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We give a reformulation of nonlinear Einstein gravity, which contains the dual graviton together with

the ordinary metric and a shift-gauge field. The metric does not enter through a ‘‘kinetic’’ Einstein-Hilbert

term, but via topological couplings, and so the theory does not lead to a doubling of degrees of freedom.

The field equations take the form of first-order duality relations. We analyze the gauge symmetries and

comment on their meaning with regard to the E11 proposal.
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I. INTRODUCTION

It is a classic result that Kaluza-Klein reduction of 11-
dimensional supergravity gives rise to exceptional hidden
symmetries. Based on this observation it has been conjec-
tured that the infinite-dimensional Kac-Moody algebra E11

is a symmetry of supergravity or possibly even M theory
[1]. Part of the evidence for this conjecture consists of the
fact that the level decompositions of E11 with respect to the
SLðDÞ subgroups precisely reproduce the field content of
maximal supergravity in D dimensions. On the supergrav-
ity side this identification requires that one adds to each
field its dual. For instance, E11 predicts not only the 3-form
of 11-dimensional supergravity, but also a 6-form.
Moreover, at higher level fields appear that transform in
mixed Young tableaux representations, and the lowest of
these can be interpreted as the dual of the metric (‘‘dual
graviton’’).

At the free linearized level, Einstein gravity with metric
h�� can be equivalently formulated in terms of the dual

mixed Young tableaux field C�1����D�3j�. To see this, one

may choose light-cone gauge and dualize one index on the
metric tensor by means of the epsilon tensor of the little
group SOðD� 2Þ, resulting in the dual metric with mixed
symmetries [2]. Afterwards, the dual metric can be ele-
vated to a space-time covariant object with an associated
gauge symmetry [1,3–10], whose covariant action has been
given by Curtright [11]. However, this dualization is prob-
lematic once the nonlinear theory is considered. The no-go
theorems of [12] prove that there is no local, manifestly
Poincaré-invariant, non-Abelian deformation of the
Curtright action, and so there is no consistent non-
Abelian self-interaction of the dual graviton. One way to
circumvent this no-go theorem would be to give up space-
time covariance and/or locality. In fact, if one is willing to
do so, dualization is trivially possible. One simply has to
replace inside the Einstein-Hilbert action in light-cone

gauge [13]—which is neither local nor covariant—the
graviton by (the Hodge-dual of) the dual graviton. A non-
trivial way would be to give up covariance, but keeping
locality, as it happens naturally in the E10 �-model of [14].
In contrast, an essential feature of the E11 proposal is
precisely its space-time covariance in that it reproduces
the supergravity spectra in their covariant form. So at first
sight there seems to be no way to preserve E11 beyond the
‘‘dual graviton barrier.’’
One may still hope to avoid the no-go theorem of [12],

which considers only pure gravity, by taking other fields
into account, as for instance 3- and 6-form of D ¼ 11
supergravity, or the original metric itself. The former pos-
sibility seems to be unlikely since the Kac-Moody ap-
proach actually applies not only to maximal supergravity,
but, in particular, also to pure gravity (then based on the
Kac-Moody algebra Aþþþ

D�3 ), where these fields are not

available. The idea of adding to the action of the dual
graviton the original Einstein-Hilbert term, in order to
possibly obtain consistent cross interactions, is equally
unpromising since, even supposing the existence of such
cross interactions, it would double the degrees of freedom,
in contrast to the expectation that we should ultimately
recover ordinary (super)gravity.
So the question we should really ask is a different one,

namely, whether there exists a theory, which is
(i) classically equivalent to nonlinear Einstein gravity,
(ii) contains besides the metric the dual metric, and
(iii) is covariant and local.

The idea of a formulation in which the metric and its dual
appear simultaneously in itself is not new. However, while
so far these attempts abandoned space-time covariance
and/or locality [15,16], we will see below, that it is surpris-
ingly straightforward to satisfy all of the requirements (i)–
(iii). For this we will mimic an approach, which has
recently been proven to be very fruitful in the context of
gauged supergravity [17–20] (see also [21] and references
therein). Specifically, we will start from a certain covarian-
tization of the Curtright action and add a topological
(Chern-Simons like) term containing the original metric.
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The resulting theory is then proven to be equivalent to
Einstein gravity.

