
JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.1 (1-33)

Journal of Computer and System Sciences ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Calculi for symmetric queries ✩

Marc Gyssens a,∗, Jelle Hellings b,a, Jan Paredaens c, Dirk Van Gucht d,
Jef Wijsen e, Yuqing Wu f,1

a Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
b Exploratory Systems Lab, Department of Computer Science, University of California, Davis, CA 95616-8562, USA
c University of Antwerp, Middelheimlaan 1, 2020 Antwerpen, Belgium
d Indiana University, School of Informatics, Computing and Engineering, 919 E 10th Street, Bloomington, IN 47408, USA
e University of Mons, Place du Parc 20, 7000 Mons, Belgium
f Pomona College, 185 E 6th Street, Claremont, CA 91711, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 June 2018
Received in revised form 4 March 2019
Accepted 18 April 2019
Available online xxxx

Keywords:
Bag of sets data model
Symmetric query
Two-sorted first-order logic
Two-sorted relational calculus
Symmetric Boolean function
Symmetric relational function
Counting-only query
Normal form
Expressibility
Satisfiability

Symmetric queries are introduced as queries on a sequence of sets of objects the result of
which does not depend on the order of the sets. An appropriate data model is proposed,
and two query languages are introduced, QuineCALC and SyCALC. They are correlated with
the symmetric Boolean respectively relational functions. The former correlation yields an
incidence-based normal form for QuineCALC queries. More generally, we propose counting-
only queries as those SyCALC queries the result of which only depends on incidence
information, and characterize them as quantified Boolean combinations of QuineCALC
queries. A normal form is proposed for them too. It turns out to be undecidable whether
a SyCALC query is counting-only, but decidable whether a counting-only query is a
QuineCALC query. Finally, some classical decidability problems are considered which are
shown to be undecidable for SyCALC, but decidable for QuineCALC and counting-only
queries.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Many applications, several of which data-intensive, have to deal with sequences of sets of objects, where all objects are
of the same type. Here are some classical examples:

• objects are parts, and S1, . . . , Sn is a sequence of sets of parts such that S j is the set of parts supplied by supplier j.

✩ This is a revised and extended version of the conference paper “An Approach towards the Study of Symmetric Queries” by Marc Gyssens, Jan Paredaens,
Dirk Van Gucht, Jef Wijsen, and Yuqing Wu, presented at the 40th International Conference on Very Large Data Bases (VLDB 2014), Hangzhou, China,
September 1–5, 2014.

* Corresponding author.
E-mail addresses: marc.gyssens@uhasselt.be (M. Gyssens), jhellings@ucdavis.edu (J. Hellings), jan.paredaens@uantwerpen.be (J. Paredaens),

vgucht@cs.indiana.edu (D. Van Gucht), jef.wijsen@umons.ac.be (J. Wijsen), melanie.wu@pomona.edu (Y. Wu).
1 Yuqing Wu carried out part of her work during a sabbatical visit to Hasselt University with a Senior Visiting Postdoctoral Fellowship of the Research

Foundation Flanders (FWO).
https://doi.org/10.1016/j.jcss.2019.04.003
0022-0000/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2019.04.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:marc.gyssens@uhasselt.be
mailto:jhellings@ucdavis.edu
mailto:jan.paredaens@uantwerpen.be
mailto:vgucht@cs.indiana.edu
mailto:jef.wijsen@umons.ac.be
mailto:melanie.wu@pomona.edu
https://doi.org/10.1016/j.jcss.2019.04.003

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.2 (1-33)

2 M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
• objects are products, and S1, . . . , Sn is a sequence of sets of products such that each S j is the set of products bought in
transaction j.

• objects are students, and S1, . . . , Sn is a sequence of sets of students such that each S j is the set of students taking
course j.

Observe that, in all these examples, it is possible that Si = S j for i �= j. Indeed, two distinct suppliers may supply exactly the
same parts; or two distinct transactions may involve exactly the same products; or two distinct courses may have exactly
the same students enrolled in them. Other possible examples include companies and their customers, documents and the
words contained therein, or RDF relationships involving pairs of objects [1–3].

In this paper, we study computable queries q(S1, . . . , Sn) that take as input a sequence of sets S1, . . . , Sn , n ≥ 0, of
objects of some common type, return as output a set of m-tuples of such objects (for some fixed value of m ≥ 0), and
satisfy, for each permutation i1, . . . , in of 1, . . . , n,

q(Si1 , . . . , Sin) = q(S1, . . . , Sn).

We call such queries symmetric queries.
It should be emphasized at this point that, unlike m, the number n should not be considered as fixed, but rather as a

parameter of the problem under consideration.
Obviously, the class of symmetric queries is a strict subset of the class of all computable queries that operate on se-

quences of sets. For example, the query returning the first set of the input sequence is clearly not symmetric. Nevertheless,
the class of symmetric queries is quite rich. The following example queries, referring to the application with parts and
suppliers, illustrate this.

1. Retrieve the parts that are supplied by at least two suppliers.
2. Retrieve the parts that are supplied by all suppliers.
3. Is each supplied part supplied by just one supplier?
4. Retrieve the parts that are supplied by exactly one supplier, provided that there exist parts that are supplied by at least

three suppliers.
5. Do all suppliers supply the same parts?
6. Retrieve the pairs of parts that together are supplied by at least two suppliers.
7. Retrieve the pairs of parts supplied by exactly the same suppliers.

The above queries will be used in examples throughout the paper. We shall refer to them as Queries 1–7, respectively.
Wherever numbers of sets are mentioned in Queries 1–7, we chose small values for purposes of exposition. In the context

of vast amounts of data, it is to be expected that these numbers will actually be quite large (e.g., variations on Query 6 in
the context of the frequent-itemset problem [4]).

Not only symmetric queries, functions, and operators are prevalent in many fields. The same holds for the simple
sequence-of-sets data model we use in this paper. Practical applications can be found in cluster computing, data-parallel
computation on partitioned data, data analytics, and other Big Data techniques. In these applications, the commutative and
associative nature of symmetric operators can be exploited to improve performance, as these operators can be ordered,
grouped, combined, and merged arbitrarily. A good example of this is MapReduce, where the overall communication cost of
the reduce step can be minimized by first reducing data at each computational node using a so-called combiner function,
and only then redistributing the partly-reduced data, grouping them, and applying the final reduce step [5–8]. For this opti-
mization to work, it suffices that the reducer and combiner functions are symmetric. Typically, it is up to the programmers
to guarantee that this property is satisfied. The strategy followed in this paper is to propose expressive query languages that
guarantee this property implicitly, and thus liberate programmers from having to argue for it explicitly.

MapReduce is often illustrated via the problem of counting words in documents and, based on these counts, make further
decisions. This setting is closely related to itemset mining in transaction databases [9]. Additionally, decisions based on
frequency of objects is also at the basis of many machine learning techniques [10]. We observe that the input to counting
words is a sequence of documents, each document consisting of a set of words. As word-counts do not depend on the
ordering of documents, we disregard the order of the sequence. Hence, the data is simply a bag of sets. These bags of
sets have many alternative representations, such as bipartite graphs or binary many-to-many relations. We illustrate this in
Fig. 1. On the left is a sequence of documents, each a sequence of words. When disregarding the order, this sequence is a
bag of sets of words and this bag of sets of words can alternatively be interpreted as the bipartite graph, shown in Fig. 1,
middle. On the right, the frequency of each word is provided, which is independent of the order of the documents and the
order of the words within each document.

Symmetric functions are also prevalent in other fields, such as mathematics. As an example, symmetric polynomials play
a fundamental role in finding roots of single-variable polynomials and finding solutions to systems of multi-variable poly-
nomial equations [11]. The study of these symmetric polynomials has a long history, and even dates back to fundamental
results established by Isaac Newton [12]. In linear algebra, functions such as those that determine the rank, determinant,
and eigenvalues of a square matrix are invariant under permutations of rows or columns [11,13]. In statistics, most sum-
mary data are symmetric functions of the input, such as sum, count, average, median, maximum, minimum, variance, and

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.3 (1-33)

M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 3
Paper

Theory
Practice

Complexity

Memo
Important
Tomorrow

Note
Important

Theory
Complexity

Theory

Practice

Complexity

Important

Tomorrow

Paper

Memo

Note

Theory 2
Practice 1
Complexity 2
Important 2
Tomorrow 1

Fig. 1. Left, a sequence of documents. Middle, the same dataset represented as a bipartite graph. Right, the frequency of words in this data set.

higher-order moments. There is also a comprehensive literature on symmetric Boolean functions (e.g., [14–16]). In program-
ming, examples of symmetric functions on lists of data include size, membership checking, and sorting. Furthermore, the
HAVING clause of SQL reasons about incidence information, as in, e.g.,

SELECT product, SUM(price * quantity)
FROM Purchase
WHERE date > ‘‘9/1’’
GROUP BY product
HAVING SUM(quantity) > 30

It is therefore surprising that symmetric queries have hardly been studied in the context of database systems, even though
our examples above show that symmetric queries are quite prevalent. We should note that certain special examples of
symmetric queries have been considered in the context of nested relations and complex-object databases. For example, the
“unnest” operator in the nested relational model [17] is an operator that, when applied to a set of sets, returns the union of
these sets (see also, the “

⋃
” operator in NRC [18] and the “set-collapse” operator in the complex-object algebra [19]). Other

examples of symmetric queries were introduced by Sarathy et al. [20], using the “
⋃

,” “
⋂

,” and the “
⊕

” operators. Applied
to a set of sets, “

⋃
” returns the union of these sets, “

⋂
” returns the intersection of these sets, and “

⊕
” returns the set of

objects that are members of just one of these sets.
Notice that Queries 1–7 above can be expressed in terms of union, intersection, complement, projection, and Cartesian

product. Below, we give the corresponding expression for each of these seven queries.2

q1(S1, . . . , Sn) =
⋃

1≤i< j≤n

Si ∩ S j;

q2(S1, . . . , Sn) =
⋂

1≤i≤n

Si;

q3(S1, . . . , Sn) = π〈〉
(⋃

1≤i< j≤n

Si ∩ S j

)
;

q4(S1, . . . , Sn) =
((⋃

1≤i≤n

Si

)
∩

⋃
1≤i< j≤n

Si ∩ S j

)
× π〈〉

(⋃
1≤i< j<k≤n

Si ∩ S j ∩ Sk

)
;

q5(S1, . . . , Sn) = π〈〉
(⋃

1≤i< j≤n

Si ∩ S j

)
;

q6(S1, . . . , Sn) =
⋃

1≤i< j≤n

(Si ∩ S j) × (Si ∩ S j);

q7(S1, . . . , Sn) =
⋃

1≤i≤n

(Si × Si) ∪ (Si × Si).

Observe that several of the above expressions can be rewritten using set difference instead of complement.3 The latter is
stronger, as S1 − S2 = S1 ∩ S2.4

To our knowledge, the class of symmetric queries that can be expressed using union, intersection, complement, projec-
tion, and Cartesian product, has not been studied. Initiating such a study is the purpose of the present paper.

2 If S is a set, then π〈〉(S) = {〈〉} if S �= ∅, and π〈〉(S) = ∅ if S = ∅. These are the only null-ary sets. We view “{〈〉}” as a representation of true and “∅” as
a representation of false. In this way, Boolean queries can easily be expressed. Also notice that T × {〈〉} = T and T × ∅ = ∅.

3 With respect to some appropriately chosen domain.
4 For domain-independent queries, complement and difference can be used interchangeably; we chose, however, not to impose additional semantic

and/or syntactic restrictions which could obfuscate the focus of this work.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.4 (1-33)

4 M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
For this study, we start from the work of Quine [16], who studied so-called symmetric Boolean functions which have as
argument a sequence of sets of objects of a given length and return a set of objects defined in terms of the input sets using
only union, intersection, and complement. Quine obtained the remarkable result that such a symmetric Boolean function
can be entirely characterized in terms of the incidence of each object in the domain, i.e., the number of sets in which this
object occurs. Concretely, given a sequence S1, . . . , Sn of sets of objects as argument for the function, there is some subset N
of {0, . . . , n} such that, for each object in the domain, this object is in the result of the function applied to S1, . . . , Sn if and
only if the number of sets among S1, . . . , Sn to which the object belongs to is in N . Moreover, this property characterizes
symmetry of Boolean functions.

Returning to our example symmetric queries above, notice that Queries 1 and 2 have been expressed as symmetric
Boolean queries in the sense of Quine.5 For these queries, the set N in Quine’s characterization result is {2, . . . , n}, re-
spectively {n}. Notice that this characterization allows for an efficient evaluation of these queries, as the relevant incidence
information can be retrieved efficiently. All other queries are not expressed as symmetric Boolean functions in the sense of
Quine, as the corresponding expressions involve projection and/or Cartesian product. Notice, however, that the expressions
for Queries 3, 4, and 5 contain subexpressions representing symmetric Boolean functions in the sense of Quine. We may
therefore hope that Quine’s characterization can still be of use to evaluate also such queries efficiently. In sharp contrast
with these three queries, the expressions for Queries 6 and 7 do not contain subexpressions representing symmetric Boolean
functions in the sense of Quine. This should not be too surprising if we look at the semantics of these symmetric queries.
For example, if we look at Query 6, “Retrieve the pairs of parts that together are supplied by at least two suppliers,” or
Query 7, “Retrieve the pairs of parts supplied by exactly the same suppliers,” knowing the number of suppliers for each part
is not very helpful for answering them. Not only these example queries, but also the word counting problem illustrated in
Fig. 1, which is at the basis of decision-based systems, underline the relationship between symmetric queries and counting.

In order to study the issues raised above more closely, we first want to get rid of the explicit occurrence of n in the
model considered so far, which is undesirable from a database perspective. To see this, consider again parts and suppliers.
The interesting setting is of course a dynamic one where new suppliers start up their business all the time and old ones go
out of business. Unfortunately, the number of suppliers n is “hard-wired” in the expressions given above for our example
queries. Changing n will yield another expression. Thus, to overcome this limitation, we need a data model for representing
sequences of sets of arbitrary length. In such a model, we must moreover be able to define query languages for specifying
symmetric queries without making explicit reference to the length of the represented sequence of sets.

Concretely, we propose to model an arbitrary sequence of sets by a set σ of set names, one for each entry in the
sequence, and a binary membership relation γ . In this representation, a set name S in σ represents the set of all objects o
for which 〈o, S〉 ∈ γ . Notice that we need the set σ because some sets in the sequence under consideration may be empty
and hence will not occur in γ . In the representation we propose, we of course lose the order of the sets in the sequence,
but this is irrelevant in our setting as all queries under consideration are symmetric anyway.

In this paper, we propose as a query language a two-sorted first-order logic over a binary predicate � representing the
set membership relation of our data model, called SyCALC (from “Symmetric Calculus”). As mentioned, SyCALC has two
sorts of variables: one ranges over set names and one over objects. The language is designed in such a way that the only
comparisons allowed are between set variables. Of course, we will ensure that only symmetric queries can be expressed in
SyCALC. As an illustration, Query 6 is expressed in SyCALC by {(x, y) | ∃X∃Y (�(x, X) ∧�(x, Y) ∧�(y, X) ∧�(y, Y) ∧ X �= Y)}.
Our considerations above lead naturally to the following research questions:

1. Is there a syntactically definable fragment of SyCALC that is a conservative extension of the symmetric Boolean func-
tions in the sense of Quine?

2. If so, let us call this fragment QuineCALC. Can the characterization result of Quine for symmetric Boolean functions
using incidence information be lifted to a characterization of QuineCALC?

3. It is possible to extend the symmetric Boolean functions in the sense of Quine to what we call symmetric relational
functions by also allowing projection and Cartesian product besides union, intersection, and complement? Is SyCALC a
conservative extension of the symmetric relational functions?

4. Are there unary symmetric queries that are expressible in SyCALC but not in QuineCALC which can nevertheless be
characterized in terms of incidence information?

5. Are there also non-unary symmetric queries expressible in SyCALC which can be characterized in terms of incidence
information?

6. We shall call SyCALC queries that can be expressed in terms of incidence information counting-only. Are there SyCALC
queries that are not counting-only?

7. Is there a syntactically definable fragment of SyCALC that expresses precisely the counting-only SyCALC queries?
8. Is it decidable whether a counting-only SyCALC query is a QuineCALC query? Is it decidable whether a SyCALC query

is counting-only?
9. Finally, we may consider decidability problems such as satisfiability, containment, equivalence, validity, or emptiness.

Are these problems decidable for SyCALC queries? Or for counting-only SyCALC queries? Or for QuineCALC queries?

5 Technically, one for each value of the parameter n.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.5 (1-33)

M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 5
In this paper, we show that the answer to Research Questions 1–7 is “yes.” As for Research Question 8, it is decidable
whether a counting-only SyCALC query is a QuineCALC query, but it is not decidable whether a SyCALC query is counting-
only. As for Research Question 9, finally, we show that the problems considered are decidable for counting-only SyCALC
queries and QuineCALC queries, but not for general SyCALC queries.

This paper is organized as follows. In Section 2, we elaborate some more on related work, both from the present authors
and other authors. In Section 3, we present our data model. We introduce symmetric queries over our data model as well
as functions on finite sequences of sets of a given length, and correlate both. In Section 4, we introduce QuineCALC, and
establish a correspondence between QuineCALC queries and symmetric Boolean functions. We also characterize QuineCALC
queries in terms of incidence information of the objects they return. In Section 5, we introduce SyCALC, and establish
a correspondence between SyCALC queries and symmetric relational functions. We also introduce counting-only SyCALC
queries, which we characterize as quantified Boolean combinations of QuineCALC queries. In Section 6, we show that,
while it is undecidable whether a SyCALC query is counting-only, it is decidable whether a counting-only SyCALC query
is equivalent to a QuineCALC query. We also show that the problems mentioned in Research Question 9 are decidable
for counting-only SyCALC queries and QuineCALC queries, but not for general SyCALC queries. Finally, in Section 7, we
formulate some conclusions, and discuss direction for future research.

2. Related work

This is a revised and extended version of Gyssens et al. [21]. Not only did we add full proofs, but we also added additional
results with respect to decision problems (Research Questions 8 and 9). More specifically, we answered several questions
that were stated as open problems in Gyssens et al. [21]. First, we provide results on whether it is decidable if a SyCALC
query is a QuineCALC query. We also provide results on the behavior of SyCALC and QuineCALC queries with respect to
traditional decision problems such as satisfiability, containment, equivalence, validity, or emptiness.

Additionally, the work presented in this paper inspired us to further study the concept of “counting-only” in more depth
as stated in the Conclusions and Future Work section, under “Extensions of the concept ‘counting-only’.” As it turns out,
the counting-only queries we study in this paper are only one fragment of a much larger class of counting-based queries
that are well-behaved and intuitive to understand. Hellings et al. [22] study these counting-based queries and address the
questions raised in this paper.

This work is inspired on the one hand by the work on symmetric Boolean functions [14–16]), and on the other hand by
the occurrence in practice of several counting-based queries—including the common statistical queries—which by nature are
all symmetric. Ample examples of operators and formula expressing such queries can be found in the literature, including,
e.g., [5–9,17–20]. Despite there being numerous examples of symmetric queries, both in the literature and in practice, we
believe, as mentioned in the Introduction, that this is to the best of our knowledge the first systematic study of symmetric
queries.

