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Abstract. Multi-dimensional mean-payoff and energy games provide the mathematical foundation for the quan-
titative study of reactive systems, and play a central role in the emerging quantitative theory of verification and
synthesis. In this work, we study the strategy synthesis problem for games with such multi-dimensional objectives
along with a parity condition, a canonical way to express ω-regular conditions. While in general, the winning strate-
gies in such games may require infinite memory, for synthesis the most relevant problem is the construction of a
finite-memory winning strategy (if one exists). Our main contributions are as follows. First, we show a tight ex-
ponential bound (matching upper and lower bounds) on the memory required for finite-memory winning strategies
in both multi-dimensional mean-payoff and energy games along with parity objectives. This significantly improves
the triple exponential upper bound for multi energy games (without parity) that could be derived from results in
literature for games on VASS (vector addition systems with states). Second, we present an optimal symbolic and
incremental algorithm to compute a finite-memory winning strategy (if one exists) in such games. Finally, we give
a complete characterization of when finite memory of strategies can be traded off for randomness. In particular, we
show that for one-dimension mean-payoff parity games, randomized memoryless strategies are as powerful as their
pure finite-memory counterparts.

1 Introduction

Two-player games on graphs provide the mathematical foundation to study many important problems in computer
science. Game-theoretic formulations have especially proved useful for synthesis [22,39,37], verification [3], refine-
ment [33], and compatibility checking [23] of reactive systems, as well as in analysis of emptiness of automata [41].

Games played on graphs are repeated games that proceed for an infinite number of rounds. The state space of
the graph is partitioned into player 1 states and player 2 states (player 2 is adversary to player 1). The game starts
at an initial state, and if the current state is a player 1 (resp. player 2) state, then player 1 (resp. player 2) chooses
an outgoing edge. This choice is made according to a strategy of the player: given the sequence of visited states, a
pure (resp. randomized) strategy chooses an outgoing edge (resp. probability distribution over outgoing edges). This
process of choosing edges is repeated forever, and gives rise to an outcome of the game, called a play, that consists of
the infinite sequence of states that are visited. When randomized strategies are used, there is in general not a unique
outcome, but a set of possible outcomes, as the choice of edges is stochastic rather than deterministic.

Traditionally, games on graphs have been studied with Boolean objectives such as reachability, liveness, ω-regular
conditions formalized as the canonical parity objectives, strong fairness objectives, etc [32,28,29,44,41,31]. While
games with quantitative objectives have been studied in the game theory literature [27,45,35], their application in
synthesis and other problems in verification is quite recent. The two classical quantitative objectives that are most
relevant in verification and synthesis are the mean-payoff and energy objectives. In games on graphs with quantitative
objectives, the game graph is equipped with a weight function that assigns integer-valued weights to every edge. For
mean-payoff objectives, the goal of player 1 is to ensure that the long-run average of the weights is above a threshold.
For energy objectives, the goal of player 1 is to ensure that the sum of the weights stays above 0 at all times. In applica-
tions of verification and synthesis, the quantitative objectives that typically arise are (i) multi-dimensional quantitative
objectives (i.e., conjunction of several quantitative objectives), e.g., to express properties like the average response
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time between a grant and a request is below a given threshold ν1, and the average number of unnecessary grants is
below threshold ν2; and (ii) conjunction of quantitative objectives with a Boolean objective, such as a mean-payoff
parity objective that can express properties like the average response time is below a threshold along with satisfying a
liveness property. In summary, the quantitative objectives can express properties related to resource requirements, per-
formance, and robustness; multiple objectives can express the different, potentially dependent or conflicting objectives;
and the Boolean objective specifies functional properties such as liveness or fairness. The game theoretic framework
of multi-dimensional quantitative games and games with conjunction of quantitative and Boolean objectives has re-
cently been shown to have many applications in verification and synthesis, such as synthesizing systems with quality
guarantee [6], synthesizing robust systems [7], performance aware synthesis of concurrent data structure [13], ana-
lyzing permissivity in games and synthesis [11], simulation between quantitative automata [18], generalizing Boolean
simulation to quantitative simulation distance [14], etc. Moreover, multi-dimensional energy games are equivalent to
a decidable class of games on VASS (vector addition systems with states). This model is equivalent to games over
multi-counter systems and Petri nets [12].

