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Abstract

We consider the problem of learning a function assigning objects into ordered categories. The objects are
described by a vector of attribute values and the assignment function is monotone w.r.t. the attribute values
(monotone sorting problem). Our approach is based on a model used in multicriteria decision analysis
(MCDA), called MR-Sort. This model determines the assigned class on the basis of a majority rule and
an artificial object that is a typical lower profile of the category. MR-Sort is a simplified variant of the
ELECTRE TRI method. We describe an algorithm designed for learning such a model on the basis of
assignment examples. We compare its performance with choquistic regression, a method recently proposed in
the preference learning community, and with UTADIS, another MCDA method leaning on an additive value
function (utility) model. Our experimentation shows that MR-Sort competes with the other two methods,
and leads to a model that is interpretable.

Keywords: multiple criteria decision analysis; classification; majority rule sorting; preference learning; heuristic

1. Introduction

Sorting problems frequently arise in real-life contexts. For instance, a committee is assigned the
task of separating good projects from bad ones, a jury has to assign grades to students. To select
the category in which an alternative (e.g., a project, a student) should be assigned, a common and
intuitive approach consists in analyzing its characteristics recorded as the value of attributes, also
called criteria (e.g., for grading a student, the marks obtained in the different subjects). In both
examples above, categories are specified before sorting takes place and they are ordered to reflect the
preference of the decision maker (DM). Furthermore, the grading of students typically is monotone
w.r.t. the marks obtained. Better marks cannot lead to a worse grade.
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These two properties, that is, sorting in ordered classes by rules that are monotone w.r.t. attribute
values, characterize the kind of sorting problems we want to address with the algorithm presented
in this paper. Formally, each alternative a in a set A is described as a vector (a1, . . . , a j, . . . , an),
where a j is the value of a on the jth attribute. This value is an element of the attribute’s scale Xj ,
endowed with a preference order � j . The set of alternatives A may thus be seen as a subset of the
Cartesian product, X = ∏n

j=1 Xj . Sorting the alternatives in the ordered categories Cp � · · · � C1
(where � describes the DM’s preference order on the categories) amounts to define a function
g : A ⊆ X → {C1, . . . ,Cp}. The sorting function g is monotone if an alternative a cannot be assigned
to a less preferred category than an alternative b whenever a is at least as good as b on all attributes.
Precisely, for all a, b ∈ A, with a j � j b j for all j, we have g(a) � g(b) or g(a) = g(b).

In the preference learning (PL) community, learning such monotone assignment functions on the
basis of assignment examples is referred to as monotone learning (Tehrani et al., 2012).

In the multiple criteria decision analysis (MCDA) community, sorting alternatives into categories
on the basis of their evaluation on a family of criteria is one of the central problems (Figueira et al.,
2013). In contrast with machine learning usage, MCDA puts the emphasis on interaction with the
DM. Their preferences are usually elicited in the course of an interactive process and explicitly
incorporated in the sorting model. There are two main categories of MCDA models that have been
used for sorting purposes:

1. Methods based on the construction of an overall score or value function aggregating all at-
tributes. The weighted sum and the additive value function models (Belton and Stewart, 2002,
Chapter 6) belong to this category. Basically, an alternative is assigned to a category whenever
its score (or value) reaches some lower threshold value and is smaller than the lower threshold
of the category just above.

2. Methods based on outranking relations. They are inspired by social choice theory and rely on
pairwise comparisons of alternatives. Well-known in this family are the ELECTRE methods
and, in particular, ELECTRE TRI. In this framework, an alternative is assigned to a category
if it is preferred to the lower profile of the category, but is not preferred to the lower profile
of the category just above. The preference (called outranking) of an alternative over another
is determined by means of a concordance-nondiscordance rule. Such a rule checks whether the
former is at least as good as the latter on a sufficiently strong coalition of criteria and whether
there is no criteria on which the former alternative is unacceptably worse than the latter.

For a detailed presentation of such methods, the reader is referred to Doumpos and Zopounidis
(2002) and Zopounidis and Doumpos (2002).

Eliciting the parameters of a model in MCDA can either be done directly or indirectly. Since
MCDA favors interactions with the DM, the parameters are often elicited through directly asking
the DM questions that determine or restrict the range of variation of the model’s parameters.
Questioning procedures are often cognitively demanding while DMs are usually very busy. Therefore,
indirect methods have been developed based on a learning set consisting, for instance, of assignment
examples, in the case of a sorting problem. Several learning algorithms were proposed in the MCDA
literature, in particular based on linear programing. It is the case of the UTADIS method developed
by Jacquet-Lagrèze and Siskos (1982) (see also Doumpos and Zopounidis, 2002, Chapter 4).
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However, in MCDA, learning sets are usually of small size and therefore, the learning algorithms
developed within this field are not specially designed to handle large data sets. Hence, model
parameters are typically underdetermined.

The aim of this paper is to present and test an algorithm designed to learn the parameters of an
MCDA sorting model, called MR-Sort, which is based on an outranking relation. This algorithm
is able to deal with large learning sets. We compare its performance with that of other algorithms
developed within the machine learning community as well as with that of the UTADIS sorting
method. Whenever possible, we also confront the results provided by our heuristic with the optimal
solution obtained by solving a mixed integer formulation of the problem. For large instances,
however, the latter is not feasible in reasonable computing times. The main advantage of using
MCDA models, as compared with machine learning algorithms, is that the former allow for an
interpretation of the explicit rules used for sorting the objects.

The paper is structured as follows. After a brief literature review in Section 2, we describe the
MR-Sort model and its specificities in Section 3. Section 4 describes the algorithm elaborated to
learn the parameters of this model. We provide here a complete description of this algorithm, which
was previously more briefly presented in Sobrie et al. (2013). In the interval, some changes have
been brought to the algorithm in view of enhancing its efficiency, which allows to apply it to larger
data sets and benchmarks used in machine learning. In Section 5, the results obtained by testing
the algorithm on real data sets are presented and its performance is compared with other MCDA
and machine learning algorithms, both for binary and multiclass sorting. Finally, in Section 6, we
conclude and outline some perspectives for further developments.

2. Literature review

Model-based PL consists in using models making assumptions about the structure of preference
relations (Fürnkranz and Hüllermeier, 2010). In this section, we emphasize the link between the
MCDA and PL domains (see also Sobrie, 2016).

2.1. Multiple criteria decision analysis and preference learning

MCDA models are designed to provide support to a DM facing a decision problem. Once their
parameters have been elicited, models lead to a recommendation and allow to explain it to the DM.
Usually, problems treated in MCDA only involve a small number of alternatives and the parameters
of the model are determined by interacting with one or several DMs.

The involvement of a DM in the building of a preference model is a characteristic of MCDA.
This feature makes it come close to active learning techniques in PL.

For several reasons, determining the value of the model’s parameters by questioning the DM can
prove difficult. Therefore, several algorithms were proposed to learn such parameters from holistic
preference statements or assignment examples (e.g., Jacquet-Lagrèze and Siskos, 1982; Mousseau
and Słowiński, 1998; Jacquet-Lagrèze and Siskos, 2001; Bous et al., 2010; Doumpos et al., 2014).
These algorithms are often based on linear programing or mixed integer program (MIP). The latter
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can only deal with relatively small data sets in which alternatives are described on few criteria or
attributes (e.g., Leroy et al., 2011).

Usually, PL focusses on the learning and predictive performance of algorithms. It does not
emphasize the interpretability of the results. Algorithms used to predict assignments, rankings,
etc., are used as black boxes. Contrary to MCDA, problems dealt with in this subfield of machine
learning generally involve large data sets and many attributes.