3. Preliminaries

As explained in the Introduction, we work with two sorts, objects and sets of these objects. We assume the existence
of an infinitely enumerable domain D of objects and an infinitely enumerable domain S of names of sets of objects. For
clarity of exposition, we shall distinguish between sets and set names in this section by denoting the former with (possibly
subscripted) capital letters, such as S1, S2, S3, . . ., and the latter with (possibly subscripted) accented capital letters, such
as S ′

1, S
′
2, S

′
3, . . . We shall always implicitly assume that each object under consideration is in D, and each set name under

consideration is in S .
For our data model, we consider structures (D, S, σ , γ), where σ is a finite subset of S , expliciting the set names under

consideration in the structure, and γ is a finite subset of D×σ , providing set membership information. Hence, for all S ′ in
σ , S ′ is the name of the set {o | o ∈D & 〈o, S ′〉 ∈ γ }. Notice that this set may be empty: all set names in σ not occurring in
the set membership relation γ represent the empty set.

For each o in D, we define the incidence of o in γ as inc(o, γ) = |{S ′ ∈ σ | 〈o, S ′〉 ∈ γ }|, i.e., the number of sets under
consideration to which o belongs.6 Similarly we define the co-incidence of o in γ as coinc(o, γ) = |{S ′ ∈ σ | 〈o, S ′〉 /∈ γ }|, i.e.,
the number of sets under consideration to which o does not belong. Clearly, coinc(o, γ) = |σ | − inc(o, γ).

In the work of Quine [16], symmetric Boolean functions operate on a finite sequence of sets. We now explain for-
mally how such a sequence can be encoded in our model. Thereto, let S1, . . . , Sn be a sequence of sets, and let S ′

1, . . . , S ′
n

be a sequence of pairwise different set names. Then, the encoding of S1, . . . , Sn given set names S ′
1, . . . , S

′
n , denoted by

enc(S1, . . . , Sn; S ′
1, . . . , S ′

n), is the structure (D, S, σ , γ), where σ = {S ′
1, . . . , S

′
n} and γ is defined by

γ = {〈o, S ′
i〉 | 1 ≤ i ≤ n & o ∈ Si}.

Notice that, whenever i1, . . . , in is a permutation of 1, . . . , n, then

6 Observe that this number does not depend on D or S , justifying the notation.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.6 (1-33)

6 M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 2. Encoding of a finite sequence of sets by a binary membership relation.

enc(S1, . . . , Sn; S ′
1, . . . , S ′

n) = enc(Si1 , . . . , Sin ; S ′
i1
, . . . , S ′

in
).

Conversely, if (D, S, σ , γ) is a structure with σ = {S ′
1, . . . , S

′
n}, and S1, . . . , Sn are the sets represented by S ′

1, . . . , S
′
n , respec-

tively, then (D, S, σ , γ) equals enc(S1, . . . , Sn; S ′
1, . . . , S ′

n). This converse encoding is not unique, of course, as (D, S, σ , γ)

also encodes every permutation of S1, . . . , Sn , as shown above.
We notice that the encoding of a sequence of sets omits any ordering information. Hence, all permutations of a sequence

will yield isomorphic structures (that possibly differ in set names). This is on purpose: the main focus of this work are
symmetric queries on sequences of sets, queries which do not rely on ordering information in the sequence.

If we denote by inc(o, S1, . . . , Sn) the incidence of o in the sequence of sets S1, . . . , Sn , i.e., the number of sets in this
sequence to which o belongs, then, clearly, inc(o, S1, . . . , Sn) = inc(o, γ) in the encoding.

Example 1. Consider the sets R , S , T , and U visualized by the Venn diagram in Fig. 2, left. (Elements of D not in R , S ,
or T are not shown.) Furthermore, we assume that U is empty. The sequence R, S, T , U (or any of the 24 permutations
thereof) is encoded by the structure (D, S, σ , γ), where σ = {R ′, S ′, T ′, U ′} and the binary membership relation γ is shown
in Fig. 2, right.

In this example, we have inc(a, R, S, T , U) = inc(a, γ) = 1, inc(b, R, S, T , U) = inc(b, γ) = 3, and inc(c, R, S, T , U) =
inc(c, γ) = 2.

As explained in the Introduction, we consider (symmetric) queries at two levels: a restricted “static” level, in which
we consider as input sequences of sets of a given length, and a “dynamic” level, in which this restriction is removed by
encoding the sequence of sets into a structure as defined above.

Inspired by the terminology of Quine [16], we shall speak of functions on sequences of sets at the “static” level. Such
a function f , taking as arguments a sequence of n sets, for some fixed n ≥ 0, and returning m-tuples of objects of these
sets, for some fixed m ≥ 0, is called symmetric if, for all sequences of sets S1, . . . , Sn and for all permutations i1, . . . , in of
1, . . . , n, f (Si1 , . . . , Sin) = f (S1, . . . , Sn).

At the “dynamic” level, we shall speak of queries. A query q takes as input a structure (D, S, σ , γ) and maps it to
a subset of Dm for some fixed m ≥ 0. We say that q is symmetric if, for all permutations π of S and for all structures
(D, S, σ , γ), q((D, S, π(σ), π(γ)) = q((D, S, σ , γ)), where π(σ) = {π(S ′) | S ′ ∈ σ } and π(γ) = {〈o,π(S ′)〉 | 〈o, S ′〉 ∈ γ }.
This condition formalizes the intuition that symmetric queries only look at the content of the sets and not at their names.

If q is symmetric, then, for all sequences of sets S1, . . . , Sn , for all sequences of pairwise different set names T ′
1, . . . , T

′
n

and U ′
1, . . . , U

′
n , and for all permutations i1, . . . , in of 1, . . . , n,

q(enc(S1, . . . , Sn; T ′
1, . . . , T ′

n)) = q(enc(Si1 , . . . , Sin ; U ′
1, . . . , U ′

n)),

matching the notion of symmetric functions at the static level.
The “static” level and the “dynamic” level are of course closely interconnected.
For a fixed value of n ≥ 0, we can associate with each symmetric query q a function fq,n on sequences of n sets S1, . . . , Sn

defined by

fq,n(S1, . . . , Sn) := q(enc(S1, . . . , Sn; S ′
1, . . . , S ′

n)),

where S ′
1, . . . , S

′
n is an arbitrary sequence of pairwise different set names.7 The above property guarantees that fq,n is both

well-defined and symmetric. Since n is a parameter in this construction, we actually obtain a family of symmetric functions,
one for each value of n.

Conversely, consider a family F = { fn | n ≥ 0} of symmetric functions such that fn , n ≥ 0, operates on sequences of n sets
and returns output of arity independent of n. Then, we can associate with F a query qF operating on structures (D, S, σ , γ)

as follows:

qF (D,S,σ ,γ) := fn(S1, . . . , Sn),

7 Since the choice of the set names S ′
1, . . . , S ′

n is arbitrary, we shall henceforth abbreviate enc(S1, . . . , Sn; S ′
1, . . . , S ′

n) to enc(S1, . . . , Sn), by slight abuse
of notation. See also Remark 2.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.7 (1-33)

M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 7
where n is the cardinality of σ and S1, . . . , Sn is the sequence of sets (in some order) represented by the set names in σ .
The well-definedness of qF relies on the symmetry of f0, f1, f2, Clearly, fqF ,n = fn .

Notice that the mathematical construction detailed above corresponds to a definite reality. Indeed, in all examples of
symmetric functions on sequences of sets S1, . . . , Sn presented in the Introduction, the number n is in fact a parameter.
Hence, it is indeed fair to say that, in all the cases, we have been dealing with a family of symmetric functions, one for each
value of n, rather than with just one symmetric function for some fixed value of n.

Remark 2. As we have seen above, the particular names that are chosen to represent sets in a structure are immaterial in
the context of symmetric queries. To simplify notation, we shall therefore no longer make an explicit distinction in what
follows between the sets that are encoded and the corresponding set names, and use (possibly subscripted) capital letters
such as S1, S2, S2, . . . for both. In the same vein, we shall henceforth no longer refer explicitly to the particular set names
used in an encoding of a sequence of sets.

In this paper, we shall establish interconnections between particular classes of symmetric queries and particular classes
of symmetric functions on sequences of sets. We must point out, though, that our main focus is the study of symmetric
queries.

4. QuineCALC

We now define a first-order language, called QuineCALC, of which we show that it is a conservative extension of the
symmetric Boolean functions in the sense of Quine. Later, in Section 5, we will extend QuineCALC to SyCALC, the language
which is at the core of this study.

4.1. Language definition

QuineCALC is a restricted first-order logic with a single binary relation name � representing set membership, i.e., �(x, X)

means that object x belongs to the set named X .
The alphabet contains two sorts of variables: lowercase variables x, y, z, . . . and uppercase variables X, Y , Z , . . ., possi-

bly subscripted. Lowercase variables denote objects and uppercase variables denote set names. The alphabet contains no
constant symbols.

QuineCALC formulae are defined by the following syntax rule:

ϕ := �(x, X) | X = Y | ϕ1 ∨ ϕ2 | ¬ϕ1 | ∃X ϕ1.

We also allow the usual abbreviations, such as X �= Y , ϕ1 ∧ ϕ2, and ∀X ϕ . Observe that the (in)equality predicate and exis-
tential quantification operate on uppercase variables only. Since the language has no quantification over lowercase variables,
all occurrences of lowercase variables in a QuineCALC formula must be free.

A QuineCALC query {x | ϕ(x)} is defined by a QuineCALC formula with exactly one lowercase variable x and without free
occurrences of uppercase variables.

Given a structure (D, S, σ , γ), a QuineCALC query is evaluated in the usual way, where lowercase (object) variables
range over D and uppercase (set name) variables range over σ . Observe that equality or inequality of uppercase variables
refers to the equality or inequality of the set names to which they are evaluated, and not the contents of the corresponding
sets! The binary relation symbol � is interpreted as the membership relation γ . Observe that QuineCALC queries are
symmetric by their definition: set names are always quantified and the language does not allow referencing specific set
names via constants.

For o ∈ D, we denote by (D, S, σ , γ) |= ϕ(o) that ϕ(x) evaluates to true in the structure under consideration if x
is substituted by o. For n ≥ 0, we say that two QuineCALC queries {x | ϕ1(x)} and {x | ϕ2(x)} are n-equivalent if, for all
structures (D, S, σ , γ) with |σ | = n, and for all objects o ∈D, (D, S, σ , γ) |= ϕ1(o) if and only if (D, S, σ , γ) |= ϕ2(o). Two
QuineCALC queries are equivalent if they are n-equivalent for all n ≥ 0.

Example 3. The QuineCALC query {x | ∃X∃Y (�(x, X) ∧ �(x, Y) ∧ X �= Y)} expresses Query 1 and the QuineCALC query
{x | ¬∃X ¬�(x, X)} expresses Query 2 in the Introduction.

In the following example, we present QuineCALC queries which will be used throughout this paper.

Example 4. For every natural number i ≥ 0, the query that upon input the structure (D, S, σ , γ) returns the objects that
belong to at least i sets of σ according to the membership information in γ is expressed by the QuineCALC query{

x
∣∣ ∃X1 · · · ∃Xi

(∧
X j �= Xk ∧

∧
�(x, X j)

)}
.

1≤ j<k≤i 1≤ j≤i

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.8 (1-33)

8 M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
We shall denote the QuineCALC formula in this query by gteq(x, i). The query that returns the objects that belong to exactly
i sets of σ is then expressed by the QuineCALC query {x | gteq(x, i) ∧ ¬gteq(x, i + 1)}. We shall denote the QuineCALC
formula in this query by eq(x, i). We shall also consider the query that returns the objects that do not belong to at least i
sets of σ (or, equivalently, the objects that belong to at most |σ | − i sets of σ), which is expressed by the QuineCALC query{

x
∣∣ ∃X1 · · · ∃Xi

(∧
1≤ j<k≤i

X j �= Xk ∧
∧

1≤ j≤i

¬�(x, X j)
)}

.

We shall denote the QuineCALC formula in this query by cogteq(x, i). The query that returns the objects that do not belong
to exactly i sets of σ (or, equivalently, the objects that belong to exactly |σ | − i sets of σ) is then expressed by the QuineCALC
query {x | cogteq(x, i) ∧ ¬cogteq(x, i + 1)}. We shall denote the QuineCALC formula in this query by coeq(x, i).

4.2. QuineCALC and symmetric Boolean functions

Obviously, the class of sets that can be specified by QuineCALC queries given a particular structure as input is closed
under union, intersection, and complement. We will take this observation one step further, and show that QuineCALC is
a conservative extension of the symmetric Boolean functions in the sense of Quine, thereby solving Research Question 1.
Thereto, we introduce the following terminology.

Definition 5. Let n ≥ 0, and let f be a symmetric function operating on sequences of n sets of objects and returning sets of
these objects, and let q := {x | ϕ(x)} be a QuineCALC query. We say that q is n-equivalent to f , denoted q ≡n f , if, for all
sequences of n sets S1, . . . , Sn and for all objects o ∈ D, we have that o is in f (S1, . . . , Sn) if and only if enc(S1, . . . , Sn) |=
ϕ(o).

Intuitively, q ≡n f says that q and f return the same values on inputs consisting of sequences of n sets, provided this
input is appropriately encoded for applying QuineCALC queries.

We now formally define Boolean functions and symmetric Boolean functions in the sense of Quine.

Definition 6. Let n ≥ 0. A (symmetric) function operating on sequences of n sets of objects S1, . . . , Sn is called Boolean if
the output is again a set of objects, and this set can be described as a Boolean combination of S1, . . . , Sn (using union,
intersection, and complement).

The following two theorems link QuineCALC queries with symmetric Boolean functions, one for each direction.

Theorem 7. For every QuineCALC query q, and for every integer n ≥ 0, there exists a symmetric Boolean function fq,n operating on
sequences of n sets such that q ≡n fq,n.

Proof. Let q := {x | ϕ(x)} be a QuineCALC query and let n ≥ 0. The operator qe(·) eliminates existential quantifiers from
QuineCALC queries, and is defined as follows, where 1 ≤ i, j ≤ n:

qe(�(x, Si)) = �(x, Si);

qe(Si = S j) =
{

true if i = j,

false if i �= j;
qe(ϕ1 ∨ ϕ2) = qe(ϕ1) ∨ qe(ϕ2);

qe(¬ϕ1) = ¬qe(ϕ1);
qe(∃X ϕ1) =

∨
1≤i≤n

qe(ϕ1[X → Si]).

In the last line above, ϕ1[X → Si] denotes the expression obtained from ϕ1 by replacing each free occurrence of X with Si ,
and empty disjunctions are interpreted as “false”.

We next compute fun(qe(ϕ)) as follows, where 1 ≤ i ≤ n:

fun(true) = D;
fun(false) = ∅;

fun(�(x, Si)) = Si;
fun(ϕ1 ∨ ϕ2) = fun(ϕ1) ∪ fun(ϕ2);

fun(¬ϕ1) = fun(ϕ1).

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.9 (1-33)

M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 9
Above, we assume that “D” and “∅” are abbreviations of “
⋂

1≤i≤n Si ∪ Si” and “
⋃

1≤i≤n Si ∩ Si ,” respectively, symmetric
expressions which always return the intended value, even in the limit case n = 0.

It is now straightforward that the expression fun(qe(ϕ)) defines a symmetric Boolean function fq,n(S1, . . . , Sn) on se-
quences of n sets for which q ≡n fq,n . �

Observe that the last rule for the computation of qe(·) reveals in which way n occurs as a parameter in fq,n .

Example 8. Consider the QuineCALC queries in Example 3, expressing Queries 1 and 2. Choose n = 3. Then the symmetric
Boolean functions on sequences of three sets S1, S2, S3 that are 3-equivalent to these QuineCALC queries are, after some
straightforward simplifications, defined by the expressions (S1 ∩ S2) ∪ (S1 ∩ S3) ∪ (S2 ∩ S3) and S1 ∩ S2 ∩ S3, respectively.

Conversely, Theorem 10 below explains how to translate symmetric Boolean functions on sequences of n sets into Quine-
CALC queries. The proof of Theorem 10 relies on the following property, due to Quine [16, p. 178] (slightly adapted to our
notations and terminology):

Lemma 9 (Quine [16]). For a Boolean function f on sequences of n ≥ 0 sets of objects, the following statements are equivalent:

1. f is symmetric;
2. there exists a finite set N of natural numbers such that, for all sequences of sets S1, . . . , Sn and all objects o, o ∈ f (S1, . . . , Sn) if

and only if inc(o, S1, . . . , Sn) ∈ N.

Theorem 10. For every integer n ≥ 0 and for every symmetric Boolean function fn on sequences of n sets of objects, there exists a
QuineCALC query q fn such that q fn ≡n fn.

Proof. Let N be the set of natural numbers characterizing the symmetric Boolean function fn in the statement of Theo-
rem 10 in the sense of Lemma 9. Consider the QuineCALC query q fn := {x | ϕ(x)} where ϕ(x) is false if N = ∅ and

∨
i∈N

eq(x, i)

otherwise. It is straightforward that q fn ≡n fn . �
Example 11. We revisit Example 8.

First consider the symmetric Boolean function f3(S1, S2, S3) = (S1 ∩ S2) ∪ (S1 ∩ S3) ∪ (S2 ∩ S3). For this function, the
characterizing set N according to Lemma 9 equals {2, 3}. Hence, it follows from Theorem 10 that q f3 ≡3 f3, where

q f3 := {x | eq(x,2) ∨ eq(x,3)}.
The QuineCALC query in Example 3 (from which f3 was derived in Example 8) can be rewritten as {x | gteq(x, 2)}. The
latter QuineCALC query is 3-equivalent to q f3 , and, hence, they are both 3-equivalent to f3. Notice, however, that both
QuineCALC queries are not equivalent: they are not even 4-equivalent.

For the other symmetric Boolean function in Example 8, g3(S1, S2, S3) = S1 ∩ S2 ∩ S3, we have that N = {3}. Hence,
qg3 ≡3 g3, with

qg3 := {x | eq(x,3)}.
The QuineCALC query in Example 3 from which g3 was derived in Example 8 can be rewritten as {x | coeq(x, 0)}. The latter
QuineCALC query is 3-equivalent to qg3 , and, hence, they are both 3-equivalent to g3. Notice, however, that both QuineCALC
queries are not equivalent: they are not even 4-equivalent.

Theorems 7 and 10 together settle Research Question 1: QuineCALC (which will turn out to be a syntactically definable
fragment of SyCALC in Section 5) is a conservative extension of the fixed-arity symmetric Boolean functions.

From Theorem 7 and Lemma 9, we can immediately derive the following corollary.

Corollary 12. Let {x | ϕ(x)} be a QuineCALC query and let (D, S, σ , γ) be a structure. Let o1, o2 ∈ D such that inc(o1, γ) =
inc(o2, γ). Then (D, S, σ , γ) |= ϕ(o1) if and only if (D, S, σ , γ) |= ϕ(o2).

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.10 (1-33)

10 M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
4.3. QuineCALC and counting

In Section 4.2, we already established a correspondence between QuineCALC queries and incidence information, provided
we only consider structures where n, the number of set names under consideration, is fixed. How does this incidence
information for different values of n relate to each other? We provide an answer to that question in Theorem 13, below.

Theorem 13. Let q := {x | ϕ(x)} be a QuineCALC query for which ϕ(x) has quantifier depth q ≥ 0. Then, there exists a QuineCALC
query qinc = {x | ψ(x)} where ψ is a disjunction of subformulae of the form eq(x, i) (0 ≤ i < q), subformulae of the form coeq(x, j)
(0 ≤ j < q), and at most one subformula of the form gteq(x, q) ∧ cogteq(x, q), such that, for all n ≥ 2q − 1, q is n-equivalent to qinc.