In literature, there are many recent works on the theoretical analysis of multi-dimensional quantitative games, such
as, mean-payoff parity games [20,11], energy-parity games [16], multi-dimensional energy games [19], and multi-
dimensional mean-payoff games [19,43]. Most of these works focus on establishing the computational complexity
of the problem of deciding if player 1 has a winning strategy. From the perspective of synthesis and other related
problems in verification, the most important problem is to obtain a witness finite-memory winning strategy (if one
exists). The winning strategy in the game corresponds to the desired controller for (or implementation of) the system
in synthesis, and for implementability a finite-memory strategy is essential. In this work we consider the problem of
finite-memory strategy synthesis in multi-dimensional quantitative games in conjunction with parity objectives, and
the problem of existence of memory-efficient randomized strategies for such games. These are some of the core and
foundational problems in the emerging theory of quantitative verification and synthesis.

Our contributions. In this work, we give an extended presentation of the results of [21], the first study of multi-
dimensional energy and mean-payoff objectives in conjunction with parity objectives. Conjunction of parity objectives
with multi-dimensional quantitative objectives had never been considered before [21]. Since we consider the synthesis
of finite-memory strategies, it follows from the results of [19] that both the problems (multi-dimensional energy with
parity and multi-dimensional mean-payoff with parity) are equivalent. Our main results for finite-memory strategy
synthesis for multi-dimensional energy parity games are as follows. (i) Optimal memory bounds. We first show
that memory of exponential size is sufficient in multi-dimensional energy parity games. Our result is a significant
improvement over the result that can be obtained naively from the results known in literature that yields a triple
exponential bound, even in the case of multi-dimensional energy games without parity. Second, we show a matching
lower bound by presenting a family of game graphs where exponential memory is necessary in multi-dimensional
energy games (without parity), even when all the transition weights belong to {−1,0,+1}. Thus we establish optimal
memory bounds for the finite-memory strategy synthesis problem. (ii) Symbolic and incremental algorithm. We
present a symbolic algorithm (in the sense of [25], i.e., using a compact antichain representation of sets by their
minimal elements) to compute a finite-memory winning strategy, if one exists, for multi-dimensional energy parity
games. Our algorithm is parameterized by the range of energy levels to consider during its execution. So, we can use it
in an incremental approach: first, we search for finite-memory winning strategies with a small range, and increment the
range only when necessary. We also establish a bound on the maximal range to consider which ensures completeness of
the incremental approach. In the worst case the algorithm requires exponential time. Since exponential size memory is
required (and also the decision problem is coNP-complete [19]), the worst case exponential bound can be considered as
optimal. Moreover, as our algorithm is symbolic and incremental, in most relevant problems in practice, it is expected
to be efficient. (iii) Randomized strategies. We also consider when the (pure) finite-memory strategies can be traded
off for conceptually much simpler randomized strategies. We show that for energy objectives randomization is not
helpful (as energy objectives are similar in spirit with safety objectives), even with only one player, neither it is for
two-player multi-dimensional mean-payoff objectives. However, randomized memoryless strategies suffice for one-
player multi-dimensional mean-payoff parity games. For the important special case of mean-payoff parity objectives
(conjunction of a single mean-payoff and parity objectives), we show that in games, finite-memory strategies can be
traded off for randomized memoryless strategies.
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Related works. This paper extends the results presented in its preceding conference version [21] and gives a full
presentation of the technical details. Games with a single mean-payoff objective have been studied in [27,45], and
games with a single energy objective in [15]; their equivalence was established in [10]. One-dimensional mean-payoff
parity games problem has been studied in [20]: an exponential algorithm was given to decide if there exists a win-
ning strategy (which in general was shown to require infinite memory); and an improved algorithm was presented
in [11]. One-dimensional energy parity games problem has been studied in [16]: it was shown that deciding the ex-
istence of a winning strategy is in NP ∩ coNP, and an exponential algorithm was given. It was also shown in [16]
that, for one-dimensional energy parity objectives, finite-memory strategies with exponential memory are sufficient,
and the decision problem for mean-payoff parity objective can be reduced to energy parity objective. Games on VASS
with several different winning objectives have been studied in [12], and from the results of [12] it follows that in
multi-dimensional energy games, winning strategies with finite memory are sufficient (and a triple exponential bound
on memory can be derived from the results). The complexity of multi-dimensional energy and mean-payoff games
was studied in [19,43]. It was shown in [19] that in general, winning strategies in multi-dimensional mean-payoff
games require infinite memory, whereas for multi-dimensional energy games, finite-memory strategies are sufficient.
Moreover, for finite-memory strategies, the multi-dimensional mean-payoff and energy games coincide, and optimal
computational complexity for deciding the existence of a winning strategy was established as coNP-complete [19,43].
Multi-dimensional mean-payoff games with infinite-memory strategies were studied in [43], and optimal computa-
tional complexity results were established. Various decision problems over multi-dimensional energy games were
studied in [30].