Using MCDA models in the context of machine learning is especially advisable in the case of
monotone PL, that is, in case the position of an object in a ranking or its assignment to a category
cannot become worse when the attributes that are relevant for its description take on better values
(which implies that a “natural” order is defined on the values of the attributes). Monotonicity of
the preference w.r.t. the values of the attributes (called criteria) is a fundamental property of most
MCDA problems.

The use and perspectives of MCDA models in machine learning was discussed by Corrente et al.
(2013). These authors emphasize in particular the usage of robust ordinal regression (ROR) in
ranking problems.

In this paper, we focus on the sorting problem statement in which input attributes and classes
are monotone. In machine learning, monotone classification has been introduced by Ben-David
et al. (1989). Since then, several papers were published in the field of PL to deal with the sorting
problem statement. Ben-David (1995) proposes a learning method based on decision trees. In Sill
(1998), neural networks are used in the context of monotone classification. Chandrasekaran et al.
(2005) develop an algorithm based on the so-called isotonic separation. In Dembczyński et al.
(2006), a method using additive value functions, similar to UTADIS (Jacquet-Lagrèze and Siskos,
1982), is studied. Dembczyński et al. (2009) propose an algorithm based on the dominance rough set
approach. Recently, Tehrani et al. (2012) developed an algorithm that allows to learn the parameters
of a Choquet integral, which is used for sorting the items.

In MCDA, several sorting procedures exist. Zopounidis and Doumpos (2002) provide an overview
of sorting methods in MCDA. Some of them, like UTADIS (Jacquet-Lagrèze and Siskos, 1982) and
the dominance-based rough set approach (Greco et al., 2001), are designed to learn the preferences of
the DM on the basis of assignment examples, but their performance has not been tested extensively
on large size benchmark data sets.

2.2. Learning an ELECTRE TRI model

To our knowledge, none of the sorting algorithms proposed up to now in the machine learning field
are based on ELECTRE models. In MCDA, multiple papers are devoted to learn the parameters
of ELECTRE TRI models. Mousseau and Słowiński (1998) propose a linear program aiming
to learn all the parameters of an ELECTRE TRI model. Mousseau et al. (2001) consider the
problem of finding the weights and the majority threshold of an ELECTRE TRI model for which
delimiting profiles are known beforehand. They propose a linear program on which they conduct
some experiments. In Ngo The and Mousseau (2002), an MIP is suggested to learn the profiles of
an ELECTRE TRI model for which the weights and the majority threshold are known beforehand.
Other linear and MIP programs allowing to learn the vetoes of an ELECTRE TRI model are
presented in Dias et al. (2002).
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In Doumpos et al. (2009), a genetic algorithm is set up to learn the parameters of an ELECTRE
TRI model. It can be transposed to learn the parameters of an MR-Sort model. However, this
metaheuristic is not especially designed to adapt to the structure of the problem: its crossover and
mutation operators are standard ones. In operational research, it is well known that a metaheuristic
adapted to the problem structure performs better (Pirlot, 1996).

Learning the parameters of an MR-Sort model has been already studied in Leroy et al. (2011).
The paper describes a mixed integer program (MIP) allowing to learn the parameters of an MR-Sort
model on the basis of assignment examples. Cailloux et al. (2012) describe three MIPs aiming to
learn the parameters of an MR-Sort model in the context of multiple DMs. These programs require
even more binary variables than the MIP developed in Leroy et al. (2011). It is worthless to consider
using one of these programs in the context of PL problems where large data sets are involved.

3. MR-Sort, an ordered classification method

MR-Sort is a method for assigning objects to ordered categories. Each object is described by a
vector of attribute values. The attribute values can be meaningfully ordered, that is, there is an
underlying order on each attribute scale, which is interpreted as a “better than” relation. Categories
are determined by limit profiles, which are vectors of attribute values. The lower limit profile of
a category is the upper limit profile of the category below. The MR-Sort rule works as follows.
An object is assigned to a category if it is better than the lower limit profile of the category on a
sufficiently large coalition of (weighted) criteria and this condition is not met with respect to the
upper limit profile of this category. Obviously, MR-Sort is a monotone rule, that is, an object that
is at least as good as another on all attributes cannot be assigned to a lower category.

The MR-Sort rule is a simplified version of the ELECTRE TRI procedure, a method that is
used in MCDA to assign alternatives to predefined categories (Yu, 1992; Roy and Bouyssou, 1993).
The underlying semantic is generally to assign the alternatives labels such as “good,” “average,”
“bad,”. . . .

To be more formal, let X be a set of objects evaluated on n-ordered attributes (or criteria). We
assume that X is the Cartesian product of the attribute ranges, X = X1 × X2 × . . . × Xn = ∏n

j=1 Xj .
An object a in X is thus a vector (a1, . . . , a j, . . . , an), where a j ∈ Xj for all j.

The categories that the objects are assigned to by the MR-Sort model are denoted by Ch, with
h = 1, . . . , p. The category Ch is delimited by its lower limit profile bh−1 and its upper limit profile
bh, which is also the lower limit profile of category Ch+1 (provided h < p). The profile bh is the vector
of attribute values (bh,1, . . . , bh, j, . . . , bh,n), with bh, j ∈ Xj for all j.

By convention, the best category, Cp, is delimited by a fictive upper profile, bp, and the worst one,
C1, by a fictive lower profile, b0.

It is assumed that the profiles dominate one another, that is:

bh−1, j ≤ bh, j, h = 1, . . . , p; j = 1, . . . , n.

Figure 1 provides a graphical representation of the profiles and categories of an MR-Sort model.
Using the MR-Sort procedure (without veto), an object is assigned to a category if its attribute

values are at least as good as the category lower profile values on a weighted majority of criteria
and this condition is not fulfilled when the object’s attribute values are compared to the category
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Fig. 1. Profiles and categories of an MR-Sort model (five criteria, three categories)

upper profile values. In the former case, we say that the object is preferred to the profile, while, in
the latter, it is not. Formally, if an object a ∈ X is preferred to a profile bh, we denote this by a � bh.
Object a is preferred to profile bh whenever the following condition is fulfilled:

a � bh ⇔
∑

j:a j≥bh, j

w j ≥ λ, (1)

where wj is the nonnegative weight associated with attribute j, for all j and λ sets a majority level.
The weights satisfy the normalization condition

∑
j∈F wj = 1; λ is called the majority threshold; it

satisfies λ ∈ [1/2, 1]. The sum
∑

j:a j≥bh, j
w j is often called the concordance index and will be denoted

by σ (a, bh). It measures the strength of the coalition of criteria backing the hypothesis that a is at
least as good as the profile bh. The threshold λ tells which coalitions are strong enough to conclude
that indeed a is at least as good as bh.

The preference relation � defined by (1) is called an outranking relation without veto or a
concordance relation (Roy and Bouyssou, 1993; see also Bouyssou and Pirlot 2005, 2007, 2015 for
an axiomatic description of such relations).

Consequently, the condition for an object a ∈ X to be assigned to category Ch is written as:

∑
j:a j≥bh−1, j

w j ≥ λ and
∑

j:a j≥bh, j

w j < λ. (2)

The MR-Sort assignment rule described above involves pn + 1 parameters, that is, n weights,
(p − 1)n profiles evaluations, and one majority threshold. Note that the profiles b0 and bp are
conventionally defined as follows: b0, j is a value such that a j ≥ b0, j for all a ∈ X and j = 1, . . . , n;
bp, j is a value such that a j < bp, j for all a ∈ X and j = 1, . . . , n.

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies



1792 O. Sobrie et al. / Intl. Trans. in Op. Res. 26 (2019) 1786–1809

A learning set A is a subset of objects A ⊆ X for which an assignment is known. For h = 1, . . . , p,
Ah denotes the subset of objects a ∈ A, which are assigned to category Ch. The subsets Ah are
disjoint; some of them may be empty.

