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INTRODUCTION 

A droplet on a fiber (of radius r) can adopt two 

completely different geometries. First, an 

axisymmetric form, known as the barrel shape (Figure 

1, Top). This static configuration is well described by 

the Laplace equation, so that physical characteristics 

of the droplet, like the static contact angle 
 or droplet 

height h
0
 can be predicted. When 

 remains high 

(how high is dependent on r and h
0
), the droplet retains 

an asymmetric form, the clam-shell shape (Figure 1, 

Bottom). This time, the Laplace equation is not the 

relevant equation and, so far, no theoretical analysis of 

this conformation is known. The transition between 

the two geometries, the roll-up transition, is of 

particular industrial interests for the process of the 

detergency of oils from fabrics, and was therefore 

intensively investigated by Carroll [1], McHale et al 

[2], and Eral et al [3]. 
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Figure 1: Barrel (Top) and clam-shell (Bottom) shapes 

of a droplet on a fiber at equilibirum. Side and Head-

on views 

 

However, to the best of our knowledge, the spreading 

dynamics, i.e. the dynamical process which leads to 

the two observed static configurations, has never been 

studied. This is the main goal of this ongoing study. 

As a first step toward a better understanding of the 

fundamental mechanisms that control the spreading of 

droplets on fibers, we are using large scale molecular 

dynamics to study the contact-line motion of a droplet 

of liquid L in contact with a fiber F 

 

METHODOLOGY 
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In our simulations, all potentials between atoms, fiber 

as well as liquid, are described by modified pair-wise 

Lennard-Jones 12-6 interactions Uij with rij the 

distance between any pair of atoms i and j. The 

coupling parameters 
BAC 

 enable us to control the 

relative affinities between the atoms. The subscript 

A-B stands for the various possible interactions pairs: 

L-L, L-F, and F-F. 
BAC 

 is set to 1.0 for L-L and F-

F, and to 0.9, 1.0, 1.05, 1.1 for L-F to tune the 

wettability of the fiber. The parameters ij and ij are 

related respectively, to the depth of the potential well 

and effective molecular diameter. For both fiber and 

liquid atoms, the Lennard-Jones parameters are ij = 

0.267 kJ/mol and ij = 3.5 Å. In addition, we 

consider a confining potential between nearest 

neighbours to maintain a constant distance between 

any two adjacent atoms within a given liquid 

molecule (8 atoms in length) and an harmonic 

potential for the fiber atoms. This model is 

simplistic, but it contains all the basic ingredients to 

describe the details of wetting for flat surfaces [4] for 

example. A droplet with an initial radius of 8.5 nm 

(5000 molecules) and a fiber with a radius of 4 nm 

and a length of 59 nm were simulated. To describe 

the spreading dynamics, we need to know the droplet 

radius and the contact angle versus time. To achieve 

this, we record the position of the edge of the droplet 

via a density calculation throughout the simulation. 

We then approximate the drop shape by a spherical 

cap and fit it by a circle. We could thus extract from 

the successive configurations, the dynamic droplet 

height and contact angles ( Side and  Head-on). To 

interpret these data, we focus on the molecular-

kinetic theory (MKT) [5], which, in its simplified 

version, establishes the following relation between 

the velocity of the triple contact line (TCL) v  and 

the driving force   coscos 0  : 

  00 coscos  v  with   the surface tension 

of the liquid,   the dynamic contact angle, and 
0 the contact line friction. Here, this single 

parameter characterizes the spreading dynamics. A 

step further is to assume that 0 can be split into two 

parts, the first one originates from the viscosity of 

the liquid and the second from the liquid-solid 

interaction [5]. It yields the following expression 

  00 cos1exp   ba , with a and b constants for 

a given couple of liquid and solid. Thus the 

logarithm of 0  is proportional to  0cos1   , i.e. to 

the work of adhesion between the liquid and the 
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fiber. Our main goal is to check if the spreading 

dynamics can be modelled by this theory. 

RESULTS AND DISCUSSION 

Figure 2 shows three successive snapshots of a droplet 

spreading on a fiber for CL-F = 0.9 (left side) and 1.1 

(right side). These affinities leads respectively to a 

clam-shell and barrel shapes.  

 
Figure 2: Snapshots of spreading droplet with CL-F = 

0.9 (left side) and 1.1 (right side)  

 

The dynamics of the contact angles associated to these 

simulations are presented in Figure 3. For CL-F = 0.9, 

both  Side and  Head-on remain larger than 0° which 

indicates partial spreading. After 5 ns, equilibrium is 

reached with 
Side = 83.1° ± 4.5° and 

Head-on =50.6° 

± 6.0°. For CL-F = 1.1,  Head-on rapidly reaches a value 

of 0°, i.e. the droplet completely engulfs the fiber. Yet, 

the spreading dynamics is not over as 
Side continues 

to slowly decrease. In this case, we can then consider 

that the spreading dynamics is a two-step process. 
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Figure 3: Dynamic contact angles,  Side and  Head-on 

for CL-F = 0.9 (blue lines) and 1.1 (black lines). 

 

To determine the speed of the TCL, we use the G-

Dyna software [6], which also yields 0  for the 

simplified version of the MKT. Figure 4 presents the 

data submitted to the G-Dyna software (gray symbols) 

and the best fits (black line), for coupling parameters 

equal to 0.9, 1.0, 1.05, and 1.1. The good agreement 

between the data and the fits reveals that the contact 

line friction could be a relevant parameter to describe 

the dynamics. Moreover, Figure 5 shows that a linear 

relation between the logarithm of 0 and the work of 

adhesion is plausible as predicted theoretically. 
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Figure 4: Contact angle dynamics and the MKT fits 
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Figure 5: ln 0  
versus the work of adhesion 

 

CONCLUSION 

We use large scale molecular dynamics simulation to 

model the spreading of droplets on fibers. We show 

that the dynamics can be modelled by the molecular-

kinetic theory and that the contact line friction may 

be the relevant parameter to describe the dynamics. 

We believe that this is a first step towards a better 

understanding of droplet on fiber spreading 

dynamics. However, there is a particular need for 

more theoretical and experimental works. This is 

ongoing. 
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