2 Preliminaries

We consider two-player game structures and denote the two players by P1 and P2.

Multi-weighted two-player game structures. A multi-weighted two-player game structure is a tuple G =
(S1,S2,sinit ,E,k,w) where (i) S1 and S2 resp. denote the finite sets of states belonging to P1 and P2, with S1∩S2 = /0;
(ii) sinit ∈ S = S1 ∪ S2 is the initial state; (iii) E ⊆ S× S is the set of edges s.t. for all s ∈ S, there exists s′ ∈ S s.t.
(s,s′) ∈ E; (iv) k ∈N is the dimension of the weight vectors; and (v) w : E→ Zk is the multi-weight labeling function.
The game structure G is one-player if S2 = /0. A play in G is an infinite sequence of states π = s0s1s2 . . . s.t. s0 = sinit
and for all i≥ 0, we have (si,si+1) ∈ E. The prefix up to the n-th state of play π = s0s1 . . .sn . . . is the finite sequence
π(n) = s0s1 . . .sn. Let First(π(n)) and Last(π(n)) resp. denote s0 and sn, the first and last states of π(n). A prefix π(n)
belongs to Pi, i ∈ {1,2}, if Last(π(n)) ∈ Si. The set of plays of G is denoted by Plays(G) and the corresponding set of
prefixes is denoted by Prefs(G). The set of prefixes that belong to Pi is denoted by Prefsi(G). The energy level vector
of a sequence of states ρ = s0s1 . . .sn s.t. for all i ≥ 0, we have (si,si+1) ∈ E, is EL(ρ) = ∑

i=n−1
i=0 w(si,si+1) and the

mean-payoff vector of a play π = s0s1 . . . is MP(π) = liminfn→∞
1
n EL(π(n)).

Parity. A game structure G is extended with a priority function p : S→N to the structure Gp = (S1,S2,sinit ,E,k,w, p).
Given a play π = s0s1s2 . . . , we define Inf(π) = {s ∈ S | ∀m≥ 0,∃n > m s.t. sn = s}, the set of states that appear in-
finitely often along π . The parity of a play π is defined as Par(π)=min{p(s) | s ∈ Inf(π)}. In the following definitions,
we denote any game by Gp with no loss of generality.

Strategies. Given a finite set A, a probability distribution on A is a function p : A→ [0,1] s.t. ∑a∈A p(a) = 1. We
denote the set of probability distributions on A by D(A). A pure strategy for Pi, i ∈ {1,2}, in Gp is a function
λi : Prefsi(Gp)→ S s.t. for all ρ ∈ Prefsi(Gp), we have (Last(ρ),λi(ρ)) ∈ E. A (behavioral) randomized strategy
is a function λi : Prefsi(Gp)→D(S) s.t. for all ρ ∈ Prefsi(Gp), we have {(Last(ρ),s) | s ∈ S,λi(ρ)(s)> 0} ⊆ E. A
pure strategy λi for Pi has finite memory if it can be encoded by a deterministic Moore machine (M,m0,αu,αn) where
M is a finite set of states (the memory of the strategy), m0 ∈M is the initial memory state, αu : M×S→M is an update
function, and αn : M× Si → S is the next-action function. If the game is in s ∈ Si and m ∈M is the current memory
value, then the strategy chooses s′ = αn(m,s) as the next state of the game. When the game leaves a state s ∈ S, the
memory is updated to αu(m,s). Formally, 〈M,m0,αu,αn〉 defines the strategy λi s.t. λi(ρ · s) = αn(α̂u(m0,ρ),s) for all
ρ ∈ S∗ and s ∈ Si, where α̂u extends αu to sequences of states as expected. A pure strategy is memoryless if |M|= 1,
i.e., it does not depend on history but only on the current state of the game. Similar definitions hold for finite-memory
randomized strategies, s.t. the next-action function αn is randomized, while the update function αu remains determin-
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istic. We resp. denote by Λi,Λ
PF
i ,Λ PM

i ,Λ RM
i the sets of general (i.e., possibly randomized and infinite-memory), pure

finite-memory, pure memoryless and randomized memoryless strategies for player Pi.
Given a prefix ρ ∈ Prefsi(Gp) belonging to player Pi, and a strategy λi ∈ Λi of this player, we define the support

of the probability distribution defined by λi as Suppλi
(ρ) = {s ∈ S | λi(ρ)(s)> 0}, with λi(ρ)(s) = 1 if λi is pure

and λi(ρ) = s. A play π is said to be consistent with a strategy λi of Pi if for all n ≥ 0 s.t. Last(π(n)) ∈ Si, we
have Last(π(n+1)) ∈ Suppλi