Remark. The MR-Sort rule described above is a slightly particularized version of the noncompen-
satory sorting model studied by Bouyssou and Marchant (2007a, 2007b). With respect to these
methods, MR-Sort has the following features: (i) no veto is considered and (ii) the coalitions of
criteria that are sufficiently large1 and imply that determining whether an object is preferred to
a profile can be done by associating weights to the attributes and selecting a majority threshold
through formula (1).

4. Learning the parameters of an MR-Sort model

We briefly introduce the method proposed in Leroy et al. (2011) to learn the parameters of an MR-
Sort model by solving a MIP. We recall the limitations of such an approach in terms of computing
time and memory space resources. We then describe the metaheuristic we have developed to achieve
the same goal.

4.1. Mixed integer programing formulation

In Leroy et al. (2011), a linear program involving binary variables was used to learn the parameters
of an MR-Sort model (without veto). The program tries to minimize the 0/1 loss, that is, it searches
for a model that is compatible with as many examples as possible.

Learning the parameters of an MR-Sort model using linear programing cannot avoid using
binary variables. The MIP proposed by Leroy et al. (2011) involves m · (2n + 1) binary variables,
where m is the size of the learning set and n, the number of attributes.

The experimental results showed that learning the parameters of a model for data sets involving a
large number of assignment examples, criteria, or categories, requires huge computing times (using
the IBM ILOG CPLEX solver). With barely 100 alternatives, 5 criteria, and 3 categories (i.e., 1100
binary variables in the MIP), more than 100 seconds are needed to learn the parameters of an
MR-Sort model.2

Due to these long computing times, using this MIP is not a feasible approach for the type of
problem we want to handle, that is, problems involving large data sets. An option to overcome the
computing time issue is to use relaxation techniques that allow to obtain an approximate solution
(Minoux, 2008; Wolsey, 1998). Instead of exploring this path (which certainly deserves attention), we
developed a new sophisticated—population based—metaheuristic that exploits as much as possible
the specificities of the problem. This algorithm is described in the next section.

1In a general noncompensatory sorting method, the class of sufficient coalitions cannot always be described by an additive
measure; it may require the use of a capacity. See Bouyssou and Marchant (2007a) for more detail.

2System used: Core 2 Duo P8700, running Gentoo Linux and CPLEX 12.5.
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4.2. The metaheuristic

In Section 2, we gave an overview of several algorithms that were proposed to learn the parameters of
ELECTRE TRI and MR-Sort models. In Sobrie et al. (2013), we described a preliminary version of
a metaheuristic for learning MR-Sort models. This version needed improvements from an efficiency
point of view in order to tackle large datasets, and was only validated on artificial data.

The present metaheuristic is grounded on the following two important observations:

� Given a set of profiles, learning the weights and the majority threshold of an MR-Sort model can
easily be achieved by solving a linear program without binary variables.

� In contrast, given a set of weights and a majority threshold, learning the profiles values by means
of linear programing requires using binary (0/1) variables.

To properly take the structure of the problem into account, that is, the ease of learning the weights
and the majority threshold with a linear program and the difficulty to do the same for the profiles,
we separate the algorithm in three components:

1. A heuristic that initializes a set of profiles;
2. a linear program learning the weights and the majority threshold of the model on the basis of

fixed profiles; and
3. an heuristic adjusting the profiles to improve the quality of the model, while keeping the weights

and majority threshold fixed.

The objective of the algorithm is to find a model restoring as many examples as possible. To
assess the quality of the models, we use two indicators. The first is the classification accuracy (CA)
criterion, which is defined as follows:

CA = Number of assignment examples restored
Total number of assignment examples

. (3)

The higher the value of the CA, the better the quality of the model. The second indicator is the
area under curve (AUC), which quantifies the discriminating power of the algorithm to separate
alternatives in different classes. Obviously, by optimizing successively the weights and threshold,
then the profiles, again the weights and threshold, and so on, instead of optimizing all parameters
simultaneously, there is no guarantee that a very good solution will be reached, even though the
process is iterated. In order to enhance the chances to converge toward a very good solution, we
adopt an evolutionary approach evolving a population of Nmod MR-Sort models.

The general architecture of our algorithm is described as Algorithm 1. The latter shows how
the three components are combined to find a MR-Sort model that restores as well as possible the
assignment examples in the learning set.
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Algorithm 1 Metaheuristic to learn all the parameters of an MR-Sort model

Generate a population of Nmod models with profiles set by an initializing heuristic
repeat

for all model M of the set do
Learn the weights and majority threshold with a linear program, using the current
profiles
Adjust the profiles with a heuristic, using the current weights and threshold; repeat
Nit times.

end for
Reinitialize the

Nmod
2

models giving the bottom values of AUC

until Stopping criterion is met

First, a population of Nmod is generated and, for each model, the set of profiles are initialized
by a specific heuristic. After the initialization phase, for each model M, the algorithm solves a
linear program to find the weights and the majority threshold with fixed profiles (obtained in the
initialization step). Then, for each model M, on the basis of the weights and majority threshold
learned in the previous step, the metaheuristic adjusts the profiles with a randomized heuristic in
order to maximize the number of examples compatible with the model. The randomized heuristic
alters the profiles Nit times for each model M, after which the set of profiles restoring the largest
number of assignment examples is selected. This process results in a new population of Nmod models.
These are ordered by decreasing order of the AUC criterion. The top half of the models are retained
while the bottom half (precisely 
Nmod

2 � models) are reset using the initializing heuristic.
The algorithm stops either after having run a given number of times, denoted by No (fixed a priori),

or when it has found at least one model that restores correctly all the assignment examples. If no
model restores correctly all the assignment examples, the model giving the best AUC is returned.

In the next subsections, we detail the three components of the algorithm.

4.2.1. Profile initialization
The first step of the algorithm consists in the initialization of a set of profiles for each of the Nmod
models in the population. The general idea of the heuristic designed to set the value bh, j of the profile
bh on criterion j is the following. This value is chosen in order to maximize the discriminating power
of each criterion relatively to the alternatives in the learning set A. More precisely, we set bh, j in
such a way that alternatives ranked in the category above bh (i.e., Ch+1) typically have an evaluation
greater than bh, j on criterion j and those ranked in the category below bh (i.e. Ch) typically have an
evaluation smaller than bh, j .

In setting the initial profile values, we pay attention to the following aspects. First, for guaranteeing
an equal treatment to all profiles, we chose to consider only Ch and Ch+1 for determining bh. The
reason for this option is to balance the number of categories above and below the profile that are
taken into account for determining this profile. For profiles b1 and bp−1, the only way of satisfying
this requirement is to consider only one category above and one category below the profile.

The second issue is relative to the way the different categories are represented in the learning set.
Consider the subsets Ah and Ah+1 of alternatives in the learning set A that are assigned, respectively,
to categories Ch and Ch+1. These subsets may be of quite different sizes. We weight the alternatives
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by using the relative frequencies of Ah and Ah+1 in order to control the influence of categories that
are under- or overrepresented in the learning set.

The initializing heuristic is implemented as follows:

1. For each category, Ch, compute the frequency πh with which alternatives in the learning set are
assigned to category Ch, that is, πh = |Ah|

|A| .
2. For each criterion and each profile bh, a set of candidate profile values are selected. They

correspond to the performances of alternatives in A assigned to categories Ch and Ch+1. The
value of the profile, bh, j , is chosen randomly among the candidate values with some probability.
The probability of each candidate value is proportional to its likelihood to classify correctly
alternatives of categories Ch and Ch+1 on the basis of their performance on the sole criterion
j. In view of balancing the influence of Ah and Ah+1, which may be of quite different sizes, the
examples are assigned a weight that is inversely proportional to the size of the class they belong
to.

3. The profiles are computed in descending order, enforcing the constraint that profile values on
each criterion are ordered, that is, we have bh+1, j ≥ bh, j , for all criterion j and profile h.