This paper is organized as follows. In Sec. II we review
the dualization of the graviton in the linearization, and
discuss the symmetries of the covariant action for the
dual graviton. We turn to nonlinear gravity in Sec. III,
where we first explain our strategy with a toy model of
vector-scalar duality inD ¼ 3. This is then used to derive a
nonlinear action, called ‘‘parent action,’’ which simulta-
neously contains the graviton and its dual. We comment on
its symmetry structure in view of the E11 proposal and
conclude in Sec. IV.

II. LINEARIZED DUAL GRAVITY

We start by reviewing the dualization of the graviton at
the linearized level, as given, for instance, in [1,8]. For this
one uses that the Einstein-Hilbert action based on the
vielbein e�

a can be written, up to boundary terms, as [22]1

SEH ¼ �
Z

dDxeð�abc�abc þ 2�abc�acb � 4�ab
b�ac

cÞ;
(2.1)

where

�ab
c ¼ ea

�eb
�ð@�e�c � @�e�

cÞ (2.2)

are the coefficients of anholonomy. This form of the
Einstein-Hilbert action can be recast into first-order form
by introducing an auxiliary field Yabjc ¼ �Ybajc,

S½Y; e� ¼ �2
Z

dDxe

�
Yabjc�abc � 1

2
YabjcYacjb

þ 1

2ðD� 2ÞYabj
bYacj

c

�
: (2.3)

The field equation of Y can be used to solve for it in terms
of �,

Yabjc ¼ �abc � 2�c½ab� þ 4�c½a�b�d
d: (2.4)

After reinserting (2.4) into (2.3), one precisely recovers the
Einstein-Hilbert action in the form (2.1). In fact, the action
(2.3) coincides with the standard first-order action with the
spin connection as an independent field, up to a mere field
redefinition, which replaces the spin connection by Yabjc.
For later use we note that (2.3) has the same symmetries as
the original Einstein-Hilbert action. First, it is manifestly
diffeomorphism invariant. Moreover, the invariance of the
second-order action (2.1) under the local Lorentz group can
be elevated to a symmetry of the first-order action by
requiring that the auxiliary Yabjc transforms as

��Yabjc ¼ �2ec
�@��ab � 4�c½ae�d@��b�d

� 2�d
½aYb�djc þ�d

cYabjd: (2.5)

In order to obtain the dual graviton from (2.3) we have to
consider the linearized theory and vary with respect to the
metric. Before we linearize, it turns out to be convenient to

first rewrite the action in terms of the Hodge dual of Yabjc,

Yabjc ¼ 1

ðD� 2Þ! �
abc1���cD�2Y

c1���cD�2j
c: (2.6)

This yields

S ¼ � 2

ðD� 2Þ!
Z

dDxe

�
�abc1...cD�2Y

c1...cD�2j
c�abc

þ D� 3

2ðD� 2ÞY
c1...cD�2jbYc1...cD�2jb

�D� 2

2
Yc1...cD�3aj

aYc1...cD�3bj
b

þ 1

2
Yc1...cD�3ajbYc1...cD�3bja

�
: (2.7)

In the linearization around flat space, e�
a ¼ ��

a þ �h�
a,

we can ignore the distinction between flat and curved
indices. In particular, we have ���� ¼ 2@½�h���, where
the field h�� has no symmetry. The field equation for h�� is

@½�1
Y�2...�D�1�j� ¼ 0: (2.8)

The Poincaré lemma then implies that Y is the curl of a
potential C�1...�D�3j� (the ‘‘dual graviton’’), which is com-

pletely antisymmetric in its first D� 3 indices,

Y�1...�D�2j� ¼ @½�1
C�2...�D�2�j�: (2.9)

Inserting this back into (2.7) yields a consistent action S½C�
for the dual graviton.
Up to now, C�1...�D�3j� as defined by (2.9) does not

transform in an irreducible GLðDÞ representation since
also Y does not possess a specific Young-diagram symme-
try. However, one may check [8] that, after inserting (2.9)
into the linearization of (2.7), the resulting action S½C� is
invariant under the following Stückelberg symmetry:

��C�1...�D�3j� ¼ ���1...�D�3�; (2.10)

with completely antisymmetric shift parameter. Therefore,
the totally antisymmetric part of C�1...�D�3j� can be gauge-

fixed to zero inside S½C�, giving rise to the dual graviton
with a ðD� 3; 1Þ Young-diagram symmetry.2 In other
words, in the action S½C� the dual graviton appears in the
so-called framelike formulation. The latter is the analogue
of the vielbein formalism, in which the linearized Lorentz
transformations act as Stückelberg transformations, and

1We choose the space-time signature to be ð� þ � � �þÞ. The
epsilon symbol is defined by "012��� ¼ þ1, i.e. as a density, such
that e�1"�1...�D transforms as a tensor.

