τs ∼ P0/�Pmax and shorter than a picosecond. With an
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increase of the peak power, the repetition rate of the generated
pulses decreases (for lower repetition rate, the energy generated
by a superpulse increases due to additional energy of coherent
breathers generated during time T = 2π/� and collapsed into
a single superpulse). One can see that an ultrafast and sharp
generation of subpicosecond pulses delivering kilowatt powers
from a relatively low peak power pulse train occurs at the last
stage, within the fiber length shorter than 1 m. Thus, a strong
compression of the pulses induced by MI occurs at the final
relatively short waveguide section.

Figures 2(b) and 2(c) highlight the dynamics of generation of
the superpulse train. One can see a sharp increase of the super-
pulse peak power at z≤ zs caused by a coherent addition of
the breathers generated through MI. Generation of high peak
power ultrashort pulse occurs in the section short in comparison
with the whole waveguide length. At z> zm , light propagation
becomes chaotic and finally the wave packet due to nonlin-
earity and higher-order dispersion effects breaks into noise
components.

Figures 3(a)–3(c) show the dynamics of MI and gener-
ation of superpulse train from a continuous wave in fibers
with RRIW. The third-order dispersion d3 = 10−40 s3/m
is taken now into account. The Kerr nonlinearities are
R = 10−3, 10−2, 10−1 (W ·m)−1 (a)–(c); all other parameters

Fig. 4. (a), (b) Temporal dependence of superpulse power simulated
for the lengths z≈ zs = 497 m: (a) d2 =−10−26 s2/m, P0 = 0.1 W,
�= 109 s−1, β = 107 m−1, 1n = 10−4, d3 = 0, τR = 510−15 s; (b)
d3 = 10−40 s3/m, R = 10−2, 10−3 (W ·m)−1, τR = 5 · 10−15 s
(1, solid line; 2, dashed line).

are the same as in Fig. 2. The most efficient generation of ultra-
short pulses is obtained at the optimal value of the nonlinearity
R ≈ 10−2 (W ·m)−1. Noteworthy, at R ≤ 10−4 (W ·m)−1

no MI is observed.
Figures 4(a) and 4(b) present the shape that a superpulse

acquires in the segment of maximal compression (z∼ zm). The
superpulse duration is approximately τmin = 10−13 s. One
should note that when the higher-order dispersion terms are
negligible, the length of superpulse generation coincides with
the length zs ≈ zm determined by Eq. (13) with high precision.
As the Kerr nonlinearity increases by an order of magnitude
(from R = 10−3 (W ·m)−1 up to R = 10−2 (W ·m)−1), the
maximal superpulse peak power increases by about 10% (from
about 110 up to 120) [Fig. 4(b)]. The shape of the pulse wings
is nearly the same. Comparison of Figs. 4(a) and 4(b) highlights
also the effect of the third-order dispersion. It is responsible
for a break of the reflection symmetry, and therefore the pulse
becomes slightly asymmetric, and the force pushing it off the
resonance with the refractive index wave appears, decreasing the
efficiency of the resonance interaction and the pulse amplitude.

For the pulse formation processes shown in Fig. 4, the effect
of Raman scattering is negligible. Although the maximal peak
pulse amplitude could be as high as ∼ 400 W [Fig. 4(a)], the
effective Raman amplification length (the length correspond-
ing to the power increases in e times) is rather short (typically
∼ 1 m). Therefore, with τR = 5 · 10−15 s the Raman gain
increment is estimated to be ∼ 0.4 [Fig. 4(a)], which is much
lower than∼ 16, i.e., the commonly accepted Raman threshold
increment [6].

Fig. 5. (a), (b) Evolution of the superpulse formation: P0 = 1 W,
d2 =−10−26 s2/m, �= 109 s−1, β = 107 m−1, 1n = 10−4, d3 =

10−41 s3/m, ς = 10−3, �mod = 1012 s−1, R = 10−3 (W ·m)−1; (a)
τR = 5 · 10−15 s; (b) τR = 5 · 10−14 s.
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To evaluate the effect of the Raman scattering on the super-
pulse formation we have simulated the pulse formation
dynamics at much higher input power of P0 = 1 W. In this
case the superpulse amplitude gets ∼ 1 kW and the Raman
effect becomes important. Figure 5 compares dynamics of the
pulse formation for two different values of the Raman response
time τR . One can see that after getting the Raman threshold
the Raman effect suppresses the pulse peak amplitude, leading
to the pulse distortion. In addition, the Raman effect shortens
the compression lengths, which become ∼ 496 and ∼ 489 m
for τR = 5 · 10−15 s and τR = 5 · 10−14 s, respectively. From
comparison of Figs. 4 and 5 one can see that at higher peak
power levels the effect of the third-order dispersion is more pro-
nounced. In Fig. 5 the pulse exhibits asymmetric deformation
typical for the third-order dispersion effect.