To put Theorem 13 into perspective, recall that Quine’s result states, that, for every symmetric Boolean function f on
n sets, there exists N ⊆ {0, 1, 2, . . . , n} such that f is equivalent to the following query: “return precisely those objects whose
incidence belongs to N.” Analogously, Theorem 13 states that, for every QuineCALC query q = {x | ϕ(x)} with quantifier depth
q, there exist two sets N1, N2 ⊆ {{0}, {1}, {2}, . . . , {q − 1}, {n ∈ N | n ≥ q}} such that on structures with at least 2q − 1 sets,
q is equivalent to the following query: “return precisely those objects whose incidence belongs to

⋃
N1 or whose co-incidence

belongs to
⋃

N2 .” Two remarks are in place:

• If
⋃

N1 contains some number that is greater than or equal to q, then
⋃

N1 contains all numbers that are greater than
or equal to q, and likewise for

⋃
N2. The reason is that a QuineCALC query with quantifier depth q can verify whether

the number of sets an object x belongs to (or does not belong to) is equal to 0, 1, 2, . . . , q − 1, or strictly greater than
q − 1. Intuitively, a QuineCALC query with quantifier depth q can count up to, but not beyond q − 1.

• In a structure with at least 2q − 1 sets, the incidence and the co-incidence of an object cannot both be smaller than
or equal to q − 1. Therefore, if the incidence of an object is smaller than or equal to q − 1, then its co-incidence must
necessarily be greater than or equal to q. Symmetrically, if the co-incidence of an object is smaller than or equal to
q − 1, then its incidence must necessarily be greater than or equal to q.

One way of proving Theorem 13 is by using Ehrenfeucht-Fraïssé games. Here, we choose for a more constructive ap-
proach. Lemma 14, below, generalizes Theorem 13 to arbitrary subformulae of QuineCALC formulae. This generalization
allows for a proof by structural induction. The details of this proof reveal how we must transform a QuineCALC formula
bottom up starting from its constituent atoms until the entire formula is in the form required by Theorem 13.

Lemma 14. Let {x | ϕ(x)} be a QuineCALC query, with quantifier depth q. When restricted to structures (D, S, σ , γ) with n = |σ | ≥
2q − 1, all subformulas �(x, X1, . . . , Xr) of ϕ , 0 ≤ r ≤ q, can be rewritten as8

∨
1≤i≤m

�i(x, X1, . . . , Xr) (1)

with

• m ≥ 0 and,
• for i = 1, . . . , m, �i equals

ψi ∧ ci ∧ si1�(x, X1) ∧ · · · ∧ sir �(x, Xr),

where,9

– ψi is
∧

1≤ j<k≤r X j θi jk Xk with θi jk either “=” or “ �=”;
– ci is of the form eq(x, ni), with ni < q, or of the form coeq(x, ni), with ni < q, or of the form gteq(x, q) ∧ cogteq(x, q); and
– for j = 1, . . . , r, si j is either “+” or “−”, where +�(x, X j) must be interpreted as “�(x, X j)” and −�(x, X j) must be interpreted

as “¬�(x, X j)”.

Proof. The proof goes by structural induction.
Base cases: The building blocks of QuineCALC formulae are expressions of the form �(x, X) and expressions of the form

X = Y .

1. An expression of the form �(x, X) can be rewritten as

true ∧ true ∧ +�(x, X).

8 Empty disjunctions are always interpreted as “false.”
9 Empty conjunctions are always interpreted as “true.”

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.11 (1-33)

M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 11
The first “true” can be seen as an empty conjunction (cf. Footnote 9). The second “true” can be rewritten as

eq(x,0) ∨ . . . ∨ eq(x,q − 1) ∨ (gteq(x,q) ∧ cogteq(x,q)) ∨ coeq(x,q − 1) ∨ . . . ∨ coeq(x,0).

Using distributivity, we can rewrite the above expression for �(x, X) as a disjunction of subformulae of the required
form.

2. An expression of the form X = Y , where X and Y are different set name variables, can be rewritten as(
X = Y ∧ true ∧ +�(x, X) ∧ +�(x, Y)

) ∨(
X = Y ∧ true ∧ −�(x, X) ∧ −�(x, Y)

)
.

An expression of the form X = X , which always evaluates to true, can be rewritten as(
true ∧ true ∧ +�(x, X)

) ∨(
true ∧ true ∧ −�(x, X)

)
.

The occurrences of “true” can be dealt with as in Case 1 to obtain subformulae of the required form.

Padding: Before proceeding with the induction step, we explain a technique, to which we shall henceforth refer to as
padding. Let �(x, X1, . . . , Xr) be a subformula of the QuineCALC formula ϕ(x) satisfying the Lemma, and let Y be a set
name variable not occurring in � which is quantified at a higher level in ϕ(x). We now show how �(x, X1, . . . , Xr) can be
rewritten to a subformula �′(x, X1, . . . , Xr, Y), also satisfying the Lemma, without changing the semantics of ϕ(x).

Since �(x, X1, . . . , Xr) satisfies the Lemma, it can be rewritten as∨
1≤i≤m

�i(x, X1, . . . , Xr)

with, for i = 1, . . . , m,

�i = ψi ∧ ci ∧ si1�(x, X1) ∧ · · · ∧ sir �(x, Xr),

as explained in the statement of the Lemma. Now, let α be∨
1≤ j≤r

(X j = Y ∨ X j �= Y),

which always evaluates to true. We take �′(x, X1, . . . , Xr, Y) to be the subformula∨
1≤i≤m

�′
i(x, X1, . . . , Xr, Y)

where, for i = 1, . . . , m, �′
i equals

ψi ∧ α ∧ ci ∧ si1�(x, X1) ∧ · · · ∧ sir �(x, Xr) ∧ (+�(x, Y) ∨ −�(x, Y)).

Clearly, for every valid assignment to the variables x, X1, . . . , Xr , the terms �i(x, X1, . . . , Xr) and �′
i(x, X1, . . . , Xr, Y) evaluate

to the same truth value, irrespective of the set name assigned to Y . By applying distributivity, the above expression can be
cast in the desired form.

We are now ready to proceed with the induction step of our structural induction proof, and consider all the constructs
that may occur in a QuineCALC formula.

Disjunction: Without loss of generality, we may assume that the subformula to be rewritten is of the form

�1(x, X1, . . . , Xp, Y p+1, . . . , Yr1) ∨ �2(x, X1, . . . , Xp, Z p+1, . . . , Zr2)

with X1, . . . , Xp precisely the set name variables common to both disjuncts. By the induction hypothesis, both disjuncts
satisfy the Lemma. Using padding repeatedly, we can rewrite the first disjunct to

�1′
(x, X1, . . . , Xp, Y p+1, . . . , Yr1 , Z p+1, . . . , Zr2)

and the second disjunct to

�2′
(x, X1, . . . , Xp, Y p+1, . . . , Yr1 , Z p+1, . . . , Zr2),

both also satisfying the Lemma. Since the rewritten disjuncts now run over the same set of variables, their disjunction
obviously also satisfies the Lemma.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.12 (1-33)

12 M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Negation: Consider a subformula of the form ¬�(x, X1, . . . , Xr) for which �(x, X1, . . . , Xr) satisfies the Lemma, i.e., can
be rewritten as in Expression (1). Hence, ¬�(x, X1, . . . , Xr) is equivalent to a conjunction of the form

∧
1≤i≤m

¬�i(x, X1, . . . , Xr),

where, for i = 1, . . . , m, �i is of the form

ψi ∧ ci ∧ si1�(x, X1) ∧ . . . ∧ sir �(x, Xr),

satisfying the conditions of the Lemma.
We first show that the induction step in this case follows provided we can prove that

¬�i(x, X1, . . . , Xr) can be rewritten as a disjunction of the form

∨
1≤l≤ti

�ili (x, X1, . . . , Xr), (2)

where, for i = 1, . . . , m and li = 1, . . . , ti , �ili is of the form

ψili ∧ cili ∧ sil11�(x, X1) ∧ . . . ∧ sili r �(x, Xr),

as in the Lemma.

Indeed, (2) implies that ¬�i(x, X1, . . . , Xr) is equivalent to a conjunction of disjunctions of the form

∧
1≤i≤m

(∨
1≤li≤ti

�ili (x, X1, . . . , Xr)
)
, (3)

which, by distributivity, is equivalent to the disjunction of conjunctions

∨
(l1,...,lm)∈CP

(
�1l1(x, X1, . . . , Xr) ∧ . . . ∧ �mlm (x, X1, . . . , Xr)

)
,

where CP is the Cartesian product {1, . . . , t1} × · · · × {1, . . . , tm}. We now focus on each of the disjuncts �1l1 (x, X1, . . . , Xr) ∧
. . . ∧ �mlm (x, X1, . . . , Xr) separately. Such a disjunct is unsatisfiable—and may then be omitted from the disjunction—unless

1. ψ1l1 , . . . , ψmlm are mutually equivalent;
2. c1l1 , . . . , cmlm are mutually equivalent; and
3. for all v = 1, . . . , r, s1l1 v = · · · = smlm v ,

in which case the disjunct is equivalent to each of its conjuncts—and hence can be replaced by any of it. We may thus
conclude that Disjunction (3) can be rewritten in the form required by the Lemma.

Hence, it only remains to prove Claim (2). Clearly, ¬�i(x, X1, . . . , Xr) is equivalent to

(ψi ∧ ci ∧ ¬(si1�(x, X1) ∧ . . . ∧ sir �(x, Xr))) ∨
(ψi ∧ ¬ci ∧ (si1�(x, X1) ∧ . . . ∧ sir �(x, Xr))) ∨
(ψi ∧ ¬ci ∧ ¬(si1�(x, X1) ∧ . . . ∧ sir �(x, Xr))) ∨
(¬ψi ∧ ci ∧ (si1�(x, X1) ∧ . . . ∧ sir �(x, Xr))) ∨
(¬ψi ∧ ci ∧ ¬(si1�(x, X1) ∧ . . . ∧ sir �(x, Xr))) ∨
(¬ψi ∧ ¬ci ∧ (si1�(x, X1) ∧ . . . ∧ sir �(x, Xr))) ∨
(¬ψi ∧ ¬ci ∧ ¬(si1�(x, X1) ∧ . . . ∧ sir �(x, Xr))).

(4)

In the rewriting above, there are only three different negated subexpressions: (i) ¬(si1 �(x, X1) ∧ · · · ∧ sir �(x, Xr)), (ii) ¬ci ,
and (iii) ¬ψi . We show that each of these three negated subexpressions can be rewritten as a disjunction of subformulae
of the appropriate form. By applying distributivity, it then readily follows that the entire Expression (4) can be rewritten in
the appropriate form.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.13 (1-33)

M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 13
We first rewrite ¬(si1�(x, X1) ∧ · · · ∧ sir �(x, Xr)), as follows:(
−si1�(x, X1) ∧ (+�(x, X2) ∨ −�(x, X2)

) ∧ (+�(x, X3) ∨ −�(x, X3)
) ∧ . . .

. . . ∧ (+�(x, Xr) ∨ −�(x, Xr)
)) ∨((+�(x, X1) ∨ −�(x, X1)

) ∧ −si2�(x, X2) ∧ (+�(x, X3) ∨ −�(x, X3)
) ∧ . . .

. . . ∧ (+�(x, Xr) ∨ −�(x, Xr)
)) ∨

...((+�(x, X1) ∨ −�(x, X1)
) ∧ (+�(x, X2) ∨ −�(x, X2)

) ∧ . . .

. . . ∧ (+�(x, Xr−1) ∨ −�(x, Xr−1)
) ∧ −sir �(x, Xr)

)
,

where −si j , 1 ≤ j ≤ r, stands for the sign opposite to si j .
We next rewrite ¬ci . If ci is eq(x, ni), with ni < q, then ¬ci is equivalent to

eq(x,0) ∨ . . . ∨ eq(x,ni − 1) ∨ (gteq(x,ni + 1) ∧ cogteq(x,0)).

Clearly, the last condition can be written as a disjunction of conditions of the types allowed in the statement of this Lemma.
A similar reasoning can be made if ci is coeq(x, ni), with ni < q. Finally, if ci is gteq(x, q) ∧cogteq(x, q), then ¬ci is equivalent
to

eq(x,0) ∨ . . . ∨ eq(x,q − 1) ∨ coeq(x,q − 1) ∨ . . . ∨ coeq(x,0).

We conclude this argument by observing that ¬ψi is equivalent to the disjunction of all other expressions of the same form
on the same set of variables.

Quantification: Consider a subformula ∃Xp �(x, X1, . . . , Xr), 1 ≤ p ≤ r, for which �(x, X1, . . . , Xr) satisfies the Lemma,
i.e., can be rewritten as in Expression (1). Since we can distribute the existential quantification over disjunction, we may
assume without loss of generality that �(x, X1, . . . , Xr) is of the form ψ ∧ c ∧ s1�(x, X1) ∧ · · · ∧ sr �(x, Xr). Since c does not
contain set name variables, ∃Xp �(x, X1, . . . , Xr) can be rewritten as

c ∧ ∃Xp (ψ ∧ s1�(x, X1) ∧ · · · ∧ sr �(x, Xr)). (5)

In order to be able to proceed, we first introduce a few concepts. Let V = {X1, . . . , Xr}. The set V is the disjoint union of
V + and V − , were V + consists of the set name variables occurring in a positive �-conjunct and V − consists of the set
name variables occurring in a negative �-conjunct of Expression (5). Furthermore, let G be the complete undirected graph
on V , where the edge between variables Xi and X j , 1 ≤ i < j ≤ r, is labeled with either “=” or “ �=”, depending on whether
Xi = X j or Xi �= X j is the corresponding conjunct of ψ . Finally, we define G+ and G− as the subgraphs of G induced by V +
and V − , respectively. Observe that G+ and G− are complete, since G is.

If G contains an edge between a variable of V + and a variable of V − labeled “=”, then Expression (5) is unsatisfiable,
and can be omitted from the disjunction of which it is part. Thus, without loss of generality, we assume that all edges in G
connecting a variable of V + to a variable of V − are labeled “ �=”.

Also, if G is not colorable (with r colors), then, again, Expression (5) is unsatisfiable, and can be omitted from the
disjunction of which it is part. Thus, without loss of generality, assume that G is colorable (with r colors). Since G is a
complete graph, all colorings of G are actually isomorphic. The colorings of G induce colorings of G+ (respectively G−),
and, by the same argument, these are also isomorphic. So, let s+ and s− be the exact numbers of colors needed to color
G+ and G− , respectively (and, hence, s+ + s− is the exact number of colors needed to color G). Since s+ + s− ≤ r ≤ q, it
follows that both s+ ≤ q and s− ≤ q.

Now, let (D, S, σ , γ) be a structure with n = |σ | ≥ 2q − 1. We evaluate ϕ(x) over this structure. For convenience we
shall abbreviate the subformula in Expression (5) to the right of the existential quantifier as �′(x, X1, . . . , Xr). (Hence,
Expression (5) can be written as c ∧ ∃Xp �′(x, X1, . . . , Xr).) Let o ∈D.

We first claim that, if there exist set names S1, . . . , Sr in σ (not necessarily all different) such that10 (D, S, σ , γ) |=
�′(o, S1, . . . , Sr), then s+ ≤ inc(o, γ) ≤ n − s− .11 To see this, notice that it follows from (D, S, σ , γ) |= �′(o, S1, . . . , Sr) that
G can be colored by assigning the “color” Sk to Xk , 1 ≤ k ≤ r. The number of different set names assigned to variables in V +
is precisely s+ and the number of different set names assigned to variables in V − is precisely s− . Hence, s+ ≤ inc(o, γ) ≤
n − s− .

Now, let �′′(x, X1, . . . , Xp−1, Xp+1, . . . , Xr) be the formula obtained from �′(x, X1, . . . , Xr) by omitting all con-
juncts containing Xp . We claim that, for all objects o in D and for all set names S1, . . . , S p−1, S p+1, . . . , Sr in

10 Slightly extending a previously introduced notation in the straightforward way.
11 The two statements are actually equivalent, but the reverse implication is not relevant to this proof.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.14 (1-33)

14 M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
σ (not necessarily all different), (D, S, σ , γ) |= (∃Xp �′)(o, S1, . . . , S p−1, S p+1, . . . , Sr) if and only if (D, S, σ , γ) |=
�′′(o, S1, . . . , S p−1, S p+1, . . . , Sr) ∧ s+ ≤ inc(o, γ) ≤ n − s− . We start with the “only if.” If

(D,S,σ ,γ) |= (∃Xp �′)(o, S1, . . . , S p−1, S p+1, . . . , Sr),

then, by definition, there exists a set name S p in σ such that (D, S, σ , γ) |= �′(o, S1, . . . , Sr). As shown above, it fol-
lows that s+ ≤ inc(o, γ) ≤ n − s− . By construction, it also follows that (D, S, σ , γ) |= �′′(o, S1, . . . , S p−1, S p+1, . . . , Sr).
We now turn to the “if.” Thereto, we need to distinguish two cases: X p ∈ V + and Xp ∈ V − . As both cases are com-
pletely symmetric, we assume without loss of generality that X p ∈ V + . Hence, in Expression (5), sp equals “+.” Let G ′
be the subgraph of G generated by V − {Xp}, and let G ′+ and G ′− be the subgraphs of G ′ generated by V + − {Xp} and
V − −{Xp}, respectively. Notice that G ′+ is also the subgraph of G+ generated by V + −{Xp}, and that G ′− equals G− . Since
(D, S, σ , γ) |= �′′(o, S1, . . . , S p−1, S p+1, . . . , Sr), we can color G ′ by assigning Sk to Xk , 1 ≤ l ≤ r, k �= p. We must again
distinguish two cases:

1. There exists Xi ∈ V + , i �= p, such that the edge between Xi and Xp in G+ is labeled “=”. Let S p denote the same set name as
Si . Then, S1, . . . , Sk is a coloring of G . (To conclude this, we rely on the colorability of G and the fact that all colorings
of a node-generated subgraph of the complete graph G are isomorphic.) Moreover, the assumption implies γ (o, Si), and
hence also γ (o, S p).

2. For all Xk ∈ V + , k �= j, the edge between Xk and X j in G+ is labeled “ �=”. Since G+ requires s+ colors to color, G ′+ requires
only s+ −1 colors to color. Hence, there are only s+ −1 different set names among S1, . . . , S p−1, S p+1, . . . , Sr associated
to variables in V + . Since inc(o, γ) ≥ s+ , however, there exists a set name different from all those used to color G ′+ , say
S p , such that γ (o, S p). If we associate S p to Xp , we obtain a coloring for G+ , and hence also one for G .

From the assumption, and the fact that the assignment of Sk to Xk , 1 ≤ k ≤ r, is a coloring of G satisfying γ (o, S p), it
readily follows that (D, S, σ , γ) |= �′(o, S1, . . . , Sr), and, hence, also that

(D,S,σ ,γ) |= (∃Xp �′)(o, S1, . . . , S p−1, S p+1, . . . , Sr).

We may thus replace ∃Xp ϕ(x, X1, . . . , Xr) by

c ∧ gteq(x, s+) ∧ cogteq(x, s−) ∧ �′′(X1, . . . , Xp−1, Xp+1, . . . , Xr).