4.2.2. Learning the weights and the majority threshold
Assuming that the profiles are given, learning the weights and the majority threshold of a MR-Sort
model from assignment examples is done by means of solving a linear program. The MR-Sort
model postulates that the profiles dominate each other, that is, bh+1, j ≥ bh, j for all h and j, and the
inequality is strict for at least one j. The constraints derived from the assignments of the alternatives
in the learning set are expressed as follows:

∑
j:a j≥bh−1, j

w j − xa + x′
a = λ ∀a ∈ Ah, h = 2, . . . , p∑

j:a j≥bh, j
w j + ya − y′

a = λ − ε ∀a ∈ Ah, h = 1, . . . , p − 1∑n
j=1 wj = 1

wj ∈ [0; 1] j = 1, . . . , n
λ ∈ [0.5; 1]

xa, ya, x′
a, y′

a ∈ R
+
0 a ∈ A.

The small positive number ε is used for transforming strict inequalities into non strict ones. There
are as many four tuples of variables xa, ya, x′

a, y′
a as there are alternatives in the learning set A.

The value of xa − x′
a (resp. ya − y′

a) represents the difference between the sum of the weights of
the criteria belonging to the coalition in favor of a ∈ Ah w.r.t. bh−1 (resp. bh) and the majority
threshold. If both xa − x′

a and ya − y′
a are positive, then the alternative a is assigned to the right

category. In order to try to maximize the number of examples correctly assigned by the model,
the objective function of the linear program minimizes the sum of x′

a and y′
a, that is, the objective

function is min
∑

a∈A(x′
a + y′

a). Note however that such an objective function does not guarantee
that the maximal number of examples are correctly assigned. Failing to meet this goal may be due
to possible compensatory effects between constraints, that is, the program may favor a solution
involving many small positive values of x′

a and y′
a over a solution involving large positive values

of a few of these variables. Such a compensatory behavior could be avoided, but at the cost of
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Fig. 2. Alternatives wrongly assigned because of profiles set too low or too high.

introducing binary variables, indicating each violation of the assignment constraints. We do not
consider such formulations in order to keep computing times within reasonable limits.

4.2.3. Learning the profiles
Learning the profiles by using a mathematical programing formulation requires binary variables
(Ngo The and Mousseau, 2002), leading to a MIP. In order to deal with problems involving large
learning sets (e.g., 300 assignment examples, 10 criteria, and 5 categories), MIP is not an option, as
discussed in Section 4.1. Therefore, we opt for a randomized heuristic algorithm that is described
next.

For illustrative purposes, consider a model involving three categories and five criteria. Figure 2
represents the profiles and criteria as well as four alternatives, respectively, denoted as a�, a�, a�, and
a◦. Criteria weights have been set equal (wj = 0.2 for j = 1, . . . , 5) and the majority threshold λ is
set to 80%. Hence, an alternative is considered superior to a profile if it is at least as good as the
profile on either four or five criteria.

Assume that the first three alternatives are misclassified by this model. The first alternative, a�,
is assigned to category C1 by the DM and to C2 by the model. The second one, a�, is assigned to
category C2 by the DM and to C1 by the model and the third one, a�, is assigned to category C1 by
the DM and to C3 by the model. Assuming fixed weights and majority threshold, this means that
the profiles delimiting the categories are set either too high or too low on one or several criteria.
Assume also that alternative a◦ is correctly assigned to category C1 both by the DM and the model.

The idea implemented in the algorithm is to move up or down the profile value on some criterion
in order to improve CA. We evaluate all possible moves of the profile on each attribute and select
one likely to improve CA.

To be more precise, let us define several subsets of alternatives for each criterion j and each profile
h and any positive value δ, which represents the size of a move:
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V +δ
h, j (resp. V −δ

h, j ) : the sets of alternatives misclassified in Ch+1 instead of Ch (resp. Ch instead of
Ch+1), for which moving the profile bh by +δ (resp. −δ) on j results in a correct
assignment. For instance, a� belongs to the set V −δ

1,2 on criterion 2 for δ ≥ δa�

2 .
W +δ

h, j (resp. W −δ
h, j ) : the sets of alternatives misclassified in Ch+1 instead of Ch (resp. Ch instead of

Ch+1), for which moving the profile bh by +δ (resp. −δ) on j strengthens the
criteria coalition in favor of the correct classification, but will not by itself result
in a correct assignment. For instance, a� belongs to the set W +δ

1,1 on criterion 1 for
δ > δa�

1 .
Q+δ

h, j (resp. Q−δ
h, j) : the sets of alternatives correctly classified in Ch+1 (resp. Ch) for which moving

the profile bh by +δ (resp. −δ) on j results in a misclassification. For instance, a◦

belongs to the set Q−δ
1,5 on criterion 5 for δ > δa◦

5 .
R+δ

h, j (resp. R−δ
h, j) : the sets of alternatives misclassified in Ch instead of Ch+1 (resp. Ch+1 instead of

Ch), for which moving the profile bh by +δ (resp. −δ) on j still strengthens the
criteria coalition in favor of the incorrect classification. For instance, a� belongs
to the set R+δ

1,4 on criterion 4 for δ > δa�

4 .
T +δ

h, j (resp. T −δ
h, j ) : the sets of alternatives assigned by the model to Ch+1 or higher (resp. Ch or

lower) but classified by the DM in a category below Ch (resp. to a category above
Ch+1), for which moving the profile by +δ (resp. −δ) on j strengthens the criteria
coalition in favor of a classification that comes closer to the correct one. For
instance a� belongs to the set T +δ

2,3 on criterion 3 for δ > δa�
3 .

In the above, subsets of type V and W contain alternatives that will tend to be better classified
if we perform a given profile move. On the contrary, the assignment of alternatives in subsets of
type Q will be worsened by the move; the (wrong) classification of alternatives in subsets of type
R and T will not be altered by the move, but the latter goes “in the wrong direction” w.r.t. a
correct classification of these alternatives. In order to formally define these sets, we introduce the
following notation. Al

h denotes the subset of misclassified alternatives that are assigned to category
Cl by the model while the DM assigns them to category Ch. A>l

<h denotes the subset of misclassified
alternatives that are assigned to a category above Cl by the model, while the DM assigns them to a
category below Ch. And conversely for A<l

>h. Finally, σ (a, bh) = ∑
j:a j≥bh, j

w j . We have, for any h, j
and positive δ:

V +δ
h, j = {

a ∈ Ah+1
h : bh, j + δ > a j ≥ bh, j and σ (a, bh) − wj < λ

}

V −δ
h, j = {

a ∈ Ah
h+1 : bh, j − δ < a j < bh, j and σ (a, bh) + wj ≥ λ

}

W +δ
h, j = {

a ∈ Ah+1
h : bh, j + δ > a j ≥ bh, j and σ (a, bh) − wj ≥ λ

}

W −δ
h, j = {

a ∈ Ah
h+1 : bh, j − δ < a j < bh, j and σ (a, bh) + wj < λ

}

Q+δ
h, j = {

a ∈ Ah+1
h+1 : bh, j + δ > a j ≥ bh, j and σ (a, bh) − wj < λ

}

Q−δ
h, j = {

a ∈ Ah
h : bh, j − δ < a j < bh, j and σ (a, bh) + wj ≥ λ

}
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R+δ
h, j = {

a ∈ Ah
h+1 : bh, j + δ > a j ≥ bh, j

}

R−δ
h, j = {

a ∈ Ah+1
h : bh, j − δ < a j < bh, j

}

T +δ
h, j = {

a ∈ A>h
<h : bh, j + δ > a j ≥ bh, j

}

T −δ
h, j = {

a ∈ A<h+1
>h+1 : bh, j − δ < a j ≤ bh, j

}
.