2In this paper we denote by ðp; qÞ two-column Young dia-
grams in the antisymmetric basis with p boxes in the first column
and q boxes in the second column.
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which can be generalized to arbitrary-spin fields [23–25]
(more recently, see also [26–29]).

Let us stress that even though (2.3) and thus (2.7) are
first-order formulations of nonlinear Einstein gravity, the
identification of the dual graviton in (2.9) is only possible
in the linearization, since in the full theory the integrability
condition (2.8) is violated [8]. This is in agreement with the
fact that there is no non-Abelian self-interacting theory for
the dual graviton [12].

Before we proceed, let us examine the free theory of the
dual graviton in more detail. In order to indicate that the
field now carries a specific Young-diagram symmetry, we
denote it byD�1...�D�3j�. The characteristics of those mixed

Young tableaux fields have been studied independently in
[11,30]. First of all, it transforms under two types of gauge
transformations,

�D�1����D�3j� ¼ @½�1
	�2����D�3�j� þ @½�1


�2����D�3��
� ð�1ÞD�3@�
�1����D�3

: (2.11)

Here, 	 possesses the ðD� 4; 1Þ Young-diagram symme-
try, and 
 is completely antisymmetric. Consequently,
(2.11) is consistent with the Young tableau symmetry of
D�1...�D�3j�. The 
-transformations are the ‘‘dual’’ diffeo-

morphisms. For instance, in D ¼ 4, where the metric is
self-dual, (2.11) reads �
D�� ¼ @�
� þ @�
�. In anal-

ogy to the ordinary graviton, there is no invariant field
strength which is first order in derivatives, but only a
second-order Riemann-tensorlike object. However, for
the 	-transformations an invariant field strength is simply
given by

F�1����D�2j� ¼ @½�1
D�2����D�2�j�: (2.12)

An invariant action (the Curtright action) can then be
written as S½C� ¼ R

dDxLCðFÞ, where

LCðFÞ ¼ D� 3

2ðD� 2ÞF
�1����D�2j�F�1����D�2j�

� 1

2
ðD� 2ÞF�1����D�3�j

�F�1����D�3�j
�

þ F�1����D�3�j�F�1����D�3�j�: (2.13)

Here the coefficients are fixed by requiring gauge invari-
ance under 
-transformations. Up to a global prefactor,
this is precisely the action one obtains by inserting (2.9)
into (2.7). And, in fact, the distinction between C and D
becomes redundant, since due to the symmetry (2.10), in
the action the antisymmetric part of C drops out. To be
more precise, the LagrangianLCðFÞ given above is invari-
ant under (2.10) up to a total derivative.

III. COVARIANT THEORY OF NONLINEAR DUAL
GRAVITY

In this section we are going to propose a nonlinear
theory featuring the dual graviton, which still contains

the original metric via a topological term. The resulting
theory will be equivalent to ordinary general relativity. In
order to motivate our approach, we first recall a nontrivial
duality for non-Abelian gauge vectors encountered in
gauged supergravity.

A. A toy model: Dualizing non-Abelian vectors

As is well known, in D ¼ 3 a free theory of Abelian
Maxwell vectors is dual to a free theory of massless
scalars. However, once the gauge vectors are promoted to
non-Abelian Yang-Mills gauge fields, or if they are
coupled to charged matter, this duality breaks down. As
has been shown in [19,20], it is nevertheless possible to
assign all propagating degrees of freedom to scalar fields,
while the gauge vectors appear only through topological
Chern-Simons terms. In other words, besides the dual
scalars the action still contains the (non-Abelian) gauge
vectors.
To illustrate this, let us start directly from the nonlinear

action, whose corresponding Lagrangian is given by

L gð’; A; BÞ ¼ 1
2ð�abD�’aD�’b þ "���B�aF a

��Þ;
(3.1)

which depends on scalars ’a and gauge vectors Aa
�, B�a.