Since both s+ ≤ q and s− ≤ q, it follows that c ∧ gteq(x, s+) ∧ cogteq(x, s−) is either unsatisfiable, in which case the sub-
formula can be omitted from the disjunction of which it is part, or equivalent to c. It now suffices to observe that the
subformula c ∧ �′′(X1, . . . , Xp−1, Xp+1, . . . , Xr) is of the required form. �

Of course, every QuineCALC formula ϕ(x) can be considered as a subformula of itself. If we apply Lemma 14 to ϕ(x) as
subformula of itself, we observe that each �i term can be simplified to ci since there are no free uppercase variables and,
hence, the terms ψi and si1�(x, X1) ∧ · · · ∧ sir �(x, Xr) are both equivalent to true and can be omitted. This yields precisely
Theorem 13.

What Lemma 14 and Theorem 13 add to what we already know from Quine’s results is that we can not only express a
QuineCALC query in terms of incidence information for structures with a given size n of σ , but also that we can do this
uniformly so from a certain minimal value of n onward, defined as one less than twice the quantifier depth. The following
example shows that, in general, this bound is tight.

Example 15. Consider the QuineCALC query

{x | ¬∃X∃Y ∃Z (X �= Y ∧ Y �= Z ∧ Z �= X ∧ �(x, X) ∧ �(x, Y) ∧ �(x, Z)) ∧
¬∃X∃Y ∃Z (X �= Y ∧ Y �= Z ∧ Z �= X ∧ ¬�(x, X) ∧ ¬�(x, Y) ∧ ¬�(x, Z))}.

In words, this query returns an object if and only if both the number of sets in which this object occurs and the number of
sets in which this object does not occur is at most 2. The quantifier depth q of the above formula is 3, and hence 2q −1 = 5.
Theorem 13 therefore pertains to all values of n greater than or equal to 5.

Indeed, if we only consider structures (D, S, σ , γ) with n = |σ | ≥ 5, the output of the above query is obviously empty
(i.e., the query formula is equivalent to an empty disjunction, which we interpret as false). For n = 4, however, the query
is equivalent to eq(x, 2); for n = 3, the query is equivalent to eq(x, 1) ∨ eq(x, 2); for n ≤ 2, the query is equivalent to
eq(x, 0) ∨ . . . ∨ eq(x, n), which evaluates to true.

The underlying reason for the lowerbound 2q − 1 for n lies in the fact that eq(x, ni) ∧ coeq(x, n j), with 0 ≤ ni, n j ≤ q − 1,
is only guaranteed to evaluate to false if n ≥ 2q − 1. For smaller values of n, it may be that ni = n −n j , for example, if q = 3,
n = 4, and ni = n j = 2 (cf. Example 15 above).

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.15 (1-33)

M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 15
In the proof of Lemma 14, we had to rely on eq(x, ni) ∧ coeq(x, n j) evaluating to false, for example in the induction step
for negation where we had to consider conjunctions of subformulae �i(x, X1, . . . , Xr) of the form

ψi ∧ ci ∧ si1�(x, X1) ∧ . . . ∧ sir �(x, Xr).

Depending on the precise values of ni and n j in the conjunctions eq(x, ni) ∧ coeq(x, n j) that must be considered, however,
it may sometimes be possible to decrease the lowerbound of 2q − 1. In the extreme case where no such conjunction
occurs, there is actually no lowerbound. This is, e.g., the case for the query {x | ¬∃X ¬�(x, X)}, expressing Query 1 in the
Introduction, which in general returns the objects that are in all sets under consideration. Obviously, this query is equivalent
to {x | coeq(x, 0)}.

Since there are only a finite number of values of n to which Theorem 13 does not apply, we can deal with these values
separately using Quine’s results, yielding the following Corollary.

Corollary 16. Let q := {x | ϕ(x)} be a QuineCALC query for which ϕ(x) has quantifier depth q ≥ 0. Then, q is equivalent to the
QuineCALC query q′ := {x | ϕ′(x)}, where ϕ′(x) has the form

(2q−2∨
n=0

(Eq(n) ∧ ψn(x))
) ∨ (Gteq(2q − 1) ∧ ψ(x)),

where

• Gteq(r) stands for ∃X1 . . .∃Xr
∧

1≤i< j≤r Xi �= X j;
• Eq(r) stands for Gteq(r) ∧ ¬Gteq(r + 1);
• ψn(x) is a disjunction of subformulae of the form eq(x, i) (0 ≤ i ≤ n); and
• ψ(x) is a disjunction of subformulae of the form eq(x, i) (0 ≤ i < q), subformulae of the form coeq(x, j) (0 ≤ j < q), and at most

one subformula of the form gteq(x, q) ∧ cogteq(x, q).

Example 17. Consider again the QuineCALC query of Example 15. By Corollary 16, and after applying some straightforward
simplifications, this query is equivalent to

Eq(0) ∨ Eq(1) ∨ Eq(2) ∨ (Eq(3) ∧ (eq(x,1) ∨ eq(x,2))) ∨ (Eq(4) ∧ eq(x,2)).

We can see the incidence-defined form for a QuineCALC query provided by Corollary 16 as a normal form for QuineCALC
queries. Notice, however, that this normalization leads to a quantifier depth that is almost double of the original one, as the
quantifier depth of Eq(2q − 2) equals 2q − 1. This, however, is the price one has to pay for normalization. The situation can
be compared with putting a first-order formula in prenex normal form. The standard algorithm to achieve this increase the
quantifier rank to the number of quantifiers in the original formula. Moreover it can easily be shown that it is in general
impossible to replace a first-order formula by an equivalent prenex normal form formula with the same quantifier rank.

As the characterization result of Corollary 16 lifts the characterization result of Quine for symmetric Boolean functions
using incidence information to QuineCALC queries, we have answered Research Question 2 in the affirmative.

5. SyCALC

As announced in the opening paragraph of Section 4, we will now extend QuineCALC to SyCALC, the language which is
at the core of this study.

5.1. Language definition

QuineCALC is a generalization of symmetric n-ary Boolean functions whose arguments and values are sets, and that
are specifiable exclusively by means of union, intersection, and complement. We now add projection and Cartesian product
to this list of operators. In our logic framework, this corresponds to extending QuineCALC by allowing multiple lowercase
variables in formulas over which quantification is allowed. More precisely, SyCALC formulae are defined by the following
syntax rule:

ϕ := �(x, X) | X = Y | ϕ1 ∨ ϕ2 | ¬ϕ1 | ∃x ϕ1 | ∃X ϕ1.

We also allow the usual abbreviations, such as X �= Y and ϕ1 ∧ ϕ2. A SyCALC query has the form {〈x1, . . . , xm〉 |
ϕ(x1, . . . , xm)}, where ϕ(x1, . . . , xm) is a SyCALC formula without free occurrences of uppercase variable and where
x1, . . . , xm are the only free lowercase variables. A SyCALC formula is called closed if no variable occurs free in it. A SyCALC
query defined by a closed SyCALC formula represents a query with Boolean output or a “yes-no query,” where “{〈〉}” is
interpreted as true and “∅” is interpreted as false. We usually refer to such SyCALC queries as Boolean queries.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.16 (1-33)

16 M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
The semantics of SyCALC is analogous to the semantics of QuineCALC. As a consequence, also SyCALC queries are
symmetric. For a sequence of objects o1, . . . , om ∈D, we denote by (D, S, σ , γ) |= ϕ(o1, . . . , om) that ϕ(x1, . . . , xm) evaluates
to true in the structure under consideration if xi is substituted by oi , 1 ≤ i ≤ m.12 For n ≥ 0, we say that two SyCALC queries
{〈x1, . . . , xm〉 | ϕ1(x1, . . . , xm)} and {〈x1, . . . , xm〉 | ϕ2(x1, . . . , xm)} are n-equivalent if, for all structures (D, S, σ , γ) with |σ | =
n, and for all sequences of objects o1, . . . , om , (D, S, σ , γ) |= ϕ1(o1, . . . , om) if and only if (D, S, σ , γ) |= ϕ2(o1, . . . , om).
Two SyCALC queries are equivalent if they are n-equivalent for all n ≥ 0.

Example 18. The SyCALC queries

(3) {〈〉 | ¬∃x∃X∃Y (�(x, X) ∧ �(x, Y) ∧ X �= Y)};
(4) {〈x〉 | ∃X (�(x, X) ∧ ¬∃Y (�(x, Y) ∧ X �= Y)) ∧ ∃y∃X∃Y ∃Z (�(y, X) ∧

�(y, Y) ∧ �(y, Z) ∧ X �= Y ∧ Y �= Z ∧ Z �= X)};
(5) {〈〉 | ¬∃x∃X∃Y (�(x, X) ∧ ¬�(x, Y))};
(6) {〈x, y〉 | ∃X∃Y (�(x, X) ∧ �(y, X) ∧ �(x, Y) ∧ �(y, Y) ∧ X �= Y)};
(7) {〈x, y〉 | ∃X �(x, X) ∧ ∃X �(y, X) ∧

¬∃X (�(x, X) ∧ ¬�(y, X)) ∧ ¬∃X (¬�(x, X) ∧ �(y, X))}
respectively express Queries 3–7 in the Introduction.

Example 19. Let r ≥ 0. The expressions Gteq(r) and Eq(r) described in the statement of Corollary 16 are closed SyCALC
formulae. The corresponding queries {〈〉 | Gteq(r)} and {〈〉 | Eq(r)} are Boolean SyCALC queries that, upon input a structure
(D, S, σ , γ), return whether n = |σ | ≥ r, respectively whether n = |σ | = r.

Unsurprisingly, the language SyCALC is more expressive than the language QuineCALC, even if we restrict ourselves to
SyCALC queries returning unary output. We give an example of such a SyCALC query that is not expressible in QuineCALC.

Example 20. Consider the SyCALC query in Example 18 equivalent to Query 4 in the Introduction. Let o1, o2 ∈ D,
S1, S2, S3 ∈ S , and σ = {S1, S2, S3}, and let γ1 = {〈o1, S1〉, 〈o2, S1〉, 〈o2, S2〉, 〈o2, S3〉}, and γ2 = {〈o1, S1〉}. Although
inc(o1, γ1) = inc(o1, γ2) = 1, o1 is returned upon input the structure (D, S, σ , γ1), but not upon input the structure
(D, S, σ , γ2), in violation of Corollary 16. Hence, this query is not equivalent to a QuineCALC query.

5.2. SyCALC and symmetric relational functions

In order to solve Research Question 3, we extend Theorems 7 and 10 from QuineCALC to SyCALC.
First, we extend Quine’s notion of “(symmetric) Boolean function” to accommodate the presence of projection and Carte-

sian product. Thereto, we must allow the output to be relations of any arity over the objects in D. To emphasize the
distinction, we shall refer to such functions as (symmetric) relational functions.

Definition 21. Let n, m ≥ 0. A (symmetric) function operating on sequences of n sets of objects S1, . . . , Sn is called relational
if the output is an m-ary relation on these objects, and this relation can be described as a combination of S1, . . . , Sn using
intersection, union, complement, projection, and Cartesian product.13

We also extend the notion of equivalence of a QuineCALC query and a symmetric function returning sets of objects to
the equivalence of a general SyCALC query and a symmetric function returning a relation on these objects.

Definition 22. Let n, m ≥ 0, and let f be a symmetric function operating on sequences of n sets of objects and returning
m-ary relations on these objects, and let q := {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} be a SyCALC query. We say that q is n-equivalent
to f , denoted q ≡n f , if, for all sequences of n sets S1, . . . , Sn and for all sequences of m objects o1, . . . , om , we have that
〈o1, . . . ,om〉 ∈ f (S1, . . . , Sn) if and only if enc(S1, . . . , Sn) |= ϕ(o1, . . . , om).

We can now generalize Theorem 7.

Theorem 23. For every SyCALC query q, and for every natural number n ≥ 0, there exists a symmetric relational function
fq,n(S1, . . . , Sn) such that q ≡n fq,n.

12 Recall that lowercase (object) variables range over D, whereas uppercase (set name) variables range over σ .
13 Note that union and intersection are only applied to operands with the same arity.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.17 (1-33)

M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 17
Proof. Let q := {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} be a SyCALC query and n ≥ 0. The proof goes along the same lines as the
proof of Theorem 7. In the context of SyCALC, the function qe(·) to eliminate quantification over uppercase variable must
be extended by adding the rule

qe(∃x ϕ1) = ∃x qe(ϕ1),

to take into account quantification over lowercase variables.
Defining the function fun(·) that translates qe(ϕ) into a symmetric relational function requires some more care. From the

proof of Theorem 7, we retain the rules

fun(true) = D;
fun(false) = ∅;

fun(�(x, Si)) = Si .

In the other rules below, fun(ϕ1(x1, . . . , xr)) always defines a subset of Dr :

fun(∃xr+1 ϕ1(x1, . . . , xr, xr+1)) = π1,...,r(fun(ϕ1(x1, . . . , xr, xr+1)));
fun(ϕ1(xτ (1), . . . , xτ (r))) = πτ(1),...,τ (r)(fun(ϕ1(x1, . . . , xr)));

fun(ϕ1(x1, . . . , xr1) ∨ ϕ2(xr2+1, . . . , xr)) =
(fun(ϕ1(x1, . . . , xr1)) ×Dr−r1) ∪ (Dr2 × fun(ϕ2(xr2+1, . . . , xr)));

fun(¬ϕ1(x1, . . . , xr)) = Dr − fun(ϕ1(x1, . . . , xr)).

In the second rule, τ is a permutation of {1, . . . , r}. We use this rule to reorder the variables whenever needed to apply the
rules before. Notice that, in the last rule, Dr − fun(ϕ1(x1, . . . , xr)) is the complement of fun(ϕ1(x1, . . . , xr)), which we shall
often denote more compactly as fun(ϕ1(x1, . . . , xr)). It is now straightforward that the expression fun(qe(ϕ(x1, . . . , xm)))

defines a symmetric relational function fq,n on sequences of n sets that returns m-ary relations for which q ≡n fq,n . �
Example 24. Consider the SyCALC queries in Example 18, expressing Queries 3–7. Choose n = 3. Then the symmetric re-
lational functions on sequences of three sets S1, S2, S3 that are 3-equivalent to these SyCALC queries are, after some
straightforward simplications,

(3) π〈〉((S1 ∩ S2) ∪ (S2 ∩ S3) ∪ (S3 ∩ S1));

(4)
(
(S1 ∩ S2 ∪ S3) ∪ (S2 ∩ S3 ∪ S1) ∪ (S3 ∩ S1 ∪ S2)

) × π〈〉(S1 ∩ S2 ∩ S3);

(5) π〈〉
(
(S1 ∩ S2) ∪ (S2 ∩ S3) ∪ (S3 ∩ S1)

);
(6)

(
(S1 × S1) ∩ (S2 × S2)

) ∪ (
(S2 × S2) ∩ (S3 × S3)

) ∪ (
(S3 × S3) ∩ (S1 × S1)

);
(7)

(
(S1 ∪ S2 ∪ S3) × (S1 ∪ S2 ∪ S3)

) ∩
(S1 × S1) ∪ (S2 × S2) ∪ (S3 × S3) ∩ (S1 × S1) ∪ (S2 × S2) ∪ (S3 × S3),

respectively.

We now turn to the generalization of Theorem 10 to SyCALC queries.

Theorem 25. For all natural numbers n, m ≥ 0 and for every symmetric relational function fn(S1, . . . , Sn) on sequences of n sets that
return m-ary relations over D, there exists a SyCALC query q fn := {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} such that q fn ≡n fn.

Proof. By assumption, the symmetric relational function fn in the statement of Theorem 25 can be described by some ex-
pression E(S1, . . . , Sn) that only uses S1, . . . , Sn , intersection, union, complement, projection, and Cartesian product. Hence,
E can be translated to a relational calculus expression {(x1, . . . , xm) | C(x1, . . . , xm)}. Now let C ′(x1, . . . , xm, X1, . . . , Xn),
be C(x1, . . . , xm) in which each atomic subexpression of the form “xi ∈ S j ” is substituted by “�(xi, X j).” Finally, define
ϕ(x1, . . . , xm) as

∃X1 · · · ∃Xn
(
C ′(x1, . . . , xm, X1, . . . , Xn) ∧

∧
Xi �= X j

)
.

1≤i< j≤n

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.18 (1-33)

18 M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Then, the expression qe(ϕ) computed in the proof of Theorem 23 yields∧
τ∈Perm{1,...,n}

C ′(x1, . . . , xm, Sτ (1), . . . , Sτ (n)).

In the computation of fun(qe(ϕ)) in the proof of Theorem 23, �(xi, S j) is translated into S j . Hence, we may conclude that
the expression fun(qe(ϕ)) is the standard translation of

{(x1, . . . , xm) |
∧

τ∈Perm{1,...,n}
C(xτ (1), . . . , xτ (n))}

into the relational algebra (with complement instead of difference), which, by construction, is equivalent to the expression ⋃
τ∈Perm{1,...,n} E(Sτ (1), . . . , Sτ (n)), describing the relational function

⋃
τ∈Perm{1,...,n} fn(Sτ (1), . . . , Sτ (n)). Since fn is a sym-

metric relational function, all terms in this union are equal, and hence equal to fn(S1, . . . , Sn). Theorem 25 now follows
readily. �
Example 26. We revisit Example 24. As a first example, consider the symmetric relational function f3(S1, S2, S3) =
π〈〉 ((S1 ∩ S2) ∪ (S1 ∩ S3) ∪ (S2 ∩ S3)). We apply the construction in the proof of Theorem 25 to this relational function.
First, we rewrite the given function to a relational calculus expression {〈〉 | C()} with C() =

¬∃x ((x ∈ S1 ∧ x ∈ S2) ∨ (x ∈ S1 ∧ x ∈ S3) ∨ (x ∈ S2 ∧ x ∈ S3)).

Next, we construct C ′(X1, X2, X3) by replacing x ∈ S j , 1 ≤ j ≤ 3, by �(x, X j), resulting in C ′(X1, X2, X3) =

¬∃x ((�(x, X1) ∧ �(x, X2)) ∨ (�(x, X1) ∧ �(x, X3)) ∨ (�(x, X2) ∧ �(x, X3))).

Finally, we obtain the SyCALC query

{〈〉 | ∃X1∃X2∃X3 (X1 �= X2 ∧ X1 �= X3 ∧ X2 �= X3 ∧ C ′(x, X1, X2, X3))},
which, on structures with n ≥ 3, can be simplified to the SyCALC query in Example 18 expressing Query 3. So, both queries
are 3-equivalent, and hence also 3-equivalent to f3.

As a second example, consider g3(S1, S2, S3) = ((S1 × S1) ∩ (S2 × S2)) ∪ ((S2 × S2) ∩ (S3 × S3)) ∪ ((S3 × S3) ∩ (S1 × S1)).
If we apply the construction in the proof of Theorem 25 to this relational function, we obtain the SyCALC query

{〈x, y〉 | ∃X∃Y ∃Z
(

X �= Y ∧ Y �= Z ∧ Z �= X ∧ (
(�(x, X) ∧ �(y, X) ∧ �(x, Y) ∧ �(y, Y)) ∨
(�(x, Y) ∧ �(y, Y) ∧ �(x, Z) ∧ �(y, Z)) ∨
(�(x, Z) ∧ �(y, Z) ∧ �(x, X) ∧ �(y, X))

))},
which, on structures with n ≥ 3, can be simplified to the SyCALC query in Example 18 expressing Query 6. So, both queries
are 3-equivalent, and hence also 3-equivalent to f3.

Theorems 23 and 25 together settle Research Question 3.

