



# Influence on surface characteristics of Electron Beam Melting process (EBM) by varying the process parameters

A. Dolimont, S. Michotte, E. Rivière-Lorphèvre, F. Ducobu, S. Vivès, S. Godet, T. Henkes and E. Filippi









### **Context**

- AM → booming field
- Rapid prototyping to production of "real" parts with required mechanical properties



Complexity for free







### **Context**

- Electron Beam Melting (EBM)
- Mechanical applications 

   contact application



solid-solid (prosthesis)



fluid-solid (turbomachine)

The roughness is high and therefore it is necessary to finish the part in such applications.

•  $\rightarrow$  from Ra = 25  $\mu$ m to Ra = 1.6 -> 0.1  $\mu$ m

# Goals

- Functionality of parts build by EBM process
- Finished parts: geometrical and dimensional tolerances
- **EBM Process: Process** characterization (metrological analysis) **Dimensional** characterization
- Surface characterization

- Mechanical behavior of parts before and after finishing operation
  - Residual stresses
  - Static behavior
  - Etc.



Is it possible to improve surface finish by varying process parameters (scan speed, FO, beam current, etc.)?

# **Outline**

- 1. EBM Process
- 2. Experimental procedure
- 3. Statistical Analysis
- 4. Surface characterization

## **EBM Process**

- Technologie ARCAM
- In the early 2000's
- Electron Beam Melting



 Layer by layer process which allows to build fully dense parts from metallic powder



## **EBM Process**

#### At each layer: 3 steps

- 1. Pre-heating (750°C)
  - Non-focused beam, all the build surface (pre-heating 1)
  - The smaller area (preheating 2)
- 2. Contour melting (focused beam)
  - Outer contours
  - Inner contours
- 3. Core melting (focused beam)



**Core Melting** 

# **Experimental procedure**

# Samples manufacturing

- 3 batches were fabricated by ARCAM A2
- Modification of the parameters :

$$density E = \frac{60kV * current I}{spot size d * speed v * layer thickness t}$$

- Layer thickness : 50 μm
- On each batch at least 1 part with a set of standard parameter

optimized for 50µm

- For other parts :
  - Speed function
  - Number of contours
  - Order of contours
  - Etc.

Modification of the energy density:
To compare the energy density,
the proportional energy is define
(in this study the energy vary from 0.3
to 3.9 the standard value)

# Samples manufacturing

 Parallelepiped rectangle with different thicknesses built along z direction and different inclination





Material : Ti6Al4V

# Samples manufacturing

#### Batch 160202:

- Parameters linked to <u>outer contours</u>
- Modification of parts thickness

#### Batch 160229:

- Parameters linked to <u>outer contours</u>
- Modification of parts inclination (30°, 45°, 60°)

#### Batch 160318:

- Core melting parameters
- Modification of parts inclination (30°,  $45^{\circ}$ ,  $60^{\circ}$ )





# **Experimental setup and method**

- Characterization of the surface finish
- ISO 4288 standard
- Measuring equipment :
   SURFCOM 1400D-3DF

Focus on Ra and Rt values

3 measures conducted on each face of the sample.





# Statistical analysis

# **Statistical Analysis**

Goal of a statisitical test:

Reject or not a hypothesis formulated on one or more sample (s)

Comparison of 2 samples:



Comparison of K samples:

# State of the art: no much article on surface improvement of EBM process

- Touch probe to evaluate the surface roughness
- Studied parameters
  - Number of contours (NC)
  - Contour offset (CO)
  - Speed contours (SC)
  - Line offset(LO)



Ref: R. Klingvall Ek, L.-E. Rännar, M. Bäckctöm, and P. Carlsson. The effect of ebm process parameters upon surface roughness. *Rapid Prototyping Journal*, 22(3):495-503, 2016

#### State of the art:

Ra=f(NC, CO, SC, LO)

$$R_a = 24 + \frac{1,74 \times CO - 1,5 \times SC + 1,2 \times NC \times CO}{2}$$

$$R_a = 29.5 + \frac{1.85 \times NC}{2}$$

$$R_a = 28.3 - \frac{2.95 \times SC}{2}$$

- Bad results
  - R<sup>2</sup> values vary from 3% to 61%
  - Best Ra =21,5µm

Ref: R. Klingvall Ek, L.-E. Rännar, M. Bäckctöm, and P. Carlsson. The effect of ebm process parameters upon surface roughness. *Rapid Prototyping Journal*, 22(3):495-503, 2016



#### Batch 160202:

- 140 parts
- 6 parameters studied
  - Number of contours
  - Order of contours
  - Speed of outer contour
  - Focus offset of outer contour
  - Beam current of outer contour
  - Multispot of outer contour
- Recycled powder





Arithmetic rougness of a 7 mm thick sample

#### Batch 160202:

- Conclusions
  - > All the value are close
  - More low thickness, more Ra and Rt are low
  - Best Ra= 28,2μm
  - > Best Rt= 231,5μm

#### **BUT**

- ➤ Ra>25µm
- > Rt>250-300µm





**Parts** 

#### Batch 160229:

- 72 parts
- 4 parameters were studied :
  - Number of outer contours
  - Speed of outer contours
  - Focus offset of outer contour
  - Multispot on outer contours
- Several parts with standard parameter
  - Influence of the environment?
- New Powder



Arithmetic rougness of a 7 mm thick sample

#### Batch 160229:

- Conclusions
  - Standards parameters
  - = Best compromise
  - No improvements with inclinations
  - Best Ra= 24,5μm
  - ➢ Best Rt= 198,5μm

BUT



➤ Significantly different results for standard parameters → influence of sample position

#### Batch 160318:

- 72 parts
- 5 parameters were studied
  - Number of contours
  - Inner contour offset
  - Speed of inner contour
  - Focus offset of inner contour
  - Beam current of inner contour
- Nearly new powder (only 1 use..)



Arithmetic rougness of a 7 mm thick sample

#### Batch 160318:

- Conclusions
  - Standards parameters= Best compromise
  - No improvements with inclinations



Arithmetic roughness of a 7 mm thick sample



Total roughness of a 7 mm thick sample



- Surface Roughness measurement
- Ra = 25-40 μm → Near Sand casting!



## **Conclusions**

- ➤ 586 measures were conducted on EBM samples with different parameters.
  - Standard parameters = Best compromise
  - No improvments with inclination
  - > The more powder is new, the greater the value of the Ra near 25 μm
  - Machining required to obtain Ra of 1.6μm







# Functionalization of Electron beam melting parts by Machining

Promoteurs académiques : Prof. E. Rivière, Prof. E. Filippi