The choice of a profile move is performed as follows. First, to avoid violations of the dominance
rule between the profiles, the value of +δ or −δ is restricted to vary in the interval [bh−1, j, bh+1, j ].
We then compute a desirability index P(b+δ

h, j ) for each possible value +δ of a move of profile bh, j .
This index balances the alternatives that will be better off after the move and these on which the
move will have a negative impact. The index is computed according to the following formula:

P(b+δ
h, j ) =

kV

∣∣V +δ
h, j

∣∣ + kW

∣∣W +δ
h, j

∣∣ + kT

∣∣T +δ
h, j

∣∣ + kQ

∣∣Q+δ
h, j

∣∣ + kR

∣∣R+δ
h, j

∣∣
dV

∣∣V +δ
h, j

∣∣ + dW

∣∣W +δ
h, j

∣∣ + dT

∣∣T +δ
h, j

∣∣ + dQ

∣∣Q+δ
h, j

∣∣ + dR

∣∣R+δ
h, j

∣∣ ,

where kV , kW , kT , kQ, kR, dV , dW , dT , dQ, and dR are fixed constants. We define similarly P(b−δ
h, j ).

In the definition of P(b+δ
h, j ) (resp. P(b−δ

h, j )), the coefficients weighting the number of elements in
the sets in the numerator are chosen so as to emphasize the arguments in favor of moving the
value bh, j of profile bh to bh, j + δ (resp. −δ), while the coefficients in the denominator emphasize
the arguments against such a move. The values of the coefficients were empirically set as follows:
kV = 2, kW = 1, kT = 0.1, kQ = kR = 0, dV = dW = dT = 1, dQ = 5, dR = 1.

The value bh, j of profile bh on criterion j will possibly be moved to the value a j of one of the
alternatives a contained in V +δ

h, j , V −δ
h, j , W +δ

h, j , or W −δ
h, j . More precisely, it will be set to a j or a value

slightly above a j . The exact new position of the profile is chosen so as to favor a correct assignment
for a, taking into account the assignment rule (2). For instance, w.r.t. the situation illustrated in Fig.
2, the new value b1,1 + δ could be chosen just above the value of a�

1 so that criterion 1 would no
longer belong to the coalition of criteria on which a� is at least as good as b1. Such a move would
result in correctly assigning a� to category C1. If the move were driven by the position of alternative
a� on criterion 2, then the new profile value b1,2 + δ would be set equal to the performance, a�

2, of
the alternative a� on criterion 2. Such a move would result in correctly assigning a� to C2.

All such values a j are located in the interval [bh−1, j, bh+1, j ]. A subset of such values is chosen
in a randomized way as follows. Among the set of values a j , a value, denoted by b′

h, j , is chosen
randomly. We denote by dh, j the difference |b′

h, j − bh, j|. All values a j located in [bh−1, j, bh, j − dh, j ]
and [bh, j + dh, j, bh, j ] constitute a subset of candidate moves. The candidate move corresponds to
the value a j in the selected subset for which P(b�

h, j ) is maximal, � being equal to a j − bh, j (i.e., a
positive or negative quantity). To decide whether to make the candidate move, a random number r
is drawn uniformly in the interval [0, 1] and the value bh, j of profile bh is changed if P(b�

h, j ) ≥ r.
This procedure is executed for all criteria and all profiles. Criteria are treated in random order

and profiles in ascending order.
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Algorithm 2 Randomized heuristic used for improving the profiles
for all profile bh do

for all criterion j chosen in random order do
Choose, in a randomized manner, a sub-interval of [bh−1,j , bh+1,j ]

Select a position in this sub-interval for which P (bΔ
h,j) is maximal

Draw uniformly a random number r from the interval [0, 1].
if r ≤ P (bΔ

h,j) then

Move bh,j to the position corresponding to bh,j + Δ
Update the alternatives assignment

end if
end for

end for

5. Experiments

Our aim in these experiments is to analyze how our algorithm compares to the state-of-the-art in
terms of performance in generalization. Such an analysis enables to appreciate the descriptive ability
of the MR-Sort model as compared to other sorting models presented in the literature.

In this section, we first recall what we observed when we applied our algorithm to retrieve a model
that was used to generate artificial data sets. Then, the algorithm is tested on real data sets.

We describe the experimental design and report the results. The algorithm and data sets used in
this section are available at the following address: http://www.github.com/oso/pymcda.

5.1. Empirical validation on simulated data

In Sobrie et al. (2013), we conducted experiments to study the behavior of the algorithm on artificial
data sets. These are produced as follows. An MR-Sort model is generated randomly (see Sobrie
et al., 2013, for details). We draw at random vectors of evaluations representing the alternatives and
we assign them using the MR-Sort model. Part of these vectors form the learning set and the rest
constitutes the test set. We first use such data sets to determine an appropriate set of parameters
(Nmod , Nit, No) for our heuristic algorithm.

We then conducted experiments to determine the number of assignment examples required to
restore the model with a given accuracy. For a model involving 3 categories and 10 criteria, more
than 400 examples are required to restore (on average) 95% of the assignments of a test set composed
of 10,000 assignments. When the number of categories increases to five, more than 800 examples
are required.

Real learning sets generally contain examples that are incompatible with an MR-Sort model.
In order to assess the robustness of our algorithm to “assignment errors,” we studied its behavior
when such errors are introduced in the learning set. These “errors” were simulated by assigning
some alternatives to a category different from that given by the MR-Sort model. When the learning
set contains a proportion P of errors, we observe that the CA obtained with the learned model,
that is, the proportion of test set alternatives correctly restored, converges toward 1 − P. We also
observe that most alternatives in the learning set that are wrongly assigned by the learned model
are altered examples. In fact, the learned model corrects part of the introduced assignment errors.
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Table 1
Data sets

Data set No. of instances No. of attributes No. of categories

DBS 120 8 2
CPU 209 6 4
BCC 286 7 2
MPG 392 7 36
ESL 488 4 9
MMG 961 5 2
ERA 1000 4 4
LEV 1000 4 5
CEV 1728 6 4
ASA 898 16 4

5.2. Data sets and experimental design

For comparison purposes, we use the data sets that were considered by Tehrani et al. (2012) for
testing the performance of a binary classifier based on the Choquet integral. These data sets were
taken from two sources: the UCI machine learning repository and the WEKA repository (Machine
Learning Group, University of Waikato, NZ). In addition, we consider also the ASA data set that
was compiled and studied by Lazouni et al. (2013) (available at http:olivier.sobrie.be/shared/asa).
The characteristics of all data sets are displayed in Table 1. All the attributes in these data sets are
treated as monotone attributes.

The tests are conducted as follows. Each data set is randomly split in two disjoint parts. The first
part is used as learning set and the second part as test set. The following size ratios between the
learning set and the test set are considered: 20/80, 50/50, and 80/20. For each data set and each
ratio, a random drawing of the learning set from the whole data set is repeated 100 times, yielding
100 instances of a partition of the data set in a learning set and a test set.

For each learning set instance, the algorithm finds a model that minimizes the 0/1 loss, that is,
that is compatible with as many examples as possible. Afterwards, the alternatives in the test set
are assigned by the learned model and the resulting assignments are compared to the original ones.
This procedure is thus repeated 100 times for each data set and each relative size of the learning set.

Two indicators are computed to assess the quality of the learned models: the 0/1 loss and the
AUC.