5.3. SyCALC queries that only count

Let us call two structures (D, S, σ , γ1) and (D, S, σ , γ2) incidence-equivalent if, for each object o ∈ D, inc(o, γ1) =
inc(o, γ2). By Corollary 16, QuineCALC queries can, alternatively, be expressed in terms of counting-only terms such as
eq(x, i). As such, QuineCALC queries cannot distinguish between incidence-equivalent structures. This is no longer true for
SyCALC queries, however.

Example 27. Consider the SyCALC query in Example 18 equivalent to Query 7 in the Introduction. Let o1, o2 ∈D, S1, S2, S3 ∈
S , and σ = {S1, S2, S3}, and let

γ1 = {〈o1, S1〉, 〈o1, S2〉, 〈o2, S1〉, 〈o2, S2〉} and

γ2 = {〈o1, S1〉, 〈o1, S3〉, 〈o2, S2〉, 〈o2, S3〉}.
Although inc(o1, γ1) = inc(o1, γ2) = 2 and inc(o2, γ1) = inc(o2, γ2) = 2, (o1, o2) is returned upon input the structure
(D, S, σ , γ1), but not upon input the structure (D, S, σ , γ2).

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.19 (1-33)

M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 19
Queries (including non-symmetric)

qB

Symmetric queries

qA

SyCALC

6, 7

Counting-only SyCALC

3, 4, 5
QuineCALC

1, 2

Fig. 3. Summary of the hierarchal structure of classes of symmetric queries. For each class, we provide example queries which are not in the immediate
subclass. Query qA is a symmetric query not in SyCALC, and query qB is a non-symmetric query. Both are introduced in Example 29. The other example
queries are referred to by the number that was assigned to them in the Introduction.

Therefore, it makes sense to call SyCALC queries that cannot distinguish between incidence-equivalent structures
counting-only.

Definition 28. Let q := {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} be a SyCALC query. We say that q is a counting-only query if, for all
incidence-equivalent structures (D, S, σ , γ1) and (D, S, σ , γ2), we have, for all objects o1, . . . , om ∈D, that (D, S, σ , γ1) |=
ϕ(o1, . . . , om) if and only if (D, S, σ , γ2) |= ϕ(o1, . . . , om).

By Corollary 16, all QuineCALC queries are counting-only. There are, however, many counting-only SyCALC queries that
are not equivalent to a QuineCALC query.

Example 29. Consider the SyCALC queries in Example 18.
The SyCALC query expressing Query 3 in the Introduction returns true on structure (D, S, σ , γ) precisely if, for all

o ∈ D, inc(o, γ) ≤ 1. Hence, it is counting-only. As it does not return unary output, it can of course not be equivalent to a
QuineCALC query.

Given a structure (D, S, σ , γ), the SyCALC query expressing Query 4 returns all objects o ∈ D with inc(o, γ) = 1 pro-
vided there exists o′ ∈ D with inc(o′, γ) ≥ 3. Hence, it is counting-only. Even though it returns unary output, it is not
equivalent to a QuineCALC query, as shown in Example 20.

Given a structure (D, S, σ , γ), the SyCALC query expressing Query 5 returns true if, for all objects o ∈ D, inc(o, γ) =
n, with n = |σ |. Hence, it is counting-only. As it does not return unary output, it can of course not be equivalent to a
QuineCALC query.

Next consider the SyCALC query expressing Query 6. Let o1, o2, o3 ∈D, S1, S2, S3 ∈ S , and σ = {S1, S2, S3}, and let

γ1 = {〈o1, S1〉, 〈o1, S2〉, 〈o2, S1〉, 〈o2, S2〉, 〈o3, S3〉} and

γ2 = {〈o1, S1〉, 〈o1, S2〉, 〈o2, S1〉, 〈o2, S3〉, 〈o3, S2〉}.
While we have that inc(o1, γ1) = inc(o1, γ2) = 2, inc(o2, γ1) = inc(o2, γ2) = 2, and inc(o3, γ1) = inc(o3, γ2) = 1, the query
returns (o1, o2) upon input (D, S, σ , γ1), but does not return (o1, o2) upon input (D, S, σ , γ2). Hence the query is not
counting-only, and, therefore, not equivalent to a QuineCALC query.

Finally, the SyCALC query expressing Query 7 is not counting-only either, as shown in Example 27, and, therefore, also
not equivalent to a QuineCALC query.

In Fig. 3, we summarize the above classification of queries. Observe that not all symmetric queries are also SyCALC
queries, and not all queries are necessarily symmetric. An example of a symmetric query not in SyCALC is qA , “return the
maximum number of objects in a set encoded by the structure,” and an example of a non-symmetric query is qB , “return the
objects in the set encoded by set name S in the structure.”

With Example 29, Research Questions 4, 5, and 6 have been answered in the affirmative.
Definition 28 is in our opinion a very compelling, intuitive semantic definition of counting-only SyCALC queries, but,

unfortunately, it does not teach us much about the nature of counting-only SyCALC queries. Therefore, we state a charac-
terization of counting-only SyCALC queries in the same vein as in Corollary 16 for QuineCALC queries.

Theorem 30. Let q := {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} be a counting-only SyCALC query for which ϕ(x1, . . . , xm) has quantifier depth
qS ≥ 0 in the uppercase (set name) variables. Then, q is equivalent to a SyCALC query q′ := {〈x1, . . . , xm〉 | ϕ′(x1, . . . , xm)}, in which
ϕ′(x1, . . . , xm) has the form

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.20 (1-33)

20 M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
(2qS−2∨
n=0

(Eq(n) ∧ ψn(x1, . . . , xm))
) ∨

(Gteq(2qS − 1) ∧ ψ(x1, . . . , xm)),

where

• for n = 0, . . . , 2qS − 2, ψn(x1, . . . , xm) is a disjunction of formulae of the form ϑ0 ∧ . . . ∧ ϑn ∧ α1(x1) ∧ . . . ∧ αm(xm), with14

– for i = 1, . . . , n, ϑi is ∃x eq(x, i) or ¬∃x eq(x, i);
– for = 1, . . . , m, α(x) is of the form eq(x, k), with 0 ≤ k ≤ n; and

• ψ(x1, . . . , xm) is a disjunction of formulae of the form

ϑ1 ∧ . . . ∧ ϑqS−1 ∧ ϑ ∧ ϑqS−1 ∧ . . . ∧ ϑ0 ∧ α1(x1) ∧ . . . ∧ αm(xm),

with
– for i = 1, . . . , qS − 1, ϑi is either ∃x eq(x, i) or ¬∃x eq(x, i);
– ϑ is ∃x (gteq(x, qS) ∧ cogteq(x, qS)) or ¬∃x (gteq(x, qS) ∧ cogteq(x, qS));
– for j = qS − 1, . . . , 0, ϑ j is either ∃x coeq(x, j) or ¬∃x coeq(x, j);
– for = 1, . . . , m, α(x) is either of the form eq(x, k), with 0 ≤ k < qS ; or of the form coeq(x, k), with 0 ≤ k < qS ; or of

the form gteq(x, qS) ∧ cogteq(x, qS).

The formula ϕ′(�x) in Theorem 30 above is a disjunction of 2qS disjuncts. Each structure (D, S, σ , γ) will satisfy exactly
one of these disjuncts, depending on whether the size of σ is equal to 0, 1, 2, . . . , 2qS − 2, or is greater than or equal to
2qS − 1.

Since ϕ has quantifier depth qS in the uppercase variables, ϕ can be expressed by a formula that contains at most qS
distinct uppercase variables. Given an object o, such formula can test whether the number of objects o belongs to (or does
not belong to) is equal to 0, 1, . . . , qS − 1, or is greater than or equal to qS . Intuitively, a formula with only qS distinct
uppercase variables can “count” up to qS − 1, but not beyond. Significantly, if σ contains at least 2qS − 1 sets, the incidence
and co-incidence of o cannot both be in {0, 1, . . . , qS − 1}; therefore, if ϕ can count one of these numbers, it cannot count
the other. This is the reason why the number 2qS − 1 is a threshold in ϕ′ .

As was the case in Corollary 16 for QuineCALC queries, the quantifier depth of ϕ′ in Theorem 30 is 2q − 1, i.e., almost
double the quantifier depth of ϕ .

Theorem 30 will also serve to derive the final result of this Section (Corollary 39), which states that every counting-only
SyCALC query is equivalent to a quantified Boolean combination of QuineCALC queries.

As already mentioned, Theorem 30 relies in essence on the limited ability of SyCALC queries to count and distinguish
objects. To be able to prove Theorem 30, we first need to show that two structures who are similar with respect to their
incidence and co-incidence information as far as counting up to qS is concerned cannot be distinguished by a counting-only
SyCALC query with quantifier depth qS in the uppercase (set name) variables provided these structures involve at least
2qS − 1 set names.15

We achieve this result step-by-step in an series of five lemmas.

1. First, we show (Lemma 31) that two structures in which each object either
• has the same coincidence in both structures, if this coincidence is at most qS − 1; or else
• has the same incidence in both structures
cannot be distinguished by a counting-only SyCALC query with quantifier depth qS in the uppercase (set name) vari-
ables. This lemma is at the basis of comparing structures involving different sets of set names.

2. Next, we show (Lemma 32 and Corollary 33) that two structures over the same set of set names in which each object
either
• has the same incidence in both structures, if this incidence is at most qS − 1; or else
• has the same coincidence in both structures, if this coincidence is at most qS − 1; or else
• has an incidence and a coincidence of at least qS in both structures
cannot be distinguished by a counting-only SyCALC query with quantifier depth qS in the uppercase (set name) vari-
ables.

3. Lemma 34 combines Lemma 31 and Corollary 33 and states essentially the same as Corollary 33, but with the condition
removed that the sets of set names in both structures must be the same.

4. In our penultimate lemma (Lemma 35), we remove the condition that the two structures must actively involve the
same objects. We show that two structures, which involved the same number of sets names, and in which each natural
number is either the incidence of an object in both structures of not the incidence of an object in either structure
cannot be distinguished by a counting-only SyCALC query.

14 Observe that, in this construction, ψ0 can always be simplified to either true or false.
15 See also the explanation of Theorem 30.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.21 (1-33)

M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 21
5. Finally, Lemma 36 combines Lemmas 34 and 35 and states essentially the same as Lemma 34, but with the condition
removed that the objects actively involved in both structures must be the same.

We start with Lemma 31 below, which compares structures involving different numbers of set names.

Lemma 31. Let {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} be a counting-only SyCALC query, where ϕ has quantifier depth qD in the lowercase
variables and qS in the uppercase variables. Let (D, S, σ1, γ1) and (D, S, σ2, γ2) be structures with |σ1| ≥ 2qS − 1 and |σ2| ≥
2qS − 1 such that, for all o ∈D,

• if coinc(o, γ1) ≥ qS , then inc(o, γ2) = inc(o, γ1); or
• else, if coinc(o, γ1) ≤ qS − 1, then coinc(o, γ2) = coinc(o, γ1).

Then, for all o1, . . . , om ∈D, (D, S, σ1, γ1) |= ϕ(o1, . . . , om) if and only if (D, S, σ2, γ2) |= ϕ(o1, . . . , om).

Proof. Let n1 = |σ1| and n2 = |σ2|. Notice that Lemma 31 holds trivially if n1 = n2. Thus assume n1 �= n2. By symmetry, we
may assume that n2 > n1. Now, it suffices to prove Lemma 31 for the special case where n2 = n1 + 1, as the general case
follows from repeatedly applying Lemma 31 for this special case.

To simplify the exposition, we call objects o ∈ D for which coinc(o, γ1) ≥ qS objects of the first category and objects o ∈ D
for which coinc(o, γ1) ≤ qS − 1 objects of the second category. Now, let σ ′

1 = {S1, . . . , Sn1 } ⊂ S and σ ′
2 = {T1, . . . , Tn1+1} ⊂ S

with σ ′
1 ∩ σ ′

2 = ∅. We construct γ ′
1 and γ ′

2, which are initially empty, as follows:

1. for each object o of the first category, add the pairs 〈o, S1〉, . . . , 〈o, Si〉 to γ ′
1 and add the pairs 〈o, T1〉, . . . , 〈o, Ti〉 to γ ′

2,
where i = inc(o, γ1);

2. for each object o of the second category, add the pairs 〈o, S j+1〉, . . . , 〈o, Sn1 〉 to γ ′
1 and add the pairs 〈o, T j+1〉, . . . ,

〈o, Tn1 〉, 〈o, Tn1+1〉 to γ ′
2, where j = coinc(o, γ1).

By construction, we have that, for each object o in the first category, inc(o, γ1) = inc(o, γ ′
1) = inc(o, γ ′

2) = inc(o, γ2), and, for
each object o in the second category, coinc(o, γ1) = coinc(o, γ ′

1) = coinc(o, γ ′
2) = coinc(o, γ2). Since |σ1| = |σ ′

1|, |σ2| = |σ ′
2|,

and the SyCALC query under consideration is counting-only, it follows that, for all o1, . . . , om ∈D,

(D,S,σ1, γ1) |= ϕ(o1, . . . ,om) ⇐⇒ (D,S,σ ′
1, γ

′
1) |= ϕ(o1, . . . ,om);

(D,S,σ2, γ2) |= ϕ(o1, . . . ,om) ⇐⇒ (D,S,σ ′
2, γ

′
2) |= ϕ(o1, . . . ,om).

Now, consider the Ehrenfeucht-Fraïssé pebble game of qD + qS rounds (qD of which involve selecting objects in D and
qS of which involve selecting set names) on structures (D, S, σ ′

1, γ ′
1) and (D, S, σ ′

2, γ
′

2). To show that the Duplicator has a
winning strategy for this game, we make the following observations:

1. For all objects o ∈ D, and for all k = 1, . . . , n1, 〈o, Sk〉 ∈ γ ′
1 if and only if 〈o, Tk〉 ∈ γ ′

2. This follows immediately from the
construction of γ ′

1 and γ ′
2.

2. For all objects o ∈ D, and for all k = n1 − qS + 1, . . . , n1, 〈o, Sk〉 ∈ γ ′
1 if and only if o is of the second category. To see

the “only if,” it suffices to observe that if o is of the first category, then coinc(o, γ1) ≥ qS , and, hence, by construction,
none of Sn1−qS+1, . . . , Sn1 can be associated with o in γ ′

1. To see the “if,” let o be an object of the second category, and
let coinc(o, γ1) = j. Then, by construction, for all k = j + 1, . . . , n1, 〈o, Sk〉 ∈ γ ′

1. Since j ≤ qS − 1, it follows in particular
that, for all k = qS , . . . , n1, 〈o, Sk〉 ∈ γ ′

1. It now suffices to observe that n1 ≥ 2qS − 1 implies that qS ≤ n1 − qS + 1.
3. Similarly, we have that, for all objects o ∈ D, and for all k = n1 − qS + 1, . . . , n1 + 1, 〈o, Tk〉 ∈ γ ′

2 if and only if o is of
the second category.

Properties 2 and 3 above imply that the set names SqS+1, . . . , Sn1 in γ ′
1 and TqS+1, . . . , Tn1 , Tn1+1 in γ ′

2 all correspond with
the set of all objects of the second category.

We now exhibit a winning strategy for the Duplicator:

• if the Spoiler chooses an object in D in one structure, the Duplicator chooses the same object in the other structure;
• if the Spoiler chooses Si , 1 ≤ i ≤ n1 − qS , in γ ′

1, then the Duplicator chooses Ti in γ ′
2;

• if the Spoiler chooses Ti , 1 ≤ i ≤ n1 − qS , in γ ′
2, then the Duplicator chooses Si in γ ′

1;
• if the Spoiler chooses Si , n1 − qS + 1 ≤ i ≤ n1, in γ ′

1 not selected before, then the Duplicator chooses one of
Tn1−qS+1, . . . , Tn1+1 in γ ′

2 not selected before16; and

16 Since there are more than qS set names available to choose from, this is always possible.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.22 (1-33)

22 M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
• if the Spoiler chooses Ti , n1 − qS + 1 ≤ i ≤ n1 + 1, in γ ′
2 not selected before, then the Duplicator chooses one of

Sn1−qS+1, . . . , Sn1 in γ ′
1 not selected before.17

By Properties 1–3, set names selected in the same round are associated with precisely the same objects in γ ′
1 and γ ′

2,
respectively. Hence, the above is indeed a winning strategy for the Duplicator. Using a straightforward generalization of the
classical result for Ehrenfeucht-Fraïssé pebble games to two-sorted logics, it now follows that, for all o1, . . . , om ∈D,

(D,S,σ ′
1, γ

′
1) |= ϕ(o1, . . . ,om) ⇐⇒ (D,S,σ ′

2, γ
′

2) |= ϕ(o1, . . . ,om),

which concludes the proof. �
We now show that two structures over the same set of set names in which each object either

• has the same incidence in both structures, if this incidence is at most qS − 1; or else
• has the same coincidence in both structures, if this coincidence is at most qS − 1; or else
• has an incidence and a coincidence of at least qS in both structures

cannot be distinguished by a counting-only SyCALC query with quantifier depth qS in the uppercase (set name) vari-
ables. Lemma 32 below exhibits a special case of this result, a repeated application of which will lead to the actual result
(Corollary 33).

Lemma 32. Let {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} be a counting-only SyCALC query, where ϕ has quantifier depth qD in the lowercase
variables and qS in the uppercase variables. Let (D, S, σ , γ1) and (D, S, σ , γ2) be structures such that, for some o ∈D,

1. inc(o, γ1) ≥ qS and coinc(o, γ1) ≥ qS ; and
2. inc(o, γ2) ≥ qS and coinc(o, γ2) ≥ qS .

Assume furthermore that, for all o′ ∈ D \ {o}, inc(o′, γ1) = inc(o′, γ2). Then, for all o1, . . . , om ∈ D, (D, S, σ , γ1) |= ϕ(o1, . . . , om) if
and only if (D, S, σ , γ2) |= ϕ(o1, . . . , om).

Proof. Let n = |σ |. The object o in the statement of Lemma 32 can only exist if n ≥ 2qS . If n = 2qS , then, necessarily,
inc(o, γ1) = inc(o, γ2) = qS and Lemma 32 holds trivially. Therefore, we assume in this proof that n > 2qS .

Also, it suffices to consider the case where, in one of the structures, o occurs in exactly qS sets, as the general case
follows from two applications of Lemma 32 in this special case.

Thus, assume that inc(o, γ1) = qS . Let inc(o, γ2) = k. Without loss of generality, we may assume that qS < k ≤
n − qS .18 Let σ = {S1, . . . , Sn}, let T1, . . . , TqS , U1, . . . , Uk be pairwise different set names not in σ , and let σ ′ =
{S1, . . . , Sn, T1, . . . , TqS , U1, . . . , Uk}. We construct γ ′

1 and γ ′
2 by adding pairs to γ1 \ {〈o, S1〉, . . . , 〈o, Sn〉}, as follows:

1. for each object o′ ∈ D \ {o} with coinc(o′, γ1) ≤ qS − 1, add the pairs 〈o′, T1〉, . . . , 〈o′, TqS 〉, 〈o′, U1〉, . . . , 〈o′, Uk〉 to both
γ ′

1 and γ ′
2.

2. add the pairs 〈o, T1〉, . . . , 〈o, TqS 〉 to γ ′
1;

3. add the pairs 〈o, U1〉, . . . , 〈o, Uk〉 to γ ′
2.