(π(n)). Given two strategies, λ1 for P1 and λ2 for P2, we define OutcomeGp(λ1,λ2) ={
π ∈ Plays(Gp) | π is consistent with λ1 and λ2

}
, the set of possible outcomes of the game. Note that if both strategies

λ1 and λ2 are pure, we obtain a unique play π = s0s1s2 . . . s.t. for all j ≥ 0, i ∈ {1,2}, if s j ∈ Si, then we have
s j+1 = λi(s j).

Given the initial state sinit and strategies for both players λ1 ∈Λ1, λ2 ∈Λ2, we obtain a Markov chain. Thus, every
event A ⊆ Plays(Gp), a measurable set of plays, has a uniquely defined probability [42] (Carathéodory’s extension
theorem induces a unique probability measure on the Borel σ -algebra over Plays(Gp)). We denote by Pλ1,λ2

sinit (A) the
probability that a play belongs to A when the game starts in sinit and is played consistently with λ1 and λ2. Let
f : Plays(Gp)→ R be a measurable function, we denote Eλ1,λ2

sinit ( f ) the expected value of function f over a play when
the game starts in sinit and is played consistently with λ1 and λ2. We use the same notions for prefixes by naturally
extending them to their infinite counterparts.

Objectives. An objective for P1 in Gp is a set of plays φ ⊆ Plays(Gp). We consider several kinds of objectives:

– Multi Energy objectives. Given an initial natural energy vector v0 ∈ Nk, the objective PosEnergyGp(v0) ={
π ∈ Plays(Gp) | ∀n≥ 0 : v0 +EL(π(n)) ∈ Nk

}
requires that the energy level in all dimensions stays positive

at all times.
– Multi Mean-payoff objectives. Given a rational threshold vector v ∈ Qk, the objective MeanPayoffGp(v) ={

π ∈ Plays(Gp) |MP(π)≥ v
}

requires that for all dimension j, the mean-payoff on this dimension is at least
v( j).

– Parity objectives. Objective ParityGp =
{

π ∈ Plays(Gp) | Par(π) mod 2 = 0
}

requires that the minimum priority
visited infinitely often be even. When the set of priorities is restricted to {0,1}, we have a Büchi objective. Note
that every multi-weighted game structure G without parity can trivially be extended to Gp with p : S→{0}.

– Combined objectives. Parity objectives can naturally be combined with multi mean-payoff and multi energy ob-
jectives, resp. yielding MeanPayoffGp(v)∩ParityGp and PosEnergyGp(v0)∩ParityGp .

Sure, satisfaction and expectation semantics. A strategy λ1 for P1 is surely winning for an objective φ in Gp if for all
plays π ∈ Plays(Gp) that are consistent with λ1, we have π ∈ φ . When at least one of the players plays a randomized
strategy, the notion of sure winning in general is too restrictive and inadequate, as the set of consistent plays that do
not belong to φ may have zero probability measure. Therefore, it is useful to use satisfaction or expectation criteria.
Let λ1 ∈Λ1 be the strategy of P1.

– Given a threshold α ∈ [0,1] and a measurable objective φ ⊆ Plays(Gp), α-satisfaction asks that for all λ2 ∈ Λ2,
we have Pλ1,λ2

sinit (φ)≥ α . If λ1 satisfies φ with probability α = 1, we say that λ1 is almost-surely winning for φ in
Gp.

– Given a threshold β ∈ Qk, a function f : Plays(Gp) → Q, β -expectation asks that for all λ2 ∈ Λ2, we have
Eλ1,λ2

sinit ( f )≥ β .

Note that energy objectives are naturally more enclined towards satisfaction semantics, as they model safety properties.