The performance of our heuristic algorithm is not only compared with the results obtained by
Tehrani et al. (2012), but also with the exact solution of the MIP formulation (whenever it can
be obtained) and with another previously mentioned MCDA method, UTADIS. For the reader’s
convenience, we briefly recall the principles of UTADIS, referring the reader to Jacquet-Lagrèze
and Siskos (1982, 2001) and Zopounidis and Doumpos (2002) for further detail. This method is
based on the learning of an additive value (or utility) function and thresholds that determine the
minimal and maximal values of an alternative that is assigned to a given category. More formally,
the UTADIS assignment rule reads as follows: for all a ∈ X,

a ∈ Ch if u(a) =
n∑

j=1

u j(a j ) ∈ [Uh−1,Uh[, (4)
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where u j are marginal value functions and Uh−1 (resp. Uh) is the lower threshold value of category
Ch (resp. Ch+1). UTADIS considers marginal value functions u j that are monotone and piecewise
linear. In our experiments, the domain of variation of each attribute is divided in three segments
of equal length. Determining the marginal value at the break points is sufficient for determining
the whole marginal value function u j . Using piecewise linear marginal value functions enables to
formulate the problem as a linear program and solve it with efficient solvers such as IBM ILOG
CPLEX.

For all the experimentation, the MR-Sort metaheuristic is run with a population of 10 models
(Nmod = 10) and the maximal number of iterations is fixed to 10 (No = 10). The outer loop of the
metaheuristic, which adjusts the profiles and recomputes weights, is repeated 20 times (Nit = 20).

5.3. Binary classification

The algorithm developed by Tehrani et al. (2012) is designed for monotone sorting in two categories.
In order to compare the performance of our algorithm with theirs, the assignments in the data sets
presented in Table 1 are binarized by thresholding at the median, in the same way as was done by
these authors. From these data sets, the parameters of an MR-Sort model are learned by using 20%,
50%, or 80% of the records as learning alternatives and the rest as test alternatives.

Our experimentation has two objectives. The first is to compare the quality of the MR-Sort models
found by our metaheuristic with the ones obtained by an exact optimization method. Therefore, we
solve the MIP formulation studied in Leroy et al. (2011) which minimizes the 0/1 loss of the model.
Whenever the MIP solver is able to find a solution in the computing time allowed, we assess the
learned models by comparing their average 0/1 loss on the test set.

Our second objective is to compare the performance of the proposed metaheuristic with that
of other MCDA and machine learning algorithms, UTADIS (Jacquet-Lagrèze and Siskos, 1982;
Doumpos and Zopounidis, 2002), a well-known MCDA method, and the choquistic regression (CR)
(Tehrani et al., 2012), a method recently developed in the field of PL. To assess our metaheuristic,
we use the average 0/1 loss and AUC computed on the test sets.

The AUC of an MR-Sort model with two categories C1,C2 is computed by comparing the
concordance indices of the alternatives w.r.t. the profiles. The value of the AUC is given by equation
(5).

AUC = 1
|A1| · |A2|

∑
ai∈A2

∑
ak∈A1

τ (ai, ak) (5)

with A1 (resp. A2), the set of input alternatives classified in C1 (resp. C2). In the case of MR-Sort,
we define τ (ai, ak) as follows:

τ (ai, ak) =

⎧⎪⎨
⎪⎩

0 if
∑

j:ai
j≥b1, j

w j <
∑

j:ak
j ≥b1, j

w j

0.5 if
∑

j:ai
j≥b1, j

w j = ∑
j:ak

j ≥b1, j
w j

1 if
∑

j:ai
j≥b1, j

w j >
∑

j:ak
j ≥b1, j

w j .
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Table 2
Average and standard deviation of the 0/1 loss (in percent) of the test set for learning sets of different sizes

Learning set Data set META MIP UTADIS CR

20% data set DBS 18.97 ± 4.23 19.77 ± 4.81 20.08 ± 5.33 17.13 ± 4.24
CPU 9.94 ± 3.23 9.00 ± 3.45 6.52 ± 3.62 8.11 ± 1.03
BCC 28.24 ± 2.73 26.78 ± 2.76 29.15 ± 3.07 27.75 ± 3.35
MPG 20.25 ± 3.56 20.80 ± 3.26 22.25 ± 3.18 7.09 ± 1.93
ESL 10.42 ± 1.71 10.75 ± 1.58 8.89 ± 1.60 6.82 ± 1.29
MMG 16.97 ± 0.87 17.16 ± 1.40 18.40 ± 1.84 17.25 ± 1.20
ERA 21.36 ± 2.05 20.93 ± 1.74 23.68 ± 1.87 28.89 ± 2.73
LEV 16.74 ± 1.87 16.08 ± 1.73 16.54 ± 1.60 14.99 ± 1.22
CEV 14.88 ± 1.35 – 13.00 ± 1.42 4.48 ± 0.89
ASA 2.29 ± 1.09 – 3.69 ± 1.41 –

50% data set DBS 16.23 ± 4.69 16.27 ± 4.26 14.80 ± 4.21 15.72 ± 4.16
CPU 6.75 ± 2.37 6.40 ± 2.39 2.30 ± 2.38 4.64 ± 2.81
BCC 27.50 ± 3.17 – 28.54 ± 2.46 26.87 ± 2.82
MPG 17.81 ± 2.37 – 20.90 ± 2.36 5.77 ± 2.51
ESL 10.04 ± 1.86 10.18 ± 1.55 7.83 ± 1.63 6.01 ± 1.26
MMG 17.32 ± 1.51 – 17.58 ± 1.52 16.67 ± 1.44
ERA 20.56 ± 1.73 19.58 ± 1.37 23.42 ± 1.71 28.44 ± 3.06
LEV 15.92 ± 1.22 14.22 ± 1.54 15.56 ± 1.32 13.72 ± 1.25
CEV 14.83 ± 0.95 – 13.24 ± 1.17 3.76 ± 0.59
ASA 1.38 ± 0.61 – 2.47 ± 0.82 –

80% data set DBS 15.92 ± 6.98 14.80 ± 8.11 12.80 ± 5.01 14.16 ± 6.81
CPU 6.40 ± 3.04 5.98 ± 3.15 1.52 ± 2.14 2.12 ± 3.01
BCC 26.77 ± 5.47 – 29.13 ± 5.10 24.96 ± 4.85
MPG 16.86 ± 3.69 – 20.80 ± 3.88 5.51 ± 1.60
ESL 10.01 ± 2.97 10.08 ± 2.47 7.44 ± 2.35 5.42 ± 2.18
MMG 16.98 ± 2.79 – 17.34 ± 2.65 15.84 ± 2.51
ERA 20.31 ± 2.50 18.56 ± 2.60 23.56 ± 2.92 28.13 ± 2.80
LEV 16.16 ± 2.22 13.59 ± 1.85 15.72 ± 2.22 13.14 ± 1.76
CEV 15.06 ± 1.66 – 13.36 ± 1.67 2.73 ± 0.89
ASA 1.16 ± 1.74 – 2.11 ± 1.02 –

In the case of UTADIS, the value of AUC is also computed through formula (5), but τ (ai, ak) is
defined differently: it compares the values of the alternatives, that is,

τ (ai, ak) =
⎧⎨
⎩

0 if u(ai) < u(ak)

0.5 if u(ai) = u(ak)

1 if u(ai) > u(ak).

