# UMONS From CO<sub>2</sub> to Energy: Oecrachair **Carbon Capture in Cement Production and its Re-use**

from CO<sub>2</sub> to energy

(European Cement The **ECRA Research Academy) Academic Chair** was established at UMONS in 2013, focusing on the CO<sub>2</sub> capture and reuse applied to the cement industry.



# Selecting emerging CO<sub>2</sub> utilization products for short- to mid-term deployment

- Development of an **Original multi-step method** to :
  - 1) Reduce the panel of CO<sub>2</sub> conversion alternatives,
  - 2) Select the best emerging options to be implemented short- to mid-term (15 years)
- Multi-criteria assessment
- Definition of **9 KPIs** grouped into the **3E performance criteria** (Engineering-Economic-Environmental) to evaluate the shortlisted CO<sub>2</sub> technologies identified after preliminary assessment





### **CO<sub>2</sub>** capture and Purification



Fuels, organic & inorganic chemicals, microalgae, polymers, etc.

## CO<sub>2</sub> Utilization or Storage

#### Authors:

Remi Chauvy, Seloua Mouhoubi, Nicolas Meunier, Lionel Dubois, **Diane Thomas, Guy De Weireld Chemical & Biochemical Process** Engineering, Thermodynamics Units Faculty of Engineering - University of Mons, 20 Place du Parc - 7000 Mons

Determining Pearson correlation coefficients between alternative rankings Comparing how the rankings of alternatives change with criteria weight variation



Total weighted scores of the selected CO<sub>2</sub>-based products (Score Max: 4)

![](_page_0_Figure_21.jpeg)

## $\rightarrow$ Methanol, methane : promising alternatives

# CO<sub>2</sub> capture & conversion: Alternative production of methanol

- CO<sub>2</sub> conversion into methanol: simulation of the global chain and optimization including energy integration with the CO<sub>2</sub> capture
- Designed to treat CO<sub>2</sub> coming from a conventional BAT cement plant producing 3,000 tons clinker per day, corresponding to 2,475 tCO<sub>2</sub> per day (90% CO<sub>2</sub> capture rate), and producing 1,546 tons methanol per day

### Belgium

**Contact person:** Guy De Weireld Guy.deweireld@umons.ac.be

**For more information:** http://hosting.umons.ac.be/html/ecrachair

### **Partners:**

![](_page_0_Picture_30.jpeg)

![](_page_0_Picture_31.jpeg)

![](_page_0_Picture_32.jpeg)

#### 

*Process flow sheet of the CO*<sup>2</sup> *capture and conversion units (Aspen Plus* <sup>™</sup>*)* 

![](_page_0_Figure_35.jpeg)

### Technological metrics of the CO<sub>2</sub> capture and conversion units normalized to the production of one-ton methanol

![](_page_0_Figure_37.jpeg)

- → CAPEX: 47.30 M€ (Electrolysers for  $H_2$ ) production not taken into account)
- → **OPEX**: 55  $\in$ /tCO<sub>2</sub> (electricity: 70  $\notin$ /MWh, steam cost: 30 €/MWh, catalyst: 10 €/kg, MEA: 1.03 €/kg)
- $\rightarrow$  Economic breakthrough occurring for an electricity price of 46 €/kWh
- → Environmental study: reduction by 50% of CO<sub>2</sub> emissions compared to the original emissions of a reference system without CCU
- Processes optimization and integration required to lower energy and resources consumption

![](_page_0_Figure_43.jpeg)

#### Université de Mons

![](_page_0_Figure_45.jpeg)