Here the covariant derivatives and non-Abelian field
strengths are defined by

D �’a ¼ @�’a þ gfab
cAb

�’c þ B�a; (3.2)

F a
�� ¼ @�A

a
� � @�A

a
� þ gfbc

aAb
�A

c
�; (3.3)

where fab
c are the structure constants of a compact semi-

simple real Lie algebra with invariant Cartan-Killing form
�ab / �ab. Therefore, (3.1) is manifestly invariant under
the gauge symmetries

�’a ¼ ��a � gfab
c�b’c; (3.4)

�Aa
� ¼ @��

a þ gfbc
aAb

��
c; (3.5)

�B�a ¼ @��a þ gfab
cAb

��c � gfab
c�bB�c: (3.6)

Even though this theory describes charged scalars and non-
Abelian gaugings, it is still possible to dualize the scalars to
vectors. To see this, we observe that due to the presence of
a Chern-Simons term, the field equations of the gauge
vectors are duality relations between vectors and scalars.
Specifically, varying with respect to B�a gives

D �’a ¼ �1
2�ab"

���F b
��: (3.7)

This can be used to solve for B�a in terms of Aa
� and ’a.

After reinsertion into (3.1), one recovers precisely the non-
Abelian Yang-Mills Lagrangian,

L gðAÞ ¼ �1
4�abF ��aF b

��: (3.8)
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(More conveniently, one may first use the shift symmetry
spanned by �a in order to gauge-fix ’a to zero. Then, on
shell, B�a is entirely expressed in terms of Aa

�.)

In the ungauged limit g ! 0, the covariant derivatives
reduce to mere Stückelberg derivatives, D�’a ¼ @�’a þ
B�a, while the Chern-Simons term becomes Abelian. In

this limit the symmetries reduce to the Abelian

�’a ¼ ��a; �B�a ¼ @��a; �Aa
� ¼ @��

a;

(3.9)

and integrating out B�a results into the (positive) sum of

Maxwell actions, of which (3.8) provides a consistent non-
linear deformation.3

Let us finally analyze the deformation of the gauge
symmetries in more detail. At first sight, the gauging de-
forms the Abelian gauge transformations (3.9) for the �a as
well as for the �a in that the latter transform nontrivially
under the former [see Eq. (3.4)]. In fact, the gauge trans-
formations close according to

½��; ��� ¼ �~�;
~�a ¼ gfab

c�b�c; (3.10)

indicating a semidirect product between the Yang-Mills
gauge group and the translations. However, it is possible to
show that the only true deformation of the gauge algebra
concerns the Yang-Mills transformations spanned by �a.
More precisely, one can redefine the parameters and the
fields in such a way that the seemingly semidirect product
(3.10) trivializes, leaving separate Yang-Mills transforma-
tions and Abelian translations. To show this we redefine the
shift parameter according to

�� a ¼ �a þ gfab
c�b’c; (3.11)

and the gauge field B�a by

�B�a ¼ B�a þ gfab
cAb

�’c: (3.12)

After this redefinition, in total the fields transform as

�’a ¼ � ��a; � �B�a ¼ @�
��a � gfab

c�bD�’c:

(3.13)

In other words, the gauge transformations on ’a and B�a

are as in the free case (3.9), up to a correction by the gauge-
covariant derivative D�’a. However, as the latter is shift

invariant, one finds that the commutator (3.10) indeed
trivializes, ½��; � ��� ¼ 0.

Before we proceed with the dual graviton, let us briefly
comment on the properties of this theory in view of the E11

proposal. The reader might be disturbed by the fact that the

enhancement of symmetries has been achieved through the
introduction of a simple shift invariance, expressing a
trivial product structure. However, this is in precise corre-
spondence to what happens in the relation between E11 and
ordinary p-form gauge symmetries [31]. For instance, a 2-
form is taken to transform as �B�� ¼ @½��A��, for which
the algebra closes according to the (p-form truncation of
the) E11 algebra. This transformation can in turn be rede-
fined such that �B�� ¼ ��F��, with the gauge-invariant

field strength F��. Therefore, the commutator vanishes,

hence trivializing the algebra. Given these similarities, we
apply the presented scheme of ‘‘non-Abelian dualization’’
to the dual graviton and comment on the supergravity/Kac-
Moody correspondence later on.

B. Linear dual gravity and its symmetries

In the last section we have seen that in D ¼ 3 even the
non-Abelian, that is, self-interacting Yang-Mills theory,
can be dualized to a scalar theory, which then contains
both the field and its dual. Consequently, this amounts to an
enhancement of the gauge symmetry, since the action (3.1)
exhibits besides the standard Yang-Mills symmetry addi-
tional local symmetries spanned by�a (even though, as we
have seen, their product structure is trivial). As we have
argued in the introduction, we expect something similar for
gravity. By strict analogy, we are looking for a nonlinear
and covariant theory with kinetic terms for the dual gravi-
ton, but which still contains topological terms for the
original graviton.
Let us start with the free theory in framelike formula-

tion, with kinetic terms for the dual graviton C�1...�D�3

a. In

addition, we introduce a Stückelberg gauge field

Y�1����D�2

a and a shift-invariant form F̂�1����D�2

a of the

field strength F�1����D�2

a ¼ @½�1
C�2����D�2�

a

F̂ �1����D�2

a ¼ F�1����D�2

a þ Y�1����D�2

a: (3.14)