Strategy synthesis problem. For multi energy parity games, the problem is to synthesize a finite initial credit v0 ∈Nk

and a pure finite-memory strategy λ
p f
1 ∈Λ PF

1 that is surely winning for P1 in Gp for the objective PosEnergyGp(v0)∩
ParityGp , if one exists. So, the initial credit is not fixed, but is part of the strategy to synthesize. For multi mean-payoff

games, given a threshold v ∈ Qk, the problem is to synthesize a pure finite-memory strategy λ
p f
1 ∈ Λ PF

1 that is surely
winning for P1 in Gp for the objective MeanPayoffGp(v)∩ParityGp , if one exists. Note that multi energy and multi
mean-payoff games are equivalent for finite-memory strategies, while in general, infinite memory may be necessary
for the latter [19].
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Trading finite memory for randomness. We study when finite memory can be traded for randomization. The question
is: given a strategy λ

p f
1 ∈Λ PF

1 which ensures surely winning of some objective φ , does there exist a strategy λ rm
1 ∈Λ RM

1
which ensures almost-surely winning for the same objective φ? For mean-payoff objectives, one can also ask for a
weaker equivalence, that is: can randomized memoryless strategies achieve the same expectation as pure finite-memory
ones?

3 Optimal memory bounds

In this section, we establish optimal memory bounds for pure finite-memory winning strategies on multi-dimensional
energy parity games (MEPGs). Also, as a corollary, we obtain results for pure finite-memory winning strategies on
multi-dimensional mean-payoff parity games (MMPPGs). We show that single exponential memory is both sufficient
and necessary for winning strategies. Additionally, we show how the parity condition in a MEPG can be removed by
adding additional energy dimensions.

Multi energy parity games. A sample game is depicted on Fig. 1. The key point in the upper bound proof on memory
is to understand that for P1 to win a multi energy parity game, he must be able to force cycles whose energy level is
positive in all dimensions and whose minimal parity is even. As stated in the next lemma, finite-memory strategies are
sufficient for multi energy parity games for both players.

Lemma 1 (Extension of [19, Lemma 2 and 3]). If P1 wins a multi energy parity game, then he has a pure finite-
memory winning strategy. If P2 wins a multi energy parity game, then he has a pure memoryless winning strategy.

Proof. The first part of the result follows using the standard well-quasi ordering argument (straightforward extension
of [19, Lemma 2]). The second part follows by the classical edge induction argument: Lemma 3 of [19] and Lemma
3 of [16] show the result using edge induction for multi energy and energy parity games, respectively. Repeating the
arguments of Lemma 3 of [16], and replacing the part on single energy objectives by the argument of Lemma 3 of [19]
for multi energy objectives, we obtain the desired result. ut

s0
2

s1
3

s2
1

s3
2

s4
3

s5
0

(−1,1) (0,2)

(0,1) (0,0)

(1,−1) (−2,1)

(0,−1)

(2,0)

〈s0,(0,0)〉

〈s1,(−1,1)〉 〈s2,(0,2)〉

〈s3,(−1,2)〉 〈s3,(0,2)〉

〈s4,(0,1)〉 〈s5,(−2,3)〉

〈s0,(0,0)〉 〈s3,(0,3)〉

Fig. 1. Two-dimensional energy parity game and even-parity self-covering tree representing an arbitrary finite-memory winning
strategy. Circle states belong to P1, square states to P2.

By Lemma 1, we know that w.l.o.g. both players can be restricted to play pure finite memory strategies. The
property on the cycles can then be formalized as follows.

Lemma 2. Let Gp = (S1,S2,sinit ,E,k,w, p) be a multi energy parity game. Let λ
p f
1 ∈ Λ PF

1 be a winning strategy
of P1 for initial credit v0 ∈ Nk. Then, for all λ

pm
2 ∈ Λ PM

2 , the outcome is a regular play π = ρ · (η∞)
ω , with ρ ∈

Prefs(G),η∞ ∈ S+, s.t. EL(η∞)≥ 0 and Par(π) = min{p(s) | s ∈ η∞} is even.
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Proof. Recall that both players play with pure finite memory strategies. Therefore, a finite number of decisions are
made and the outcome is a regular play π = ρ · (η∞)