Then, the structures (D, S, σ , γ1) and (D, S, σ ′, γ ′
1), respectively (D, S, σ , γ2) and (D, S, σ ′, γ ′

2), satisfy the conditions of
Lemma 31,19 and hence

(D,S,σ ,γ1) |= ϕ(o1, . . . ,om) ⇐⇒ (D,S,σ ′, γ ′
1) |= ϕ(o1, . . . ,om);

(D,S,σ ,γ2) |= ϕ(o1, . . . ,om) ⇐⇒ (D,S,σ ′, γ ′
2) |= ϕ(o1, . . . ,om).

Now, consider the Ehrenfeucht-Fraïssé pebble game of qD + qS rounds (qD of which involve selecting objects in D and qS
of which involve selecting set names) on structures (D, S, σ ′

1, γ
′

1) and (D, S, σ ′
2, γ

′
2). We exhibit a winning strategy for the

Duplicator:

• if the Spoiler chooses an object in D in one structure, the Duplicator chooses the same object in the other structure;
• if the Spoiler chooses Si , 1 ≤ i ≤ n, in one structure, then the Duplicator chooses the same set name in the other

structure;

17 Since there are qS set names available to choose from, this is always possible.
18 Observe again that the case where k = qS holds trivially.
19 In particular, this is the case for the condition |σ | ≥ 2qS − 1.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.23 (1-33)

M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 23
• if the Spoiler chooses Ti , 1 ≤ i ≤ qS , in γ ′
1 not selected before, then the Duplicator chooses one of U1, . . . , Uk in γ ′

2 not
selected before20;

• if the Spoiler chooses Ti , 1 ≤ i ≤ qS , in γ ′
2 not selected before, then the Duplicator chooses one of U1, . . . , Uk in γ ′

1 not
selected before.20

• if the Spoiler chooses Ui , 1 ≤ i ≤ k in γ ′
1 not selected before, then the Duplicator chooses one of T1, . . . , TqS in γ ′

2 not
selected before21;

• if the Spoiler chooses Ui , 1 ≤ i ≤ k, in γ ′
2 not selected before, then the Duplicator chooses one of T1, . . . , TqS in γ ′

1 not
selected before.21

Since set names selected in the same round are associated with precisely the same objects in γ ′
1 and γ ′

2, respectively, the
above is indeed a winning strategy for the Duplicator. As in the proof of Lemma 31, it now follows that, for all o1, . . . , om ∈
D,

(D,S,σ ′, γ ′
1) |= ϕ(o1, . . . ,om) ⇐⇒ (D,S,σ ′, γ ′

2) |= ϕ(o1, . . . ,om),

which concludes the proof. �
The desired result of the second step of our step-by-step approach follows from a repeated application of Lemma 32,

and is stated and proved below, as Corollary 33.

Corollary 33. Let {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} be a counting-only SyCALC query, where ϕ has quantifier depth qD in the lowercase
variables and qS in the uppercase variables. Let (D, S, σ , γ1) and (D, S, σ , γ2) be structures with |σ | ≥ 2qS − 1 such that, for all
o ∈D,

• either inc(o, γ1) = inc(o, γ2) ≤ qS − 1;
• or coinc(o, γ1) = coinc(o, γ2) ≤ qS − 1;
• or inc(o, γ1) ≥ qS , coinc(o, γ1) ≥ qS , inc(o, γ2) ≥ qS , and coinc(o, γ2) ≥ qS .

Then, for all o1, . . . , om ∈D, (D, S, σ1, γ1) |= ϕ(o1, . . . , om) if and only if (D, S, σ2, γ2) |= ϕ(o1, . . . , om).

Proof. Let {o1, . . . , ok} be the set of all objects such that, for j = 1, . . . , k, inc(o j, γ1) ≥ qS and coinc(o j, γ1) ≥ qS .22 By the
statement of Corollary 33, these are also all objects such that, for j = 1, . . . , k, inc(o j, γ2) ≥ qS and coinc(o j, γ2) ≥ qS . Notice
that, for o ∈D \ {o1, . . . , ok}, inc(o, γ ′

1) = inc(o, γ ′
2). Now define γ 0 := γ1, and, for j = 1, . . . , k,

γ j := (γ j−1 \ {〈o j, Si〉 | 〈o j, Si〉 ∈ γ1}) ∪ {〈o j, Si〉 | 〈o j, Si〉 ∈ γ2}.
Clearly, γ k = γ2. By Lemma 32, we have that, for all j = 1, . . . , k,

(D,S,σ ,γ j−1) |= ϕ(o1, . . . ,om) ⇐⇒ (D,S,σ ,γ j) |= ϕ(o1, . . . ,om).

Hence,

(D,S,σ ,γ1) |= ϕ(o1, . . . ,om) ⇐⇒ (D,S,σ ,γ2) |= ϕ(o1, . . . ,om). �
Using Lemma 31, we bootstrap Corollary 33 to the more general case where both structures do not necessarily involve

the same set names:

Lemma 34. Let {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} be a counting-only SyCALC query, where ϕ has quantifier depth qD in the lowercase
variables and qS in the uppercase variables. Let (D, S, σ1, γ1) and (D, S, σ2, γ2) be structures with |σ1| ≥ 2qS − 1 and |σ2| ≥
2qS − 1 such that, for all o ∈D,

• either inc(o, γ1) = inc(o, γ2) ≤ qS − 1;
• or coinc(o, γ1) = coinc(o, γ2) ≤ qS − 1;
• or inc(o, γ1) ≥ qS , coinc(o, γ1) ≥ qS , inc(o, γ2) ≥ qS , and coinc(o, γ2) ≥ qS .

Then, for all o1, . . . , om ∈D, (D, S, σ1, γ1) |= ϕ(o1, . . . , om) if and only if (D, S, σ2, γ2) |= ϕ(o1, . . . , om).

20 Since there are more than qS set names available to choose from, this is always possible.
21 Since there are qS set names available to choose from, this is always possible.
22 Notice that this set may be empty if |σ | = 2qS − 1.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.24 (1-33)

24 M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Proof. Without loss of generality, we may assume that σ1 ∩ σ2 = ∅. Let σ = σ1 ∪ σ2, and let

γ ′
1 = γ1 ∪ {〈o, T 〉 | coinc(o, γ1) ≤ qS − 1 & T ∈ σ2};

γ ′
2 = γ2 ∪ {〈o, S〉 | coinc(o, γ2) ≤ qS − 1 & S ∈ σ1}.

Then, the structures (D, S, σ1, γ1) and (D, S, σ , γ ′
1), respectively (D, S, σ2, γ2) and (D, S, σ , γ ′

2), satisfy the conditions of
Lemma 31, and hence

(D,S,σ1, γ1) |= ϕ(o1, . . . ,om) ⇐⇒ (D,S,σ ,γ ′
1) |= ϕ(o1, . . . ,om);

(D,S,σ2, γ2) |= ϕ(o1, . . . ,om) ⇐⇒ (D,S,σ ,γ ′
2) |= ϕ(o1, . . . ,om).

Lemma 34 now follows from the observation that the structures (D, S, σ , γ ′
1) and (D, S, σ , γ ′

2) satisfy the conditions of
Corollary 33. �

Before we can prove Theorem 30, we need to generalize Lemma 34 to the situation where the structures under consid-
eration do not necessarily involve the same objects (Lemma 36). The key to this generalization is Lemmas 35, below. As
both Lemmas 35 and 36 will be used to prove Theorem 30, Lemma 35 is stated slightly more general than strictly required
to prove Lemma 36.

Lemma 35. Let {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} be a counting-only SyCALC query. Let (D, S, σ1, γ1) and (D, S, σ2, γ2) be
structures with |σ1| = |σ2| such that, for all o1 ∈ D, there exists o2 ∈ D with inc(o2, γ2) = inc(o1, γ1), and vice versa. Let
o11, . . . , o1m, o21, . . . , o2m ∈ D be such that, for i = 1, . . . , m, inc(o1i, γ1) = inc(o2i, γ2). Then, (D, S, σ1, γ1) |= ϕ(o11, . . . , o1m)

if and only if (D, S, σ2, γ2) |= ϕ(o21, . . . , o2m).

Proof. Let σ1 = {S1, . . . , Sn}. We construct γ ′
1 from γ1 as follows. Initially, γ ′

1 = ∅. Then, for all o ∈ D, if inc(o, γ1) = i,
add 〈o, S1〉, . . . , 〈o, Si〉 to γ ′

1. We construct γ ′
2 from γ2 in a similar way. Since the SyCALC query under consideration is

counting-only, we have that

(D,S,σ1, γ1) |= ϕ(o11, . . . ,o1m) ⇐⇒ (D,S,σ1, γ
′

1) |= ϕ(o11, . . . ,o1m);
(D,S,σ2, γ2) |= ϕ(o21, . . . ,o2m) ⇐⇒ (D,S,σ2, γ

′
2) |= ϕ(o21, . . . ,o2m).

By assumption, {inc(o, γ1) | o ∈ D} = {inc(o, γ2) | o ∈ D}. Let us denote this set as {i1, . . . , ik}. Now, for j = 1, . . . , k, choose
o1

j and o2
j in D such that inc(o1

j , γ1) = inc(o2
j , γ2) = i j . We construct γ ′′

1 from γ1 as follows. Initially, γ ′′
1 = ∅. Then, for all

j = 1, . . . , k, add 〈o1
j , S1〉, . . . , 〈o1

j , Si j 〉 to γ ′′
1 . We construct γ ′′

2 from γ2 in a similar way. Let h1 : D → D be the mapping
sending an object o to the unique object o1

j , 1 ≤ j ≤ k, for which inc(o, γ1) = i j . Similarly, let h2 : D → D be the mapping
sending an object o to the unique object o2

j , 1 ≤ j ≤ k, for which inc(o, γ2) = i j . Observe that for each object o in D, o

and h1(o) are associated with exactly the same set names in γ ′
1, and o and h2(o) are associated with exactly the same set

names in γ ′
2. Since, furthermore, lowercase (object) variables are never compared in SyCALC, it follows that23

(D,S,σ1, γ
′

1) |= ϕ(o11, . . . ,o1m) ⇐⇒ (D,S,σ1, γ
′′

1) |= ϕ(h1(o11), . . . ,h1(o1m));
(D,S,σ2, γ

′
2) |= ϕ(o21, . . . ,o2m) ⇐⇒ (D,S,σ2, γ

′′
2) |= ϕ(h2(o21), . . . ,h2(o2m)).

Now, let h : D → D be any bijective mapping sending o1
i to o2

i , 1 ≤ i ≤ k. Clearly, h defines an isomorphism between
(D, S, σ1, γ ′′

1) and (D, S, σ2, γ ′′
2). Also, by construction, we have that h(h1(o11)) = h2(o21), . . . , h(h1(o1m)) = h2(o2m).

Hence, by genericity [23], (D, S, σ2, γ ′′
1) |= ϕ(h1(o11), . . . , h1(o1m)) if and only if (D, S, σ2, γ ′′

2) |= ϕ(h2(o21), . . . , h2(o2m)),
which concludes the proof. �
Lemma 36. Let {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} be a counting-only SyCALC query, where ϕ has quantifier depth qD in the lowercase
variables and qS in the uppercase variables. Let (D, S, σ1, γ1) and (D, S, σ2, γ2) be structures with |σ1| ≥ 2qS − 1 and |σ2| ≥
2qS − 1 such that, for all o1 ∈D,

• if inc(o1, γ1) ≤ qS − 1, there exists o2 ∈D with inc(o2, γ2) = inc(o1, γ1), and vice-versa;
• if coinc(o1, γ1) ≤ qS − 1, there exists o2 ∈D with coinc(o2, γ2) = coinc(o1, γ1), and vice-versa; and
• if inc(o1, γ1) ≥ qS and coinc(o1, γ1) ≥ qS , there exists o2 ∈D with inc(o2, γ2) ≥ qS and coinc(o2, γ2) ≥ qS , and vice-versa.

Furthermore, let o1i, . . . , o1m, o21, . . . , o2m ∈D such that, for i = 1, . . . , m,

23 This intuition can be corroborated by a straightforward structural induction argument.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.25 (1-33)

M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 25
• either inc(o1i, γ1) = inc(o2i, γ2) ≤ qS − 1;
• or coinc(o1i, γ1) = coinc(o2i, γ2) ≤ qS − 1;
• or inc(o1i, γ1) ≥ qS , coinc(o1i, γ1) ≥ qS , inc(o2i, γ2) ≥ qS , and coinc(o2i, γ2) ≥ qS .

Then, (D, S, σ1, γ1) |= ϕ(o11, . . . , o1m) if and only if (D, S, σ2, γ2) |= ϕ(o21, . . . , o2m).

Proof. Let n = 2qS , and let σ = {S1, . . . , Sn}. Using γ1, we construct γ ′
1, as follows. Initially, γ ′

1 is empty. Let o ∈D. If 1 ≤ i =
inc(o, γ1) ≤ qS − 1, then add 〈o, S1〉, . . . , 〈o, Si〉 to γ ′

1. Otherwise, if j = coinc(o, γ1) ≤ qS − 1, then add 〈o, S1〉, . . . , 〈o, Sn− j〉
to γ ′

1. Otherwise, i.e., if inc(o, γ1) ≥ qS and coinc(o, γ1) ≥ qS , add 〈o, S1〉, . . . , 〈o, SqS 〉 to γ ′
1.24 Using γ2, we construct γ ′

2 in
a similar way. The structures (D, S, σ1, γ1) and (D, S, σ , γ ′

1) satisfy the conditions of Lemma 34, and hence

(D,S,σ1, γ1) |= ϕ(o11, . . . ,o1m) ⇐⇒ (D,S,σ ,γ ′
1) |= ϕ(o11, . . . ,o1m);

(D,S,σ2, γ2) |= ϕ(o21, . . . ,o2m) ⇐⇒ (D,S,σ ,γ ′
2) |= ϕ(o21, . . . ,o2m).

Lemma 36 now follows from the observation that the structures (D, S, σ , γ ′
1) and (D, S, σ , γ ′

2) satisfy the conditions of
Lemma 35. �

Using Lemmas 35 and 36, we can now prove Theorem 30, stated on p. 19.

Proof of Theorem 30. Let (D, S, σ , γ) be a structure and let o1, . . . , om ∈D such that (D, S, σ , γ) |= ϕ(o1, . . . , om). We now
construct a SyCALC formula ϕσ,γ ,�o describing the incidence information contained herein, where �o denotes the sequence
o1, . . . , om . Thereto, we distinguish two cases.

1. n = |σ | < 2qS − 1. Then, let ϕσ,γ ,�o be the formula Eq(n) ∧ ψσ,γ ,�o , where ψσ,γ ,�o is a conjunction of the following
formulae:
• for i = 1, . . . , n, ∃x eq(x, i) if there exists o ∈D with inc(o, γ) = i, and ¬∃x eq(x, i) otherwise; and
• for j = 1, . . . , m, eq(x j, inc(o j, γ)).

2. n = |σ | ≥ 2qS − 1. Let ϕσ,γ ,�o be the formula Gteq(2qS − 1) ∧ ψσ,γ ,�o , where ψσ,γ ,�o is a conjunction of the following
formulae:
• for i = 1, . . . , qS − 1, ∃x eq(x, i) if there exists o ∈D with inc(o, γ) = i, and ¬∃x eq(x, i) otherwise;
• ∃x (gteq(x, qS) ∧cogteq(x, qS)) if there exists o ∈D with qS ≤ inc(o, γ) ≤ n −qS , and ¬∃x (gteq(x, qS) ∧cogteq(x, qS))

otherwise;
• for j = qS − 1, . . . , 0, ∃x coeq(x, j) if there exists o ∈D with inc(o, γ) = n − j, and ¬∃x coeq(x, j) otherwise;
• for = 1, . . . , m, α(x), which equals⎧⎪⎨

⎪⎩
eq(x, inc(o, γ)) if inc(o, γ) < qS;
coeq(x, inc(o, γ)) if inc(o, γ) > n − qS;
gteq(x,qS) ∧ cogteq(x,qS) otherwise.

Now, let q′ := {〈x1, . . . , xm〉 | ϕ′(x1, . . . , xm)} with ϕ′ equal to∨
σ ,γ ,�o with

(D,S,σ ,γ)|=ϕ(�o)

ϕσ ,γ ,�o(x1, . . . , xm).

From the onset, it appears that ϕ′ may be an infinite disjunction, as the size of σ is in principle unbounded and �o is drawn
from the infinite enumerable domain D. Closer inspection of the construction of the formula ϕσ,γ ,�o(x1, . . . , xm) reveals,
however, that there are only finitely many different such formulae (their number being bounded by a function of qS only).
Hence, by ignoring duplicates, we may perceive the disjunction as finite, and q′ as a well-formed SyCALC formula.

We claim that the original counting-only SyCALC query q is equivalent to q′ . To see this, let (D, S, σ ′, γ ′) be a structure
and let o′

1, . . . , o
′
m ∈ D be such that (D, S, σ ′, γ ′) |= ϕ(o′

1, . . . , o
′
m). Hence, ϕσ ′,γ ′,�o′ is a disjunct of ϕ′ , and (D, S, σ ′, γ ′) |=

ϕ′(o′
1, . . . , o

′
m). Conversely, assume that (D, S, σ ′, γ ′) |= ϕ′(o′

1, . . . , o
′
m). Hence, for at least one of the disjuncts ϕσ,γ ,�o of ϕ′ ,

(D, S, σ ′, γ ′) |= ϕσ,γ ,�o(o′
1, . . . , o

′
m). Since ϕσ,γ ,�o is a disjunct of ϕ′ , we also know that (D, S, σ , γ) |= ϕ(o1, . . . , om). We

distinguish two cases:

1. |σ | < 2qS − 1. Then, by construction of ϕσ,γ ,�o and from (D, S, σ ′, γ ′) |= ϕσ,γ ,�o(o′
1, . . . , o

′
m), it follows that the con-

ditions of Lemma 35 are met for the structures (D, S, σ , γ) and (D, S, σ ′, γ ′) and the objects o1, . . . , om,o′
1, . . . , o

′
m .

Since q is counting-only, (D, S, σ , γ) |= ϕ(o1, . . . , om) implies (D, S, σ ′, γ ′) |= ϕ(o′
1, . . . , o

′
m).

24 Notice that inc(o, γ ′
1) = qS and coinc(o, γ ′

1) = qS .

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.26 (1-33)

26 M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
2. |σ | ≥ 2qS − 1. We reason precisely as in the previous case, except that we use Lemma 36 instead of Lemma 35. Hence,
also in this case, we may conclude that (D, S, σ ′, γ ′) |= ϕ(o′

1, . . . , o
′
m).

It now suffices to observe that all the disjuncts of ϕ′(x1, . . . , xm) are of the form described in the statement of this Theo-
rem. �
Remark 37. Superficially, the proof of Theorem 30 seems non-constructive, because of the argument involving the infinite
disjunction. A closer look to the construction of the subformulae ϕσ,γ ,�o(x1, . . . , xm) of that disjunction reveals that it is
possible to consider all different such formulae by only considering structures (D, S, σ , γ) with at most 2qS − 1 set names
in σ and at most 2qS − 1 objects in the active domain (to ensure that, for all N ⊆ {1, . . . , |σ |}, one can construct γ in such
a way that {inc(o, γ) | ∃S ∈ σ 〈o, S〉 ∈ γ } = N). Notice that, upon isomorphism, these structures (D, S, σ , γ) and objects
o1, . . . , om can be finitely enumerated. It can also be verified in each instance whether (D, S, σ , γ) |= ϕ(o1, . . . , om), and
hence whether ϕσ,γ ,�o(x1, . . . , xm) is part of the disjunction.