The field strength F̂ is invariant under

�Y�1����D�2

a ¼ @½�1
��2����D�2�

a;

�C�1����D�3

a ¼ ���1����D�3

a:
(3.15)

In order to make the transition to the nonlinear theory in the
next section more transparent, we have kept the formal
distinction between flat and curved indices, which are
related by the trivial background vielbein �e�

a ¼ ��
a.

We recall that the vierbein is expanded, around flat
space-time, as e�

a ¼ �e�
a þ �h�

a. Here we have taken

all fields to be in reducible representations, i.e., the fields
C and Y as well as the transformation parameter � possess
an antisymmetric part, after converting all the indices into
curved indices. In total, we consider the action

3In gauged supergravity it is usually convenient to have a
different dependence on the gauge coupling g, which is such that
the Chern-Simons term vanishes for g ! 0 [17]. The chosen
assignment of the deformation parameter here is necessary in
order to have the same ‘‘duality-covariant’’ form in the ungauged
theory as well.
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S ¼
Z

dDxLðh;C; YÞ;
Lðh;C; YÞ ¼ LCðF̂Þ þ 2"�1����D�2��Y�1����D�2

a@�h�a;

(3.16)

where we added in complete analogy to (3.1) a topological
term containing the ordinary graviton h�

a. Let us stress

that here also h�� is not in an irreducible Young tableau,

but carries an antisymmetric part.
The physical content of (3.16) can be analyzed as fol-

lows. Varying with respect to h�
a yields @½�1

Y�2...�D�1�
a ¼

0, i.e. the shift-gauge field is pure gauge and can therefore
be gauged to zero by virtue of (3.15). The action for the
remaining field C�1...�D�3

a is then precisely the Curtright

action for the dual graviton. On the other hand, varying
with respect to Y one obtains a ‘‘duality relation’’ between

h and F̂. Integrating out Y yields the linearized action for
gravity, where the antisymmetric part of h�� appears in the

corresponding Lagrangian only through total derivatives.
This is essentially the same calculation as the one which
led from the first-order, quadratic action (2.7) back to the
quadratic part of the Einstein-Hilbert action (2.1), the only
difference being the presence of C in the field strength
(3.14). However, the latter cancels out, as it should be due
to the shift invariance (3.15). To summarize, the parent
action based on (3.16) contains both the graviton and its
dual and consistently describes the free dynamics of either
of them.

Let us briefly analyze the symmetries of the free theory
(3.16), apart from the manifest shift symmetry (3.15). The
diffeomorphisms and local Lorentz transformations on h�

a

read

�h�
a ¼ @��

a ��a
�; (3.17)

while all other fields are invariant under �a. The dual
diffeomorphisms and 	-transformations ‘‘unify’’ to one
symmetry, given by

�
C�1...�D�3

a ¼ @½�1

�2...�D�3�

a: (3.18)

More precisely, 
 carries the Young-diagram symmetries

ðD� 4Þ � ð1Þ ¼ ðD� 4; 1Þ � ðD� 3Þ; (3.19)

whose irreducible parts are identified with 	 and 
, re-
spectively. That both symmetries are manifest is due to the
framelike formulation. In fact, instead of the dual diffeo-
morphisms it is now the local Lorentz symmetry which
acts nontrivially and fixes the relative coefficients in
Lðh;C; YÞ. It reads

�ð0Þ
� Y�1����D�2ja ¼ @½�1

ð �e�2

b2 . . . �e�D�2�
bD�2 ~�b2���bD�2aÞ;

(3.20)

�ð0Þ
� C�1����D�3ja ¼ �e�1

b1 . . . �e�D�3

bD�3 ~�b1���bD�3a; (3.21)

where ~� is proportional to the Hodge dual of �

~� a1...aD�2
¼ 1

2ð�1ÞD�3ðD� 2Þ�a1...aD�2bc�
bc: (3.22)

Thus, the Lorentz parameter can be used to gauge away
either the antisymmetric part of the metric or of its dual
(but not simultaneously). Such gauge-fixing requires com-
pensating gauge transformations for the symmetries (3.17)
and (3.18), which in turn reintroduces the nonmanifest
invariance of the action either under the diffeomorphisms
��h�� ¼ @��� þ @��� or under their dual (2.11).