ω . Note that EL(ρ) does not have to be positive, as P1 may have
v0 > EL(ρ). Similarly, priorities of states visited in ρ have no impact on winning as they are only visited a finite
number of times. First, suppose EL(η∞)< 0 on some dimension 1≤ j ≤ k. Then, after m > 0 cycles, for some n > 0,
the energy level will be EL(π(n)) = EL(ρ · (η∞)

m) = EL(ρ)+m ·EL(η∞). Since v0 is finite and m→ ∞, there exist
some m,n > 0, s.t. v0 +EL(π(n)) < 0 on dimension j and λ1 is not winning. Second, suppose min{p(s) | s ∈ η∞} is
odd. Since the set of states visited infinitely often is exactly the set of states in η∞, this implies that Par(π) is odd, and
thus λ1 is not winning. ut

A self-covering path in a game, straightforwardly extending the notion introduced by Rackoff [38] for Vector
Addition Systems (VAS), is a sequence of states s0s1s2 . . .sm s.t. there exist two positions i and j that verify 0≤ i < j≤
m, si = s j and EL(s0 . . .si)≤ EL(s0 . . .si . . .s j). In other words, such a path describes a finite prefix followed by a cycle
which has a non-negative effect on the energy level. Ensuring such cycles is crucial to win the energy objective. With
the notion of regular play of Lemma 2, we generalize the notion of self-covering path to include the parity condition.
We show here that, if such a path exists, then the lengths of its cycle and the prefix needed to reach it can be bounded.
Bounds on the strategy follow. In [38], Rackoff showed how to bound the length of self-covering paths in VAS. This
work was extended to Vector Addition Systems with States (VASS) by Rosier and Yen [40]. Recently, Brázdil et al.
introduced reachability games on VASS and the notion of self-covering trees [12]. Their Zero-safety problem with ω

initial marking is equivalent to multi energy games with weights in {−1,0,1}, and without the parity condition. They
showed that if winning strategies exist for P1, then some of them can be represented as self-covering trees of bounded
depth. Trees have to be considered instead of paths, as in a game setting all the possible choices of the adversary (P2)
must be considered. Here, we extend the notion of self-covering trees to even-parity self-covering trees, in order to
handle parity objectives.

Even-parity self-covering tree. An even-parity self-covering tree (epSCT) for s ∈ S is a finite tree T = (Q,R), where
Q is the set of nodes, Θ : Q 7→ S×Zk is a labeling function and R⊂ Q×Q is the set of edges, s.t.

• The root of T is labeled 〈s,(0, . . . ,0)〉.
• If ς ∈ Q is not a leaf, then let Θ(ς) = 〈t,u〉, t ∈ S, u ∈ Zk, s.t.

- if t ∈ S1, then ς has a unique child ϑ s.t. Θ(ϑ) = 〈t ′,u′〉, (t, t ′) ∈ E and u′ = u+w(t, t ′);
- if t ∈ S2, then there is a bijection between children of ς and edges of the game leaving t, s.t. for each successor

t ′ ∈ S of t in the game, there is one child ϑ of ς s.t. Θ(ϑ) = 〈t ′,u′〉, u′ = u+w(t, t ′).
• If ς is a leaf, then let Θ(ς) = 〈t,u〉 s.t. there is some ancestor ϑ of ς in T s.t. Θ(ϑ) = 〈t,u′〉, with u′ ≤ u, and the

downward path from ϑ to ς , denoted by ϑ  ς , has minimal priority even. We say that ϑ is an even-descendance
energy ancestor of ς .

Intuitively, each path from root to leaf is a self-covering path of even parity in the game graph so that plays
unfolding according to such a tree correspond to winning plays of Lemma 2. Thus, the epSCT fixes how P1 should
react to actions of P2 in order to win the MEPG (Fig. 1). Note that as the tree is finite, one can take the largest negative
number that appears on a node in each dimension to compute an initial credit for which there is a winning strategy
(i.e., the one described by the tree). In particular, let W denote the maximal absolute weight appearing on an edge in
Gp. Then, for an epSCT T of depth l, it is straightforward to see that the maximal initial credit required is at most l ·W
as the maximal decrease at each level of the tree is bounded by W . We suppose W > 0 as otherwise, any strategy of
P1 is winning for the energy objective, for any initial credit vector v0 ∈ Nk.

Let us explicitely state how P1 can deploy a strategy λ T
1 ∈ Λ PF

1 based on an epSCT T = (Q,R). We refer to such
a strategy as an epSCT strategy. It consists in following a path in the tree T , moving a pebble from node to node and
playing in the game depending on edges taken by this pebble. Each time a node ς s.t. Θ(ς) = 〈t,u〉 is encountered, we
do the following.