Example 38. As shown in Example 29, the SyCALC queries in Example 18 expressing Queries 3–5 are counting-only.
The SyCALC query expressing Query 3 can be rewritten as {〈〉 | ¬∃x gteq(x, 2)}; the SyCALC query expressing Query 4

can be rewritten as {x | eq(x, 1) ∧ ∃y gteq(y, 3)}; and, finally, the SyCALC query expressing Query 5 can be rewritten as
{〈〉 | ¬∃x (gteq(x, 1) ∧ cogteq(x, 1))}.

The rewritten queries conform to Theorem 30, after applying some straightforward simplifications. In particular, we did
not have to distinguish between different sizes of σ . This is not always the case, however, as was already illustrated in
Example 17 for QuineCALC queries (which are special cases of counting-only SyCALC queries).

The formulae Eq(n) or Gteq(2qS − 1) in the statement of Theorem 30 are of course not QuineCALC formulae (if only
because they do not have a free lowercase variable). However, they can easily be grouped with one of the formulae with
which they are conjoined, so that we can derive the following corollary to Theorem 30.

Corollary 39. Let q := {〈x1, . . . , xm〉 | ϕ(x1, . . . , xm)} be a SyCALC query. Then q is counting-only if and only if ϕ is equivalent to a
quantified Boolean combination of QuineCALC query formulae.

In other words, the query language that includes QuineCALC and that is closed under quantification and Boolean opera-
tors is equivalent to the language of the counting-only SyCALC queries.

Theorem 30 and Corollary 39 also provide a positive answer to Research Question 7.

6. Decidability

Here, we consider the decision problems stated in Research Question 8 and 9. We first show that it is decidable if a
counting-only SyCALC query is a QuineCALC query (Section 6.1), but that it is undecidable if a SyCALC query is counting-
only (Section 6.2). We then show that satisfiability, validity, emptiness, containment, and equivalence are decidable for
counting-only SyCALC queries, but undecidable for general SyCALC queries (Section 6.3).

6.1. Is a counting-only SyCALC query a QuineCALC query?

All QuineCALC queries are unary counting-only SyCALC queries, but, as already established in Example 29, not all unary
counting-only SyCALC queries are equivalent to a QuineCALC query. Comparing the normal forms exhibited for QuineCALC
queries in Corollary 16, respectively for general counting-only SyCALC queries in Theorem 30, we also see why.

Let q := {x | ϕ(x)} be a unary query, let (D, S, σ , γ) be a structure, and let o ∈ D. The normal form for QuineCALC
queries in Corollary 16 reveals that, for a fixed size of σ , the truth of (D, S, σ , γ) |= ϕ(o) in that case only depends on
the incidence of o in the structure. For general counting-only SyCALC queries, on the other hand, the normal form in
Theorem 30 reveals that the incidence of other objects in the structure may also play a role.

It turns out that the difference between QuineCALC queries and general counting-only SyCALC queries exhibited above
actually characterizes the distinction between both. Moreover, this difference, appropriately formalized, may actually be used
to decide whether a unary counting-only SyCALC query is equivalent to a QuineCALC query, as is shown next.

Theorem 40. It is decidable whether a counting-only SyCALC query is equivalent to a QuineCALC query.

Proof. By definition, non-unary queries cannot be equivalent to QuineCALC queries. Thus, consider a unary counting-only
SyCALC query q := {x | ϕ′(x)} with quantifier depth qS in the uppercase variables. Let S1, . . . , S2qS−1 ∈ S be pairwise
different set names, and let o0, o1, . . . , o2qS−1 ∈ D be pairwise different objects. Now, consider n, 1 ≤ n ≤ 2qS − 1 and
N ⊆ {0, . . . , n}. Let (D, S, σn, γN) be the structure where σn = {S1, . . . , Sn} and

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.27 (1-33)

M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 27
γN =
⋃
i∈N

{(oi, S1), . . . , (oi, Si)}.

(Hence, even if 0 ∈ N , o0 never occurs in γN .) Define Kn,N = {k ∈ N | (D, S, σn, γN) |= ϕ(ok)}. We claim that q is equivalent
to a QuineCALC query if and only if, for all n = 1, . . . , 2qS − 1, and for all N1, N2 ⊆ {0, . . . , n}, Kn,N1 ∩ N2 = Kn,N2 ∩ N1.25

We now prove this claim.

• We start with the “only if”. Thus suppose q is equivalent to a QuineCALC query of the form shown in Corollary 16. We
use ψ(x) and ψn(x) as defined in Corollary 16. Observe that the quantifier depth q occurring in the expression for ϕ′
need not be equal to qS ! By symmetry, it suffices to prove that, for all n = 1, . . . , 2qS −1, and for all N1, N2 ⊆ {0, . . . , n},
Kn,N1 ∩ N2 ⊆ Kn,N2 ∩ N1. So, assume that for some n, N1, and N2, k ∈ Kn,N1 ∩ N2. In particular, k ∈ N1, from which we
derive that inc(ok, γN1) = k, and (D, S, σn, γN1) |= ϕ′(ok). We again distinguish two cases:
1. n ≤ 2q − 2. Since (D, S, σn, γN1) |= ϕ′(ok), we have (D, S, σn, γN1) |= ψn(ok). This is only possible if ψn(x) contains

the disjunct eq(x, k). Since k ∈ N2, we have inc(ok, γN2) = k, and hence (D, S, σn, γN2) |= ψn(ok), (D, S, σn, γN2) |=
ϕ′(ok), and (D, S, σn, γN2) |= ϕ(ok). Hence, k ∈ Kn,N2 .

2. n ≥ 2q − 1. Since (D, S, σn, γN1) |= ϕ′(ok), we have (D, S, σn, γN1) |= ψ(ok). We now distinguish three subcases:
(a) k < q. Then (D, S, σn, γN1) |= ψ(ok) can only hold if ψ(x) contains the disjunct eq(x, k).
(b) q ≤ k ≤ n − q. Then (D, S, σn, γN1) |= ψ(ok) can only hold if ψ(x) contains the disjunct gteq(x, q) ∧ cogteq(x, q).
(c) k > n − q. Then (D, S, σn, γN1) |= ψ(ok) can only hold if ψ(x) contains the disjunct coeq(x, n − k).
The remainder of the reasoning in all three subcases is now completely analogous to Case 1.

• We now turn to the “if”. Since q is counting-only, we may assume it is equivalent to a query of the form shown in
Theorem 30 with m = 1. We use ψ(x) and ψn(x) as defined in Theorem 30. We show now that the condition that, for
all n = 1, . . . , 2qS − 1, and for all N1, N2 ⊆ {0, . . . , n}, Kn,N1 ∩ N2 = Kn,N2 ∩ N1 implies that subformula with existentially
quantified domain (lowercase) variables can be eliminated from ϕ′ , and hence that q is equivalent to a QuineCALC
query.
1. We first consider the subformula ψn(x1), 1 ≤ n ≤ 2qS − 2.26 Let ϑ11 ∧ . . . ∧ ϑ1n ∧ α1(x1) be one of the disjuncts of

ψn , with α1(x1) := eq(x1, k), 0 ≤ k ≤ n. We distinguish two subcases:
(a) k = 0. Let N1 = {0} ∪ {i | 1 ≤ i ≤ n & ϑ1i ≡ ∃x eq(x, i)}. Clearly, (D, S, σn, γN1) |= ϕ′(o0), and, hence, 0 ∈ Kn,N1 .

Now, let N2 be any subset of {0, 1, . . . , n} containing 0. Since 0 ∈ Kn,N1 ∩ N2 = Kn,N2 ∩ N1, it follows that
(D, S, σn, γN2) |= ϕ′(o0). This is only possible, however, if ψn contains a disjunct ϑ21 ∧ . . . ∧ ϑ2n ∧ α1(x1), where,
for i = 1, . . . , n, ϑ2i is ∃x eq(x, i) if i ∈ N2 and ¬∃x eq(x, i) otherwise. Hence, all disjuncts of ψn(x1) containing
α1(x1) together are logically equivalent to α1(x1).

(b) 1 ≤ k ≤ n. Without loss of generality, we may assume that ϑk is ∃x eq(x, k), otherwise the disjunct is unsatisfiable
and can be omitted. Let N1 = {i | 1 ≤ i ≤ n & ϑ1i ≡ ∃x eq(x, i)}. Clearly, (D, S, σn, γN1) |= ϕ′(ok), and, hence,
k ∈ Kn,N1 . Now, let N2 be any subset of {0, 1, . . . , n} containing k. Since k ∈ Kn,N1 ∩ N2 = Kn,N2 ∩ N1, it follows
that (D, S, σn, γN2) |= ϕ′(ok). This is only possible, however, if ψn contains a disjunct ϑ21 ∧ . . . ∧ ϑ2n ∧ α1(x1),
where, for i = 1, . . . , n, ϑ2i is ∃x eq(x, i) if i ∈ N2 and ¬∃x eq(x, i) otherwise. Hence, all satisfiable disjuncts of
ψn(x1) containing α1(x1) together are logically equivalent to (∃x eq(x, k)) ∧ α1(x1), which in turn is logically
equivalent to α1(x1).

2. We next consider the subformula ψ(x1). Let

ϑ1 ∧ . . . ∧ ϑqS−1 ∧ ϑ ∧ ϑqS−1 ∧ . . . ϑ0 ∧ α1(x1)

be a subformula of ψ(x). We distinguish three subcases:
(a) α1(x) is eq(x, k), with 0 ≤ k < qS . Then, choose n = 2qS − 1 and proceed as in Case 1 for ψn(x1) with 1 ≤ n ≤

2qS − 2.
(b) α1(x) is gteq(x, qS) ∧cogteq(x, qS). Then, choose n = 2qS −1 and k = qS , and proceed as in Subcase 1b of Case 1

for ψn(x1) with 1 ≤ n ≤ 2qS − 2.
(c) α1(x) is coeq(x, k′), with 0 ≤ k′ < qS . Then, choose n = 2qS − 1 and k = n − k′ , and proceed as in Subcase 1b of

Case 1 for ψn(x1) with 1 ≤ n ≤ 2qS − 2.

It now suffices to observe that there are only a finite number of sets Kn,N , 1 ≤ n ≤ 2qS − 1 and N ⊆ {0, . . . , n}, that can
all be computed. Hence, the condition shown above to be equivalent with “q being equivalent to a QuineCALC query” can
effectively be evaluated. �

Hence, Research Question 8 has a positive answer for QuineCALC queries.

25 Intuitively, this condition expresses that the truth of (D, S, σn, γN) |= ϕ(ok) only depends on the incidence of ok in this structure and not on the
incidence of other objects.
26 We need not consider n = 0, since, by construction, ψ0 is free of quantification over domain variables.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.28 (1-33)

28 M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
〈A1, B1, C1〉 〈A2, B2, C2〉
〈�0,$1〉 〈�0,$11〉 〈�0,$21〉
〈�0,$2〉 〈�0,$12〉 〈�0,$22〉
〈�0,$3〉 〈�0,$13〉 〈�0,$13〉
〈�0,$4〉 〈1̂, A1〉 〈2̂, A2〉

〈1̂,$11〉 〈2̂,$21〉
〈�11,$11〉 〈�21,$21〉
〈�11, B1〉 〈�21, B2〉
〈1̂,$12〉 〈2̂,$22〉
〈�12,$12〉 〈�22,$22〉
〈�12,$13〉 〈�22,$23〉
〈�13,$13〉 〈�23,$23〉
〈�13, C1〉 〈�23, C2〉

1̂

A1

$11 �11 B1

$12 �12 $13 �13 C1

2̂

A2

$21 �21 B2

$22 �22 $23 �23 C2

Fig. 4. The ternary relation I = {〈A1, B1, C1〉, 〈A2, B2, C2〉} translated to a binary relation.

6.2. Is a SyCALC query counting-only?

We show that this problem is undecidable by a reduction of satisfiability of a domain-independent Boolean relational
calculus query which uses only one, ternary, relation symbol and no constants, which is undecidable [24, Theorem 6.3.1 and
Exercise 6.19], to deciding whether a SyCALC query is counting-only.

The reduction consists of two steps. First, in Section 6.2.1, we show how to encode arbitrary ternary relations by binary
relations which can be represented by the structures considered in this paper. Then, in Section 6.2.2, we provide the actual
reduction.

6.2.1. Encoding ternary relations in binary relations
Let I = {t1, . . . , tn} be a set of triples that do not use the pairwise different constants �0, $1, $2, $3, $4, and, for 1 ≤ i ≤ n,

the constants ı̂ , �i1, �i2, �i3, $i1, $i2, and $i3. We shall refer to these constants as encoding constants. We now construct the
binary relation containing the pairs 〈�0,$1〉, 〈�0,$2〉, 〈�0,$3〉, 〈�0,$4〉, and, for every triple ti = 〈Ai, Bi, Ci〉, 1 ≤ i ≤ n, the
tuples:

• 〈�0,$i1〉, 〈�0,$i2〉, and 〈�0,$i3〉;
• 〈ı̂, Ai〉;
• 〈ı̂,$i1〉, 〈�i1,$i1〉, and 〈�i1, Bi〉; and
• 〈ı̂,$i2〉, 〈�i2,$i2〉, 〈�i2,$i3〉, 〈�i3,$i3〉, and 〈�i3, Ci〉.

Example 41. Let I = {〈A1, B1, C1〉, 〈A2, B2, C2〉} be a ternary relation with two triples. If we apply the above construction
to I , we obtain the binary relation in Fig. 4, left. In Fig. 4, right, we have visualized this relation (except for the parts
involving �0).

Let � = {�0} ∪ (⋃
1≤i≤n {ı̂, �i1, �i2, �i3}

)
and

σ = {$1,$2,$3,$4} ∪ (⋃
1≤i≤n

{Ai, Bi, Ci,$i1,$i2,$i3}
)
.

Observe that � ∩ σ = ∅ and that the constructed binary relation is a subset of � × σ . Therefore, we can easily store the
binary relation as a structure (D, S, σ , γ) with � ⊆ D, σ ⊆ S , and γ the constructed binary relation. We write TerToBi(I)
to denote this structure (or any isomorphic structure obtained by renaming the encoding constants).27

We now exhibit a SyCALC formula Triple(X, Y , Z) such that TerToBi(I) |= Triple(A, B, C) if and only if 〈A, B, C〉 ∈ I . In
order to do so, we first observe that it is not necessary to know which object and set names represent which type of
encoding constant, or which set names represent entries of the ternary relation I . It turns out that we can derive this
information from the encoding, as follows.

1. The zero constant �0 can be distinguished as the only object in the encoding associated to at least four set names. We
express this by Zero(x) := gteq(x, 4).

2. The identifier constants ı̂ , 1 ≤ i ≤ n, can be distinguished as precisely those objects in the encoding associated to exactly
three set names. We express this by Id(x) := eq(x, 3).

3. The sharp constants �i1, �i2, and �i3, 1 ≤ i ≤ n, can be distinguished as precisely those objects in the encoding associated
to exactly two set names. We express this by Sharp(x) := eq(x, 2).

27 Genericity considerations [23] allow us to ignore this minor ambiguity.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.29 (1-33)

M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 29
1̂

A

$11 �11 D

$12 �12

Fig. 5. For any structure (D,S, σ ,γ) whose membership relation contains the pairs visualized above, BiToTer(D,S, σ ,γ) contains 〈A, D, D〉.

4. The dollar constants $i1, $i2, and $i3, 1 ≤ i ≤ n, can be distinguished as precisely those set names in the encoding to
which the zero constant has been associated. We express this by DollarSet(X) := ∃z (Zero(z) ∧ �(z, X)).

5. All other set names in the encoding are referred to as pure constants, and these are precisely the entries Ai , Bi , and Ci ,
1 ≤ i ≤ n, of the triples of the original ternary relation I . We express this by PureSet(X) := ¬DollarSet(X) ∧ ∃z �(z, X).

Looking at the encoding of the triple ti = 〈Ai, Bi, Ci〉, 1 ≤ i ≤ n, we additionally observe the following:

6. The first entry of triple ti , Ai , is represented by in the binary membership relation of the encoding the single pair
〈ı̂, Ai〉. We express this by First(x, X) := Id(x) ∧ PureSet(X) ∧ �(x, X).

7. The second entry of triple ti , Bi , is represented in the binary membership relation of the encoding by a so-called short
path consisting of the three pairs 〈ı̂,$i1〉, 〈�i1,$i1〉, 〈�i1, Bi〉. We express this by

ShortPath(x, Y1, z1, Y) := Id(x)∧DollarSet(Y1)∧Sharp(z1)∧PureSet(Y)∧�(x, Y1)∧�(z1, Y1)∧�(z1, Y).

8. The third entry of triple ti , Ci , is represented in the binary membership relation of the encoding by a so-called long
path consisting of the five pairs 〈ı̂,$i2〉, 〈�i2,$i2〉, 〈�i2,$i3〉, 〈�i3,$i3〉, 〈�i3, Ci〉. We express this by

LongPath(x, Y2, z2, Y3, z3, Z) := Id(x) ∧ DollarSet(Y2) ∧ Sharp(z2) ∧
DollarSet(Y3) ∧ Sharp(z3) ∧ PureSet(Z) ∧ Y2 �= Y3 ∧

�(x, Y2) ∧ �(z2, Y2) ∧ �(z2, Y3) ∧ �(z3, Y3) ∧ �(z3, Z).

This encoding using short and long paths is graphically visualized in Fig. 4, right, for the ternary instance considered in
Example 41. We now define the following abbreviation:

Triple(X, Y , Z) := ∃x∃Y1∃Y2∃Y3∃z1∃z2∃z3

(First(x, X) ∧ ShortPath(x, Y1, z1, X) ∧ LongPath(x, Y2, z2, Y3, z3, Z)).

Clearly, 〈A, B, C〉 ∈ I if and only if TerToBi(I) |= Triple(A, B, C).
Of course, the SyCALC formula Triple(X, Y , Z) can also be applied to arbitrary structures. Given such a structure

(D, S, σ , γ), we associate to it the ternary relation BiToTer(D,S, σ ,γ) as the set of all triples 〈A, B, C〉 for which
(D, S, σ , γ) |= Triple(A, B, C).

Upon evaluating this formula, the various objects and set names corresponding to encoding constants and pure
constants must of course satisfy the constraints expressed by the subformulae in Items 1–5 above. From these, ad-
ditional constraints can be inferred. To see this, consider a structure (D, S, σ , γ), and assume that (D, S, σ , γ) |=
LongPath(ı̂, $i2, �i2, $i3, �i3, Ci). Taking into account that objects and set names are disjoint, the formulae in Items 1–5 distin-
guish pure constants from encoding constants, as well as all the various types of encoding constants we considered. In par-
ticular, $i3 �= Ci . By definition of long path, we also have $i2 �= $i3 (Item 5). Since each sharp constant is associated with pre-
cisely two set names (Item 3), it follows that �i2 �= �i3. For the same reason, (D, S, σ , γ) �|= LongPath(ĵ , $ j2, �i3, $ j3, �i2, C j),
irrespective of ĵ , $ j2, $ j3, and C j .

If both (D, S, σ , γ) |= LongPath(ı̂, $i2, �i2, $i3, �i3, Ci) and (D, S, σ , γ) |= ShortPath(ı̂, $i1, �i1, Bi), we can use an analo-
gous argument to conclude that �i1 �= �i2. However, it is possible that �i1 = �i3, provided also $i1 = $i3 and Bi = Ci .

Example 42. Consider a structure (D, S, σ , γ) of which the membership relation contains the pairs shown graphically in
Fig. 5. Then, 〈A, D, D〉 ∈ BiToTer(D,S, σ ,γ).