C. Nonlinear dual gravity

We turn now to the nonlinear theory. We proceed again
in analogy to the vector-scalar example (3.1), where the
step from the linear to the nonlinear theory was simply
given by covariantizing the field strengths and derivatives
with respect to the Yang-Mills gauge group. Thus, here we
are going to make the action invariant under the full diffeo-
morphism group by introducing the dynamical metric in
the kinetic terms for the dual graviton.
The action reads

S½e; C; Y� ¼
Z

dDx½LCðe; F̂Þ
þ 2��1"�1...�D�2��Y�1...�D�2ja@�e�

a�;
(3.23)

where we introduced the ‘‘covariantized’’ Curtright
Lagrangian

L Cðe; F̂Þ ¼ D� 3

2ðD� 2Þ eF̂
�1...�D�2jaF̂�1...�D�2ja

�D� 2

2
ee�

aeb
�F̂�1...�D�3�j

aF̂�1...�D�3�j
b

þ 1

2
ee�

bea
�F̂�1...�D�3�jaF̂�1...�D�3�jb:

Here, all curved indices are raised and lowered with the
metric g�� ¼ e�

ae�
b�ab derived from e�

a ¼ �e�
a þ

�h�
a, and we introduced � in the topological term, such

that we recover the free Lagrangian (3.16) in the limit � !
0. The shift-invariant field strength is not modified and still
given by (3.14). Because of the appearance of inverse
vielbeins and the determinant e this action is indeed a
nonlinear deformation (in �) of (3.16). The action (3.23)
is equivalent to the nonlinear Einstein-Hilbert action,
which can be reobtained by integrating out Y. In fact,
this can be made completely manifest by gauge-fixing
the shift symmetry such that C ¼ 0 and then converting
all indices into flat ones. The resulting action then coin-
cides with the first-order form (2.7).
Let us now turn to the nonlinear symmetries of (3.23).

First, it is manifestly diffeomorphism invariant due the
presence of a dynamical metric (and for the topological
term anyway). In particular, due to the framelike formula-
tion, we do not need to introduce Christoffel connections,
since the (curved) space-time indices are totally antisym-
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metric. The dual diffeomorphisms together with the
	-transformations (both parametrized by 
a) act as in the
linearized theory according to (3.18), leaving the field
strength (3.14) manifestly invariant. The shift symmetries
are still given by (3.15).

The only nontrivial symmetry is the Lorentz symmetry,
which we assume to act in the standard way on the vielbein,

��e�
a ¼ ��a

be�
b: (3.24)

This is only a symmetry if suitable transformations are
assigned to C and Y. On the C field we take the direct
nonlinear covariantization of (3.21):

��C�1����D�3ja ¼ ~��1����D�3a ��abC�1...�D�3

b; (3.25)

with the dual Lorentz parameter

~� �1����D�3a ¼ e�1

b1 . . . e�D�3

bD�3 ~�b1���bD�3a (3.26)

introduced in (3.22). In the gauge-fixed formulation where
C ¼ 0, the corresponding variation for Y can simply be
determined by applying (2.5) to (2.6). Then, in the full
theory, a correction term containing C has to be added. In
total, we find the nonlinear transformations

��Y�1...�D�2

a ¼ @½�1

~��2...�D�2�
a

� ðD� 3Þ�½�1�2

� ~�j�j�3...�D�2�
a

��a
bY�1...�D�2

b

þ ð�1ÞD�3C½�1...�D�3

b@�D�2��
a
b: (3.27)

Let us note that invariance of the action (3.23) under these
Lorentz transformations can be most easily checked in flat
indices, for which the correction term in (3.27) propor-
tional to ���

� is not required. Actually, the role of the

second and fourth terms in (3.27) is to make the total gauge

transformation of the shift-invariant field strength F̂ sim-
ple:

ð�� þ �
ÞF̂�1...�D�2

a ¼ ��a
bF̂�1...�D�2

b þ 2ð�1ÞD�3

� e½�1

b1 . . . e�D�3

bD�3@�D�2�

� ~�b1���bD�3

a: (3.28)

The gauge transformations take a somewhat unconven-
tional form, as for instance the presence of the dual Lorentz
parameter (3.22). Moreover, the partial derivative on 
a in
(3.18) is not Lorentz covariant, and so at first sight the dual
diffeomorphisms will not close with the local Lorentz
group. However, it turns out that closure is ensured by
virtue of the additional local shift symmetry in that