• If ς is a leaf, the pebble directly goes up to its oldest even-descendance energy ancestor ϑ . By oldest we mean the
first encountered when going down in the tree from the root. Note that this choice is arbitrary, in an effort to ease
following proof formulations, as any one would suit.
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• Otherwise, if ς is not a leaf,
- if t ∈ S2 and P2 plays state t ′ ∈ S, the pebble is moved along the edge going to the only child ϑ of ς s.t.

Θ(ϑ) = 〈t ′,u′〉, u′ = u+w(t, t ′);
- if t ∈ S1, the pebble moves to ϑ , Θ(ϑ) = 〈t ′,u′〉, the only child of ς , and P1 strategy is to choose the state t ′

in the game.

If such an epSCT T of depth l exists for a game Gp, then P1 can play the strategy λ T
1 ∈ Λ PF

1 to win the game with
initial credit bounded by l ·W .

Bounding the depth of epSCTs. Consider a multi energy game without parity. Then, the priority condition on down-
ward paths from ancestor to leaf is not needed and self-covering trees (i.e., epSCTs without the condition on priorities)
suffice to describe winning strategies. One can bound the size of SCTs using results on the size of solutions for linear
diophantine equations (i.e., with integer variables) [9]. In particular, recent work on reachability games over VASS
with weights {−1,0,1}, Lemma 7 of [12], states that if P1 has a winning strategy on a VASS, then he can exhibit one
that can be described as a SCT whose depth is at most l = 2(d−1)·|S| · (|S|+1)c·k2

, where c is a constant independent of
the considered VASS and d its branching degree (i.e., the highest number of outgoing edges on any state). Naive use
of this bound for multi energy games with arbitrary integer weights would induce a triple exponential bound for mem-
ory. Indeed, recall that W denotes the maximal absolute weight that appears in a game Gp = (S1,S2,sinit ,E,k,w, p).
A straightforward translation of a game with arbitrary weights into an equivalent game that uses only weights in
{−1,0,1} induces a blow-up by W in the size of the state space, and thus an exponential blow-up by W in the depth
of the tree, which becomes doubly exponential as we have

l = 2(d−1)·W ·|S| · (W · |S|+1)c·k2
= 2(d−1)·2V ·|S| · (W · |S|+1)c·k2

,

where V denotes the number of bits used by the encoding of W . Moreover, the width of the tree increases as dl ,
i.e., it increases exponentially with the depth. So straight application of previous results provides an overall tree of
triple exponential size. In this paper we improve this bound and prove a single exponential upper bound, even for
multi energy parity games. We proceed in two steps, first studying the depth of the epSCT, and then showing how to
compress the tree into a directed acyclic graph (DAG) of single exponential size.

Lemma 3. Let Gp = (S1,S2,sinit ,E,k,w, p) be a multi energy parity game s.t. W is the maximal absolute weight
appearing on an edge and d the branching degree of Gp. Suppose there exists a finite-memory winning strategy for

P1. Then there is an even-parity self-covering tree for sinit of depth at most l = 2(d−1)·|S| · (W · |S|+1)c·k2
, where c is a

constant independent of Gp.

Lemma 3 eliminates the exponential blow-up in depth induced by a naive coding of arbitrary weights into
{−1,0,1} weights, and implies an overall doubly exponential upper bound. Our proof is a generalization of [12,
Lemma 7], using a more refined analysis to handle both parity and arbitrary integer weights. The idea is the follow-
ing. First, consider the one-player case. The epSCT is reduced to a path. By Lemma 2, it is composed of a finite prefix,
followed by an infinitely repeated sequence of positive energy level and even minimal priority. The point is to bound
the length of such a sequence by eliminating cycles that are not needed for energy or parity. Second, to extend the
result to two-player games, we use an induction on the number of choices available for P2 in a given state. Intuitively,
we show that if P1 can win with an epSCT TA when P2 plays edges from a set A in a state s, and if he can also win
with an epSCT TB when P2 plays edges from a set B, then he can win when P2 chooses edges from both A and B, with
an epSCT whose depth is bounded by the sum of depths of TA and TB.

Proof. The proof is made in two steps. First, we consider the one-player case, where S2 = /0. Second, we use an
induction scheme over the choice degree of P2 to extend our results to the two-player case.