Clearly, for a ternary relation I , we have BiToTer(TerToBi(I)) = I .

6.2.2. Reduction
Let ϕ be a domain-independent relational calculus query over a single ternary relation named R and that does not

use constants. For convenience, we use uppercase variables for the variables in ϕ . We recursively translate ϕ to a SyCALC
formula �ϕ�, with the same free variables, as follows:

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.30 (1-33)

30 M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
[[R(A, B, C)]] := Triple(A, B, C);
[[X = Y]] := X = Y ;

[[¬ϕ]] := ¬[[ϕ]];
[[∃X ϕ]] := ∃X [[ϕ]];

[[ϕ1 ∧ ϕ2]] := [[ϕ1]] ∧ [[ϕ2]].
We relate this translation to the encoding of ternary relations by structures in Section 6.2.1, as follows:

Lemma 43. Let ϕ(X1, . . . , Xk) be a domain-independent relational calculus query that uses no constants and only one ternary relation
name R. Let (D, S, σ , γ) be a structure and let I be a finite ternary relation over the relation scheme R. We have the following:

1. for all pure constants D1, . . . , Dn in σ , (D, S, σ , γ) |= �ϕ�(D1, . . . , Dk) if and only if BiToTer(D,S, σ ,γ) |= ϕ(D1, . . . , Dk),
where R is considered to be the scheme of this ternary relation;

2. for all entries D1, . . . , Dn in the active domain of I , I |= ϕ(D1, . . . , Dk) if and only if TerToBi(I) |= �ϕ�(D1, . . . , Dk).

Proof. 1. For relation atoms, the first statement follows from the definition of BiToTer(D,S, σ ,γ). For equalities, the first
statement follows trivially, because (X = Y)(D1, D2) holds if and only if D1 = D2 independent of the context in which
it is evaluated. The remainder of the proof of this statement goes by a straightforward structural induction.

2. The second statement follows from the first by putting (D, S, σ , γ) = TerToBi(I) and using that BiToTer(TerToBi(I)) =
I . �

We are actually only interested in the Boolean case, which we obtain by putting k = 0 in Lemma 43, but we also had to
include the case k > 0 in order to be able to use structural induction.

We are now able to prove the following:

Theorem 44. It is undecidable whether a SyCALC query is counting-only.

Proof. Let ψ be a domain-independent Boolean relational calculus query that uses no constants and only one ternary
relation name R . Consider the SyCALC query {〈z2, z3〉 | ϕ(z2, z3)} with

ϕ(z2, z3) := [[ψ]] ∧ ∃x∃Y1∃Y2∃Y3∃z1∃X∃Y ∃Z

(First(x, X) ∧ ShortPath(x, Y1, z1, X) ∧ LongPath(x, Y2, z2, Y3, z3, Z)).

We now show that ψ has a nonempty model if and only if {〈z2, z3〉 | ϕ(z2, z3)} is not counting-only. The desired result then
follows, because the following problem is undecidable: given a domain-independent Boolean relational calculus query that
uses no constants and only one ternary relation name, decide whether this has a nonempty model (since the unsatisfiability
of such queries [24, Theorem 6.3.1 and Exercise 6.19] can be reduced straightforwardly to that problem).

To see this, first assume that ψ has a nonempty model. Hence, there exists a nonempty ternary relation I such that
I |= ψ . By Lemma 43, TerToBi(I) |= �ψ �. Let 〈Ai, Bi, Ci〉 be any triple of I . By construction, there exist constants ı , $i1, $i2,
$i3, �i1, �i2, and �i3 such that

{〈ı̂, A〉} ⊆ TerToBi(I);
{〈ı̂,$i1〉, 〈�i1,$i1〉, 〈�i1, B〉} ⊆ TerToBi(I);

{〈ı̂,$i2〉, 〈�i2,$i2〉, 〈�i2,$i3〉, 〈�i3,$i3〉, 〈�i3, C〉} ⊆ TerToBi(I).

Hence, TerToBi(I) |= ϕ(�i2, �i3). The last inclusion above expresses that, in particular, TerToBi(I) |= LongPath(ı̂, $i2, �i2,

$i3, �i3, Ci). From our analysis in Section 6.2.1, we may deduce that �i2 �= �i3, and that, as a consequence, TerToBi(I) �|=
LongPath(ĵ , $ j2, �i3, $ j3, �i2, C j), irrespective of ĵ , $ j2, $ j3, and C j . Hence, TerToBi(I) �|= ϕ(�i3, �i2). Now, if γ is the member-
ship relation of TerToBi(I), then inc(�i2, γ) = inc(�i3, γ) = 2. If {〈z2, z3〉 | ϕ(z2, z3)} were counting-only, then, by Lemma 35,
TerToBi(I) |= ϕ(�i2, �i3) if and only if TerToBi(I) |= ϕ(�i3, �i2). Hence, we must conclude that {〈z2, z3〉 | ϕ(z2, z3)} is not
counting-only.

Conversely, assume that ψ has no nonempty model. We show that {〈z2, z3〉 | ϕ(z2, z3)} is unsatisfiable. Assume to the
contrary that there exists a structure (D, S, σ , γ) and objects o1, o2 ∈ D such that (D, S, σ , γ) |= ϕ(o1, o2). In particu-
lar, (D, S, σ , γ) |= �ψ �. By Lemma 43, BiToTer(D,S, σ ,γ) |= ψ , if we assume that the scheme of this ternary relation
is R . By construction, (D, S, σ , γ) |= ϕ(o1, o2) implies that BiToTer(D,S, σ ,γ) contains at least one tuple, implying that
BiToTer(D,S, σ ,γ) is a nonempty model of ψ , a contradiction. Hence, ϕ is unsatisfiable, from which it voidly follows that
{〈y, z〉 | ϕ(y, z)} is counting-only. �

Hence, Research Question 8 has a negative answer for SyCALC queries.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.31 (1-33)

M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 31
6.3. Deciding properties of symmetric queries

We first look at the decidability of the following decision properties for counting-only SyCALC queries.

Definition 45. A Boolean SyCALC query ϕ is satisfiable if it is satisfied by some structure and is valid if it is satisfied by
all structures. A SyCALC query ϕ is empty if, for every structure (D, S, σ , γ), ϕ(D, S, σ , γ) = ∅. A SyCALC query ϕ is
contained in a SyCALC query ψ if, for every structure (D, S, σ , γ), ϕ(D, S, σ , γ) ⊆ ψ(D, S, σ , γ). SyCALC queries ϕ and
ψ are equivalent if, for every structure (D, S, σ , γ), ϕ(D, S, σ , γ) = ψ(D, S, σ , γ).

In turns out that all these properties are decidable for counting-only SyCALC queries:

Theorem 46.

1. Satisfiability is decidable for Boolean counting-only SyCALC queries;
2. Validity is decidable for Boolean counting-only SyCALC queries;
3. Emptiness is decidable for counting-only SyCALC queries;
4. Containment is decidable for counting-only SyCALC queries; and
5. Equivalence is decidable for counting-only SyCALC queries.

Proof. If the quantifier depth of the counting-only SyCALC query (queries) involved in checking one of the above properties
is at most qS ≥ 0, then, by Remark 37 on the constructive nature of the proof of Theorem 30, it suffices to check the
property on (upon isomorphism) all structures with up to 2qS − 1 set names and up to 2qS − 1 active domain objects. �

Since QuineCALC queries are unary counting-only SyCALC queries, query containment and query equivalence is also
decidable for them. Because of their unary nature, the definitions of satisfiability and validity in Definition 45 do not
literally apply to them, but we can ask a very related question, which we can also answer in the positive:

Corollary 47. Given a QuineCALC query ϕ(x), it is decidable whether ∃x ϕ(x) is satisfiable, respectively valid.

Proof. If ϕ(x) is a QuineCALC query, then, by Corollary 39, ∃x ϕ(x) is a Boolean counting-only SyCALC query. �
So, it is fair to say that we have answered Research Question 9 in the positive for both counting-only SyCALC queries

and QuineCALC queries.
Unfortunately, Research Question 9 has a negative answer for general SyCALC queries:

Theorem 48. Satisfiability, emptiness, validity, containment, and equivalence are undecidable for Boolean SyCALC queries.28

Proof. Using Lemma 43, it is straightforward to reduce satisfiability of a domain-independent Boolean relational calculus
query over a single ternary relation and that does not use constants, which is undecidable [24, Theorem 6.3.1 and Exer-
cise 6.19], to satisfiability of a Boolean SyCALC query. This problem can then be reduced straightforwardly to any of the
other problems under consideration. �
7. Conclusions and future work

In this paper, we have introduced two query languages, QuineCALC and SyCALC, with the purpose of capturing sym-
metric queries over sequences of sets of objects. We have defined these languages in such a way that QuineCALC is a
syntactic fragment of SyCALC. We have shown that QuineCALC queries correspond to symmetric functions specifiable by
means of union, intersection, and complement, i.e., the symmetric Boolean functions of Quine [16], while SyCALC queries
also capture projection and Cartesian product.

We have characterized QuineCALC queries in terms of incidence information of the objects involved, which is an impor-
tant simplification in order to answer these queries. In general, this simplification is no longer possible for SyCALC queries.
However, we have been able to characterize the class of SyCALC queries that can be answered using only incidence infor-
mation as quantified Boolean combinations of QuineCALC queries. Unfortunately, it is undecidable whether a SyCALC query
is such a counting-only query, but it is decidable whether a counting-only SyCALC query is equivalent to a QuineCALC
query.

Reviewing both our original motivation to study symmetric queries and the theoretical results reported upon in this
paper, we may thus conclude that, on the one hand, the class of symmetric queries is interesting to study from a practical,

28 Notice that emptiness coincides with satisfiability for Boolean queries.

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.32 (1-33)

32 M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
application-oriented, point of view and, on the other hand, that non-trivial foundational questions can be answered about
this class. At the same time, however, we realize that our paper is just a first step in the study of symmetric queries, and
leaves many problems unaddressed. Below, we list some of these.

1. Extensions and restrictions. Several extensions or restrictions of SyCALC are worthwhile to study:
(a) Observe that in SyCALC we excluded the binary predicate “x = y” on domain variables. On the one hand, several

results in this paper depend on that (in particular, Theorem 30 and Corollary 39 on counting-only SyCALC queries),
but, on the other hand, adding this predicate would permit us to study symmetric queries that can be expressed in
terms of the full relational algebra (including equality and inequality selection).

(b) We could study extensions of SyCALC that incorporate aggregate functions. For example, the query “Find all pairs
of students taking the same number of courses” is not expressible in SyCALC, but is clearly an interesting counting-
only symmetric query.

(c) It would also be interesting to characterize the monotonic (or anti-monotonic) fragments of the languages consid-
ered in this paper.

2. Complexity and optimization problems. In this paper, we did not study the efficiency of evaluating and optimizing sym-
metric queries. For example, we have algorithms to “normalize” QuineCALC (Corollary 16) and counting-only SyCALC
queries (Theorem 30) into queries that only involve incidence predicates. We have not yet analyzed time or space
complexity of these algorithms, however. In any case, these normal form algorithms are not effective translations of
QuineCALC or SyCALC queries to queries in terms of incidence information, as they can cause a huge blow-up in the
size of the query. So, one may ask if there is an effective translation of a SyCALC query to a query in terms of incidence
information. What is the worst-case blow-up in the query size of such a translation?
Another topic for further study is query optimization. For example, the counting-only SyCALC query {x | gteq(x, 3) ∧
¬∃y gteq(y, 3)} can be optimized to {x | false}.

3. Extensions of the concept “counting-only”. If we consider the query “Retrieve the pairs of words that occur together in at
least three documents,” we cannot help but feel that it has the flavor of a counting-only SyCALC query, yet we can
prove it is not. A strategy to study this query is to extend our notion of incidence information to pairs of objects. For a
structure (D, S, σ , γ), and o1, o2 ∈D, we can define

inc2(o1,o2, γ) = |{S | 〈o1, S〉 ∈ γ ∧ 〈o2, S〉 ∈ γ }|.
The above query actually searches for all pairs of objects (o1, o2) for which inc2(o1,o2, γ) ≥ 3. Of course, this notion of
2-incidence can be generalized to k-incidence for any k ≥ 1. We plan to investigate whether our current results about
counting-only SyCALC queries can be extended for a broader notion of “counting-only” based on these more general
notions of incidence information.

4. Precomputation and indexes. To evaluate efficiently QuineCALC and, more generally, counting-only SyCALC queries, we
could precompute the incidence relation and maintain an index on it. For example, we could store and maintain an
index that keeps pairs of the form (i, {o1, . . . , on}) where {o1, . . . , on} is the set of all objects that occur in at least i
sets. This could speed up evaluating symmetric queries that involve incidence predicates.

5. Simulation. Since SyCALC queries are first-order, it makes sense to ask how these queries may be simulated in SQL and
MapReduce in a “smart” manner. This could well be very challenging, since (1) many interesting symmetric queries are
non-monotonic and (2) the data sets involved can be very large.

References

[1] C. Gutierrez, C.A. Hurtado, A.O. Mendelzon, J. Pérez, Foundations of semantic web databases, J. Comput. Syst. Sci. 77 (3) (2011) 520–541.
[2] J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity of SPARQL, ACM Trans. Database Syst. 34 (3) (2009) 16.
[3] World Wide Web Consortium (W3C), RDF current status, http://www.w3 .org /standards /techs /rdf #w3c _all.
[4] R. Agrawal, T. Imielinski, A.N. Swami, Mining association rules between sets of items in large databases, in: P. Buneman, S. Jajodia (Eds.), Proceedings

of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, USA, May 25–28, 1993, pp. 207–216.
[5] H.-C. Yang, A. Dasdan, R.-L. Hsiao, D. Stott Parker Jr., Map-reduce-merge: simplified relational data processing on large clusters, in: C.Y. Chan, B.C. Ooi, A.

Zhou (Eds.), Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, Beijing, China, June 12–14, 2007, pp. 1029–1040.
[6] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, Commun. ACM 51 (1) (2008) 107–113.
[7] M.T. Goodrich, N. Sitchinava, Q. Zhang, Sorting, searching, and simulation in the MapReduce framework, in: T. Asano, S.-I. Nakano, Y. Okamoto, O.

Watanabe (Eds.), Proceedings 22nd International Symposium on Algorithms and Computation, ISAAC 2011, Yokohama, Japan, December 5–8, 2011, in:
Lecture Notes in Computer Science, vol. 7074, Springer, 2011, pp. 374–383.

[8] R. Lämmel, Google’s MapReduce programming model—revisited, Sci. Comput. Program. 70 (1) (2008) 1–30.
[9] B. Goethals, Survey on Frequent Pattern Mining, Tech. Rep., University of Helsinki, 2003.

[10] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edition, Pearson, 2010.
[11] B.L. van der Waerden, Algebra: Volume I, Frederick Ungar Publishing Co., 1970.
[12] D. Mead, Newton’s identities, Am. Math. Mon. 99 (8) (1992) 749–751.
[13] S. Lang, Linear Algebra, 3rd edition, Springer, 1987.
[14] G. Audemard, B. Mazure, L. Sais, Dealing with symmetries in quantified Boolean formulas, in: 7th International Conference on Theory and Applications

of Satisfiability Testing, SAT 2004, Vancouver, BC, Canada, Online Proceedings, 2004.
[15] A. Canteaut, M. Videau, Symmetric Boolean functions, IEEE Trans. Inf. Theory 51 (8) (2005) 2791–2811.
[16] W.V. Quine, Selected Logic Papers, Harvard University Press, 1995.

http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A6A6F75726E616C732F6A6373732F47757469657272657A484D503131s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A6A6F75726E616C732F746F64732F506572657A41473039s1
http://www.w3.org/standards/techs/rdf#w3c_all
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A636F6E662F7369676D6F642F4167726177616C49533933s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A636F6E662F7369676D6F642F4167726177616C49533933s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A636F6E662F7369676D6F642F59616E674448503037s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A636F6E662F7369676D6F642F59616E674448503037s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A636F6E662F6F7364692F4465616E473034s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A636F6E662F69736161632F476F6F6472696368535A3131s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A636F6E662F69736161632F476F6F6472696368535A3131s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A636F6E662F69736161632F476F6F6472696368535A3131s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A6A6F75726E616C732F7363702F4C616D6D656C3038s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib6974656D736574s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib6169s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib76616E6465725761657264656E3A31393730s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib4D6561643A31393932s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib4C616E673A31393837s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A636F6E662F7361742F417564656D6172644D533034s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A636F6E662F7361742F417564656D6172644D533034s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A6A6F75726E616C732F7469742F43616E7465617574563035s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib5175696E65s1

JID:YJCSS AID:3211 /FLA [m3G; v1.260; Prn:14/05/2019; 11:16] P.33 (1-33)

M. Gyssens et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 33
[17] S.J. Thomas, P.C. Fischer, Nested relational structures, Adv. Comput. Res. 3 (1986) 269–307.
[18] L. Wong, Normal forms and conservative properties for query languages over collection types, in: C. Beeri (Ed.), Proceedings of the 13th ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 1994), Washington, DC, USA, May 25–28, 1993, pp. 26–36.
[19] S. Abiteboul, C. Beeri, The power of languages for the manipulation of complex values, VLDB J. 4 (4) (1995) 727–794.
[20] V. Sarathy, L. Saxton, D. Van Gucht, An Object Based Algebra for Parallel Query Processing and Optimization, Tech. Rep. 368, Indiana University

Computer Science, 1992.
[21] M. Gyssens, J. Paredaens, D. Van Gucht, J. Wijsen, Y. Wu, An approach towards the study of symmetric queries, Proc. VLDB Endow. 7 (1) (2013) 25–36.
[22] J. Hellings, M. Gyssens, D. Van Gucht, Y. Wu, First-order definable counting-only queries, in: F. Ferrarotti, S. Woltran (Eds.), Foundations of Information

and Knowledge Systems–10th International Symposium (FoIKS 2018), Budapest, Hungary, May 14–18, 2018, Proceedings, in: Lecture Notes in Computer
Science, vol. 10833, Springer, 2018, pp. 225–243.

[23] A.K. Chandra, D. Harel, Computable queries for relational data bases, J. Comput. Syst. Sci. 21 (2) (1980) 156–178.
[24] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, 1995.

http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A6A6F75726E616C732F6163722F54686F6D6173463836s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A636F6E662F706F64732F576F6E673933s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A636F6E662F706F64732F576F6E673933s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A6A6F75726E616C732F766C64622F4162697465626F756C423935s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib5353563A31393932s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib5353563A31393932s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib766C646276657273696F6Es1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib666F696B7332303138s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib666F696B7332303138s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib666F696B7332303138s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib43483830s1
http://refhub.elsevier.com/S0022-0000(18)30571-3/bib44424C503A626F6F6B732F61772F4162697465626F756C48563935s1

	Calculi for symmetric queries
	1 Introduction
	2 Related work
	3 Preliminaries
	4 QuineCALC
	4.1 Language deﬁnition
	4.2 QuineCALC and symmetric Boolean functions
	4.3 QuineCALC and counting

	5 SyCALC
	5.1 Language deﬁnition
	5.2 SyCALC and symmetric relational functions
	5.3 SyCALC queries that only count

	6 Decidability
	6.1 Is a counting-only SyCALC query a QuineCALC query?
	6.2 Is a SyCALC query counting-only?
	6.2.1 Encoding ternary relations in binary relations
	6.2.2 Reduction

	6.3 Deciding properties of symmetric queries

	7 Conclusions and future work
	References