5.3.1. Results
Table 2 shows the average 0/1 loss obtained on the test sets with the learned models. Table 3 shows
the average value of the AUC. Each entry in these tables records the average value and standard
deviation for 100 random splits of the data sets into learning and test sets.
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Table 3
Average and standard deviation of the AUC (in percent) of the test set for learning sets of different sizes

Learning set Data set META MIP UTADIS CR

20% data set DBS 87.61 ± 4.62 86.37 ± 4.63 88.86 ± 4.96 92.90 ± 3.22
CPU 95.31 ± 2.47 94.97 ± 2.62 97.89 ± 2.83 98.22 ± 1.21
BCC 68.10 ± 4.58 71.55 ± 3.65 66.50 ± 5.27 64.00 ± 6.41
MPG 83.37 ± 2.91 82.15 ± 3.68 81.62 ± 3.35 97.88 ± 1.60
ESL 95.69 ± 1.14 95.10 ± 1.66 97.04 ± 0.95 96.70 ± 0.74
MMG 88.28 ± 1.29 88.77 ± 1.51 86.50 ± 2.94 88.67 ± 1.23
ERA 72.56 ± 2.38 71.82 ± 3.28 74.09 ± 1.75 76.69 ± 3.34
LEV 85.30 ± 2.58 84.24 ± 2.91 87.07 ± 1.46 89.71 ± 0.98
CEV 89.68 ± 1.16 – 92.35 ± 1.83 98.25 ± 0.80
ASA 98.11 ± 1.25 – 98.73 ± 0.90 –

50% data set DBS 90.74 ± 3.66 89.98 ± 3.36 93.25 ± 3.45 93.41 ± 2.28
CPU 97.01 ± 1.40 96.45 ± 1.94 99.40 ± 1.31 99.20 ± 0.73
BCC 69.29 ± 3.98 – 66.50 ± 52.7 69.12 ± 4.69
MPG 83.37 ± 2.31 – 82.72 ± 2.43 98.18 ± 0.75
ESL 96.40 ± 0.99 95.63 ± 1.14 97.47 ± 1.16 97.20 ± 0.84
MMG 88.62 ± 1.38 – 86.67 ± 3.85 90.03 ± 1.32
ERA 73.66 ± 2.33 71.67 ± 2.74 74.37 ± 2.11 77.05 ± 3.10
LEV 87.21 ± 1.47 85.11 ± 2.19 87.46 ± 1.37 90.98 ± 1.03
CEV 89.60 ± 0.73 – 93.39 ± 1.38 99.12 ± 0.24
ASA 99.21 ± 0.72 – 99.48 ± 0.34 –

80% data set DBS 90.19 ± 6.06 90.80 ± 6.73 94.76 ± 4.01 94.27 ± 4.43
CPU 97.21 ± 2.19 96.56 ± 2.37 99.89 ± 0.30 99.71 ± 0.63
BCC 70.56 ± 8.64 – 66.51 ± 6.59 73.49 ± 6.92
MPG 86.13 ± 3.41 – 82.10 ± 4.34 98.55 ± 1.08
ESL 96.13 ± 1.70 95.68 ± 1.65 97.78 ± 1.17 97.66 ± 1.50
MMG 88.60 ± 2.65 – 86.82 ± 4.70 91.35 ± 2.33
ERA 73.79 ± 3.51 72.42 ± 4.77 74.97 ± 4.02 76.70 ± 2.90
LEV 86.63 ± 2.65 84.99 ± 3.32 87.41 ± 2.17 91.22 ± 2.02
CEV 89.41 ± 1.35 – 93.99 ± 1.11 99.59 ± 0.27
ASA 99.55 ± 0.64 – 99.64 ± 0.34 –

In these tables, column “learning set” displays the percentage of alternatives of the data set used by
the algorithms as learning set. Column “META” shows the results obtained with the metaheuristic
described in this paper. Column “MIP” contains the results obtained with the MIP described in
Leroy et al. (2011). Column “UTADIS” displays the results obtained with UTADIS, and column
“CR” contains the results obtained with the CR (Tehrani et al., 2012) on all the data sets, except
ASA (not available).

In column “MIP,” some cells are empty because the solver was not able to find a solution for at
least one test instance in less than one hour. As compared to solving the MIP formulation, for the
largest data set, that is, the CEV data set, the metaheuristic uses 50 seconds on average to find a
model when the learning set consists of 80% of all the examples in the data set.

To assess the ability of the algorithm to find models restoring the assignment of a large number of
examples, we compare the average 0/1 loss and AUC obtained with the MIP and the metaheuristic
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for the test sets. Note that the MIP finds a MR-Sort model that is compatible with the largest
possible number of examples from the learning set. There is no other MR-Sort model restoring
correctly more assignment examples.

Table 2 shows that the 0/1 loss obtained by the exact algorithm is on average 1% smaller than by
the metaheuristic. This is due to the fact that the MIP finds models restoring an optimal number
of assignment examples (from the learning set), while the metaheuristic can remain stuck in local
minima. However, this better performance does not hold for all data sets when applied to the test
set. For instance, the MIP returns results slightly worse than the metaheuristic for the DBS and
ESL data sets. This is probably due to an overfitting effect on the learning set.

We observe in Table 3 that the average AUC of the metaheuristic is close to the one of the MIP.
This indicates that the quality of the classifiers obtained with the MIP and the metaheuristic are
similar.

In order to see whether the algorithm proposed in this paper can be useful in the context of PL
problems, we compare our results with two other methodologies: UTADIS (Jacquet-Lagrèze and
Siskos, 1982; Doumpos and Zopounidis, 2002) and CR (Tehrani et al., 2012).

The performance of MR-Sort algorithms is close to the performance of UTADIS and CR for
the DBS, CPU, BCC, MMG, and LEV data sets. The 0/1 losses observed on the test set differ by
at most 4% on average. For the MPG and CEV data sets, CR clearly returns better average results
(more than 10% better in terms of 0/1 loss) than the MR-Sort algorithms and UTADIS. This may
be due to the capability of the Choquet integral to represent interactions between criteria (see, for
example, Grabisch and Roubens, 2000). The assignments in the MPG and CEV data sets might
require this type of modeling feature.

In contrast, for the ERA data set, the MR-Sort algorithms and UTADIS are definitely better
than CR. Their advantage regarding the average 0/1 loss amounts to almost 8%.

As compared with UTADIS and CR, the average AUC value of the MR-Sort algorithms are
worse. The difference is about 5% for DBS, CPU, BCC, ESL, MMG, and ERA data sets. For the
MPG and CEV data sets, there is a marked advantage of CR over the other algorithms. We have
seen that CR is also definitely better regarding 0/1 loss for the MPG data set, which suggests that
the model underlying CR is better suited for representing the MPG data.

On the contrary, the average AUC of the ERA data set, for which the MR-Sort MIP and meta-
heuristic did better than CR in term of 0/1 loss, is worse with the MR-Sort MIP and metaheuristic
than with CR. UTADIS does even better than MR-Sort algorithms in terms of AUC for this data
set.

In order to better understand the latter results, the confusion matrices for the MR-Sort algorithms
and UTADIS and all learning set sizes are displayed in Table 4 for the ERA data set (the confusion
matrices relative to the other data sets can be found in Sobrie et al. 2015). These show the average
distribution of the alternatives in the test sets in actual (C1, C2) versus predicted classes (Ĉ1, Ĉ2). As
compared with UTADIS, the MR-Sort algorithms classify correctly, on average, a higher number
of instances from class C1 and a lower number of instances from class C2. We also note that there
are, on average, more alternatives belonging to class C2 than to class C1. Alternatives misclassified
by the MR-Sort algorithms mostly belong to category C2. It is likely that the concordance index of
some of these alternatives is equal or lower than that of some alternatives that are correctly classified
in C1. The contribution of these alternatives to the AUC index is therefore equal to 0.5 or 0, which
decreases the value of the AUC.
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Table 4
Confusion matrices of the test set for the (binarized) ERA data set

(a) META − ERA 20 %

Ĉ1 Ĉ2

C1
68.83
±3.11

5.67
±3.21

C2
15.69
±2.39

9.81
±2.16

(b) MIP − ERA 20 %

Ĉ1 Ĉ2

C1
69.38
±2.41

5.12
±2.47

C2
15.81
±1.74

9.70
±1.54

(c) UTADIS − ERA 20 %

Ĉ1 Ĉ2

C1
63.98
±2.67

10.54
±2.96

C2
13.14
±1.56

12.34
±1.25

(d) META − ERA 50 %

Ĉ1 Ĉ2

C1
69.26
±2.61

5.10
±2.55

C2
15.46
±2.16

10.17
±1.73

(e) MIP − ERA 50 %

Ĉ1 Ĉ2

C1
71.23
±2.01

3.34
±1.74

C2
16.24
±1.41

9.18
±1.11

(f) UTADIS − ERA 50 %

Ĉ1 Ĉ2

C1
64.36
±2.12

9.98
±2.62

C2
13.43
±1.75

12.22
±1.32

(g) META − ERA 80 %

Ĉ1 Ĉ2

C1
69.60
±3.42

5.03
±2.38

C2
15.28
±2.89

10.09
±2.26

(h) MIP − ERA 80 %

Ĉ1 Ĉ2

C1
72.59
±2.57

2.29
±1.00

C2
16.27
±2.36

8.86
±1.77

(i) UTADIS − ERA 80 %

Ĉ1 Ĉ2

C1
63.90
±3.17

10.21
±2.85

C2
13.35
±2.58

12.55
±2.32

Actual class in rows, predicted class in columns.