½�
; ���C�1...�D�3

a ¼ ��C�1...�D�3

a;

��1...�D�3

a ¼ �a
b@½�1


�2...�D�3�
b;

(3.29)

and similarly on Y. Moreover, one finds off-shell closure
for the local Lorentz group itself,

½��1
; ��2

� ¼ �½�1;�2�;

½�1;�2�ab ¼ �1
a
c�2

cb ��2
a
c�1

cb:
(3.30)

In order to verify this, it is again more convenient to work
in flat indices or, otherwise, to keep in mind that the

definition of the parameter ~� in (3.27) involves the
vielbein.
Let us now turn to the equations of motion, specifically

to the duality relation between the metric and its dual. As in
the toy model discussed in Sec. III A, by virtue of the
topological term in (3.23), the duality relation follows
from the action by varying with respect to the gauge field
Y. One finds

e�1"�1...�D�2�����
a ¼ �D� 3

D� 2
F̂�1...�D�2ja

þ ð�1ÞD�3ðD� 2Þe�b
� ea½�1F̂�2...�D�2��jb

� ð�1ÞD�3e�
ae

½�1

b F̂�2...�D�3��jb:

(3.31)

As a consistency check one may now verify that this non-
linear duality relation is completely gauge covariant. In
particular, due to the presence of Y, it transforms cova-
riantly under the local Lorentz group. The field equations
for C can be obtained from (3.31) by acting with a deriva-
tive. In order to obtain the Einstein equation, we have to
use the field equation for e�

a, which also takes a first-order

form,

e�1"��1...�D�1@�1
Y�2...�D�1ja ¼ 1

2
e�1 �LCðe; F̂Þ

�e�
a : (3.32)

In this sense, the full set of field equations—and so the
nonlinear Einstein equations—can be written as first-order
duality relations. Moreover, it follows that even in the
presence of the dual graviton arbitrary matter couplings
can be introduced, simply by adding to (3.23) the matter
action. This, in fact, leaves the first duality relation un-
changed, but adds to the second duality relation (3.32) the
standard energy-momentum tensor T�

a � �LM=�e�
a,

which in turn appears in the Einstein equation in the usual
way. Equivalently, since the shift-gauge field Y will not
contribute to possible matter terms added to (3.23), it can
be integrated out as before, leading to the Einstein-Hilbert
action augmented by these matter couplings. This circum-
vents the negative findings of [32], where it has been shown
that in presence of matter the elimination of the graviton in
favor of its dual is problematic even if gravity is treated
linearly.

D. Symmetries and their deformation

In this section we would like to discuss to what extent
the gauge symmetries of the nonlinear theory (3.23) repre-
sent deformations of the symmetries of the free theory
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(3.16). Analogously to what happens in the vector-scalar
example presented before, we expect that the nonlinear
action can be obtained from the free one by a deformation
that does not affect the gauge algebra, apart from diffeo-
morphisms and Lorentz transformations.

To see this, let us recover (3.27) from a different per-
spective. First we deform the free Lagrangian and the
corresponding Abelian gauge transformations in such a
way that

�ð0Þ
� Y�1...�D�2ja ! �ð0Þ

� Y�1...�D�2ja þ F̂�1...�D�2jb�
b
a:

(3.33)

This deformation does not change the gauge algebra in-

volving � and 
 due to the shift invariance of F̂. Then, we
redefine the gauge parameter ��1...�D�3ja by

��1...�D�3ja ! ��1...�D�3ja � C�1...�D�3jb�
b
a: (3.34)

This procedure generates the algebra (3.29) and gives the
gauge transformation (3.27), apart from the second term
therein, that reflects the Lorentz and diffeomorphism
deformations.

Finally, let us briefly comment on the connection be-
tween the discussed symmetries of the dual graviton theory
and the hidden symmetries found in dimensional reduc-
tions. Since the appearance of the latter symmetries relies
on the dualization of certain fields, one might expect that,
after introducing the dual graviton, they are at least par-
tially present already in the higher-dimensional theory. For
instance, in the reduction of pure gravity from D ¼ 4 to
D ¼ 3 a hidden SLð2;RÞ appears, which acts nonlinearly
on scalars � and ’, which are the dilaton arising from the
metric and the dual of the Kaluza-Klein vector. (For a
review see, e.g., [33].) Specifically, among the SLð2;RÞ
generators h, e, and f in the standard Chevalley basis, h
originates from the higher-dimensional diffeomorphism
invariance and acts linearly, while e and f correspond to
nonlinear symmetries [33],