5. PRACTICAL IMPLEMENTATION OF THE
SIMULATED EFFECT

Considering the dynamics of a pulse or quasi-continuous wave
packet in a fiber with RRIW, we have assumed an equality of
their velocities (νg ≈ νm =�/q ). These conditions could be
implemented in the real waveguide through interaction of
RRIW and surface wave (similar to whispering gallery mode),
the so-called tunneling wave [25,26]. In this configuration, the
wave packets propagate in a spiral along the surface of a silica
cylindrical waveguide with a constant helix step. The longitu-
dinal (along the waveguide axis) group velocity is less than the
speed of light propagating along the waveguide and could be
adjusted to the RRIW velocity by a selection of the angle of the
light injection [26–29].

When the light is injected into a cylindrical waveguide
at a certain angle to the cylinder axe, the surface wave prop-
agates along a spiral trajectory (Fig. 6) [25,26,28–30]. For
this wave, the longitudinal component of the wave vector
is kz = (k2

− k2
r )

1/2, where k = k0n(ω); k0 =ω/c is the
wavenumber in vacuum; n(ω) is the refractive index of the
waveguide material; and kr is the transverse (radial) wave vector
component. When the angle of the wave injection into the fiber
is close to the normal, the wave propagation along the waveguide
slows down significantly. The surface wave slowly propagates
along the longitudinal axis of the waveguide z with velocity
Vc � c (when kz� k ∼ kr ). The wave electric field in this case
can be expressed as

E (z, r , t, ϕ)= A(z, t)8(r , z, ϕ) exp

(
iωt − i

∫ z

0
kz(z)dz

)
,

(18)

where A(z, t) is the slowly varying amplitude describing the
longitudinal (along the z axis) distribution of the tunneling
wave field, and8(r , z, ϕ) is the function determining the radial
and azimuthal dependence of the field inside the waveguide (at
r ≤ a0, where a0 is the fiber radius) [1,29].

The dynamics of a wave packet temporal envelope is
described by the nonlinear Schrödinger equation [20]:

∂ A
∂ξ
− i

d2

2

∂2 A
∂τ 2
+

d3

6

∂3 A
∂τ 3

+ i Rm |A|2 A= iβm cos[�(τ − δτ)]A. (19)

Fig. 6. Propagation of the tunneling wave synchronized with RRIW
over the cylinder surface.

This equation is similar to Eq. (5), but with ξ coordinate along
the wave packet trajectory used instead of z coordinate along the
waveguide. Therefore, ξ is related to z as follows:

∂ξ ' (νg /νm)∂z' (c/nνm)∂z' γ−1∂z,

where γ ' nνm/c is the wave deceleration parameter,
Rm = kn(2)/Se f is the nonlinearity parameter, n(2) is the
cubic nonlinearity coefficient of material, and Se f is the effective
area of the surface tunneling mode [6,29].

Such an interaction of the wave packet and RRIW could be
achieved in the fiber with an induced acoustic wave [28–31].
To synchronize the tunneling wave packet and RRIW in silica
fiber with a standard refractive index n ≈ 1.5 and the acoustic
wave velocity Va ≈ γ c/n ≈ 6000 m/s, the Kerr nonlinearity
γ ≈ 3 · 10−5 is required. The modulation depth m provided
by the acoustic wave can be as high as m = 4 · 10−4 [1,31]. In
this case, a cylindrical waveguide with the length l of 2 cm only
(for which ξ = l/γ ≈ 500 m) enables a surface tunneling wave
induced by MI leading to generation of a train of pulses with the
peak power several orders of magnitude greater than that of the
pumping radiation.

6. CONCLUSION

In this paper, we report on the nonlinear dynamics of a wave
packet propagating in a waveguide with RRIW. The regimes
of MI in such fibers are explored. We have shown that subpi-
cosecond pulses generated through MI could acquire the peak
powers by orders of magnitude higher than the power of CW
pumping radiation. Practical realization of the effect could
enable a compact (shorter than 1 cm) all-fiber generator of
picosecond and subpicosecond pulse trains. It is worth noting
that the reported MI significantly defers from that commonly
observed in optical fibers (including nonhomogeneous fibers)
[22–24]. Equation (7), used for describing dynamics of the
Bose–Einstein condensate (BEC) [32–35] and, therefore, for-
mation dynamics of the gigantic pulses described here, is similar
to BEC wave dynamics reported early for the magnetic trap with
parabolic potential near Feshbach resonance.
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