It should be noted that the MR-Sort algorithms are designed in view of minimizing the 0/1 loss.
They do not include specific mechanisms taking into account possible imbalance of classes in the
learning set, which has an impact on AUC.

5.3.2. Comments
Computing time becomes quickly an issue with the MIP when the size of the learning set increases.
It is therefore not an option to use it to deal with large data sets, which, in contrast, can easily be
handled by the metaheuristic.

The metaheuristic, we developed performs better than UTADIS and CR for at least one data set
(ERA). The same observation holds for the MIP. Regarding the 0/1 loss, we note that the MR-Sort
model seems particularly well adapted for the ASA data set. This shows that for some types of data
sets, a model-based approach like MR-Sort is well suited.

5.4. Model interpretation

An important feature of model-based PL is interpretability. This section aims to illustrate on the
(binarized) ESL data set how an MR-Sort model may provide an interpretation of the classification
rationale.
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Suitable

Not suitable

1
(20)

1

0.556

0

2
(20)

1

0.667

0

3
(20)

1

0.667

0

4
(40)

1

0.667

0

λ = 70

Fig. 3. An MR-Sort model obtained for the (binarized) ESL data set by using 50% of the instances as the learning set.
The profile delimiting category “Suitable” from category “Not suitable” is represented by the dotted line. Criteria

weights are displayed in parentheses below each criterion axis. The majority threshold is denoted by λ.

The ESL data set is composed of 488 instances that are evaluated on four attributes, denoted
1, 2, 3, and 4. Each instance corresponds to the profile of an applicant for a job. The applicants
were evaluated by psychologists on the basis of psychometric tests and interviews. Attribute scales
are normalized between 0 and 1. An overall score between 1 and 9 is assigned to each candidate.
It represents the degree of suitability of the applicant for the job. The data set was “binarized,”
separating the applicants in two classes: “suitable” candidates have a score comprised between 6
and 9, while “not suitable” ones have a score equal to or lower than 5.

The model described in Fig. 3 was obtained using 50% of the instances as learning set and the
rest as test set. This model is able to represent 93% of the assignments of the learning set instances
with an AUC equal to 97.42%. In generalization, the model classifies correctly 88.11% of the test
instances with an AUC of 95.34%.

On each criterion, the profile value separates the evaluations that contribute to assigning the
candidates to the “suitable” class from the others. The assignment rule underlying the model
presented in Fig. 3 has a simple formulation. A candidate is assigned to the “suitable” class if its
performances are better than or equal to these of the profile on at least one of the three following
criteria coalitions: {1, 2, 4}, {1, 3, 4}, or {2, 3, 4}. The sum of the criteria weights belonging to each
of these coalitions is always greater than the majority threshold, set to 70. We have w1 + w2 + w4 =
w1 + w3 + w4 = w2 + w3 + w4 = 80. In other words, to be considered as “suitable,” an applicant
may have only one weakness, on one of the first three dimensions. As an illustration, a candidate
assessed by the performance vector (0.889, 0.889, 0.5, 0.833) is considered “suitable” for the job
since its evaluation is worse than the profile only on criterion 3 (0.5 < 0.667). On the contrary,
an applicant characterized by the performance vector (0.222, 0.889, 0.5, 0.833) is considered “not
suitable” for the job since it lies under the profile level on criteria 1 and 3 (0.222 < 0.556 on criterion
1 and 0.5 < 0.667 on criterion 3).
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The interested reader will find in Sobrie et al. (2016) a medical application of the MR-Sort
method in the domain of preanesthesia patient assessment; Sobrie et al. (2016) also discuss the issue
of interpretability of MR-Sort models.

6. Conclusion

In this paper, we proposed and studied a method for learning the assignment of objects evaluated on
several attributes (or criteria) into ordered categories. This method is based on a well-understood
preference model (Bouyssou and Marchant, 2007a, 2007b). For assigning objects, it takes into
account the evaluation of the objects in an ordinal manner, that is, only the relative position of the
evaluations w.r.t a vector of minimal requirements (“profile”) matters.

The heuristic algorithm proposed for learning such a model on the basis of assignment examples
was evaluated on a data sets benchmark. The first observation is that our heuristic provides good
approximations of the MR-Sort model that can be learned by an exact method (MIP), whenever
the latter can be computed in a reasonable amount of time. For most data sets, the classification
performance of our algorithm is close to the best results obtained by state-of-the-art algorithms.
It is definitely better for one of the data sets. Since the MR-Sort model relies on a specific form of
regularity in the assignments, it is not surprising that some data sets can be better approximated
using our algorithm than some others. What is worth noticing, actually, is that our heuristic behaves
competitively on the whole benchmark.

Another positive feature of the MR-Sort model stems from the fact that the computed classifica-
tions can be explained to the user as the application of a compact and intuitive rule (see, e.g., Sobrie
et al., 2016). This is linked with the origins of the model that has been initially used in preference
modeling and decision aiding. In these domains, preferences are modeled by engaging into interac-
tions with a DM (instead of being learned automatically on the basis of examples). Therefore, the
preference models rely on intuitive concepts (e.g., limit profile, weights, majority threshold), which
are used in the preference elicitation process. The resulting rules for comparing or sorting objects
can be formulated in terms of the same concepts, which allows to explain their consequences to the
DM. Understanding the model issued from an algorithm is likely to increase the trust of the user in
the obtained classifier. Explainability is important, for example, in medical applications, but also in
management and engineering applications.

Several extensions of the MR-Sort model, which enhance its expressivity without impairing its
explainability, have yet to be explored in a PL perspective. One extension consists in introducing the
possibility of vetoes. A veto (Bouyssou and Marchant, 2007a; Roy and Bouyssou, 1993) forbids an
object from being assigned to a category if its performance is too much below the lower limit profile
of the category on some criterion. Clearly, assignment rules combining a concordance condition
(such as (2)) with a nonveto condition mitigates the purely ordinal interpretation of the criteria by
creating additional anchor values. Besides the lower limit profile value on each criterion, we have to
specify another value, beneath the profile value, which constitutes a minimal requirement in order
to be eligible for assignment in a category.

Another extension of the MR-Sort model is known (Bouyssou and Marchant, 2007a, 2007b) as
the noncompensatory sorting model (NCS). In this model, which may also accommodate nonveto
conditions, the criteria weights are substituted by a capacity, which allows criteria interactions
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(positive/negative synergies) to be modeled. These two types of extensions are the subject of ongoing
investigations (see Sobrie et al., 2016; Meyer and Olteanu, 2017).
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Corrente, S., Greco, S., Kadzinski, M., Słowiński, R., 2013. Robust ordinal regression in preference learning and ranking.

Machine Learning 93, 2–3, 381–422.
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