��ðeÞ’ ¼ �; �	ðfÞ� ¼ 2	�’;

�	ðfÞ’ ¼ 	ð’2 ��2Þ: (3.35)

In the reformulation given in Sec. III C, there are additional
Kaluza-Klein components originating from the dual gravi-
ton C�

a, whose ‘‘dilaton’’ component C3
3 one might iden-

tify with ’.4 Therefore, the dual diffeomorphisms (3.17)
give rise to an additional symmetry, �
C3

3 ¼ @3

3, which

for 
3 ¼ x3� implies the global shift symmetry ��’ ¼ �
in the dimensionally reduced theory. Thus, the e trans-
formations have been uplifted to D ¼ 4. Unfortunately,
the more interesting symmetries given by f still seem not
to correspond to any invariance of the action (3.23), in

agreement with the essentially trivial deformation of the
gauge algebra analyzed above.

IV. COMMENTS AND OUTLOOK

In this paper we have constructed a nonlinear theory
involving the dual graviton. Instead of aiming at a non-
Abelian theory for the dual graviton only—which cannot
exist in a local and covariant fashion [12],—we derived a
parent action, which still contains the original metric. The
latter guarantees invariance under the full diffeomorphism
group. However, this does not lead to a doubling of degrees
of freedom since there is no ‘‘kinetic’’ Einstein-Hilbert
term, while the metric enters through a topological
Chern-Simons-like term. Moreover, due to this topological
term, the theory can be shown to be classically equivalent
to nonlinear Einstein-Hilbert gravity. It exhibits an en-
hanced gauge symmetry, which contains not only the usual
space-time symmetries, but also ‘‘dual’’ diffeomorphisms
and a local shift invariance. By virtue of the shift-gauge
field, the nonlinear duality relations between the metric
and its dual are fully gauge covariant.
Thus, in total, we established the existence of a non-

trivial theory for the dual graviton, satisfying the require-
ments (i)–(iii) raised in the introduction. One might
wonder whether the necessity of introducing a gauge field,
which is a ðD� 2Þ-formwith a Lorentz index, has a natural
interpretation within E11. An inspection of the relevant
tables reveals that E11 in the SLð11Þ decomposition indeed
has a ðD� 2; 1Þ Young tableau at level 7 [34], but that, at
least at low levels, similar objects seem not to appear for
other decompositions or different Kac-Moody algebras (as
Aþþþ
D�3 in case of pure gravity) [35]. Thus, it is most likely

that the shift-gauge fields have to be viewed as external
quantities. This is not an entirely unsuspected feature in
that something similar happens for the correspondence
between gauged supergravity and E11. In fact, gauged
supergravity requires the so-called embedding tensor,
which in turn is not predicted by E11, but appears only
through its dual ðD� 1Þ-forms [31,36,37]. While the latter,
together with the D- or top-form potentials, encode all
constraints imposed by gauged supergravity, the embed-
ding tensor is nevertheless indispensable in order to con-
struct an action [31,38].
Unfortunately, the presented theory does not seem to

fully uplift the ‘‘hidden symmetries’’ of Kaluza-Klein
reductions to the original theory. This can be traced back
to the fact that only the usual diffeomorphisms are truly
nonlinear—giving rise to the SLðdÞ symmetry for reduc-
tions on d-tori,—while the dual diffeomorphisms are
still Abelian. Therefore, the symmetry enhancement
SLðdÞ ! SLðdþ 1Þð! EdðdÞÞ taking place for reductions

of (maximal super)gravity can be elevated to the higher-
dimensional theory only for the positive-level ‘‘shift’’
transformations. However, this is not different from the
correspondence between ordinary p-forms and Kac-

4Besides, the theory contains separately the Kaluza-Klein
vector, but in the reformulation (3.23) it appears only
topologically.
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Moody algebras. (See the discussion in Sec. III A) The
results of this paper therefore show that in this respect
gravity is not special.

It would be interesting to extend this research into the
following directions. First of all, one might speculate that a
true uplifting of all hidden symmetries requires abandon-
ing space-time covariance as in [39]. Moreover, even
though we have seen that generic matter couplings are
compatible with the presented parent action for dual grav-
ity, it would be interesting to see whether for special cases,
like 3- and 6-form in D ¼ 11, an enhancement of symme-
tries is possible such that the dual graviton starts trans-
forming under lower-level gauge transformations.
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