We start with S2 = /0, the one-player game. By Lemma 2, a winning play is of the form π = ρ ·ηω
∞ s.t. EL(η∞)≥ 0

and Par(π) = min{p(s) | s ∈ η∞} is even. Notice that such a play corresponds to the epSCT defined above, as it
reduces to an even-parity self-covering path 〈sinit ,(0, . . . ,0)〉 〈s,u〉 〈s,u′〉 with u′ ≥ u. Therefore its existence
is guaranteed and it remains to bound its length. Given such a path, the idea is to eliminate unnecessary cycles, in
order to reduce its length while maintaining the needed properties (i.e., positive energy and even minimal priority).
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First, notice that cycles in the sub-path 〈sinit ,(0, . . . ,0)〉 〈s,u〉 can be trivially erased as they are only visited a finite
number of times and thus (a) the initial credit can compensate for the loss of their potential positive energy effect, and
(b) they do not contribute in the parity. Now consider the sub-path 〈s,u〉 〈s,u′〉. Since it induces a winning play, its
minimal priority is even. Let pm be this priority. We may suppose w.l.o.g. that p(s) = pm, otherwise it suffices to shift
this sub-path to 〈s′,v〉 〈s′,v′〉 for some state s′ s.t. p(s′) = pm and v′ ≥ v, and add the sub-path 〈s,u〉 〈s′,v〉 to the
finite prefix. Now we may eliminate each cycle of 〈s,u〉 〈s,u′〉 safely in regards to the parity objective as they only
contain states with greater or equal priority. Thus, we only need to take care of the energy, and fall under the scope
of [12, Lemma 15] for the special case of weights in {−1,0,1}, where an upper bound h(|S|,k) = (|S|+1)c·k2

on the
length of such a path is shown.

We claim that for a one-player game G, with weights in {−W,−W +1, . . . ,W −1,W}, an upper bound
h(W, |S|,k) = (W · |S|+1)c·k2

is obtained. Indeed, one can translate Gp = (S1,S2,sinit ,E,k,w, p) into an equivalent
game G′p′ = (S′1,S2,sinit ,E ′,k,w′, p′) s.t. each edge of Gp is split into at most W edges in G′p′ , with at most (W − 1)
dummy states in between, so that each edge of G′p′ only uses weights in {−1,0,1}. Let Sd denote the set of these
added dummy states. We define this translation Tr : Gp 7→ G′p′ with Tr(S1) = S1 ∪ Sd , Tr(S2) = S2, Tr(sinit) = sinit ,

Tr(E) =
⋃

(s,t)∈E Tr((s, t)), Tr(k) = k, Tr(w) = w′ : E ′ → {−1,0,1}k, Tr(p) = p′ : S′ → N s.t. for all (s, t) ∈ E s.t.
m = max{w(s, t)( j) | 1≤ j ≤ k}−1, we have that Tr((s, t)) =

{
(s,s1

d),(s
1
d ,s

2
d), . . . ,(s

m−1
d ,sm

d ),(s
m
d , t)

}
s.t.(

∀ j > 0, s j
d ∈ Sd ∧ p′(s j

d) = p(s)
)
∧ ∑

(q,r)∈Tr((s,t))
w′(q,r) = w(s, t).

To be formally correct, we have to add that for all sd ∈ Sd , we have degreein(sd) = degreeout(sd) = 1, and for all
s 6∈ Sd , we have p′(s) = p(s). This translation does not hinder the outcome of the game as each edge in Gp has a
unique corresponding path in G′p′ that preserves the weights and the visited priorities, and that offers no added choice
to P1. Since Gp possesses |E| ≤ |S|2 edges, and for each edge of Gp, we add at most (W − 1) dummy states in G′p′ ,
we have |S′| ≤ |S|+ |S|2 · (W −1)≤ |S|2 ·W . Therefore, by applying [12, Lemma 15] on G′p′ , we obtain the following
upper bound:

h(W, |S|,k) = h
(
|S′|,k

)
=
(
|S|2 ·W +1

)c·k2
= (W · |S|+1)c′·k2

for some constant c′ that is independent of Gp.
Now, consider S2 6= /0. (I) We extend [12, Lemma 16] for parity. This will help us to establish an induction scheme

over the choice degree of P2. Suppose s ∈ S2 has more than one outgoing edge. Let τ = (s, t) ∈ E be one of them
and R ⊂ E denote the nonempty set of other outgoing edges. Let Gτ

p (resp. GR
p) be the game induced when removing

R (resp. τ) from Gp. Suppose that (a) s is winning for P1 in GR
p for initial credit vR ∈ Nk, and (b) there exists some

state s′ ∈ S s.t. s′ is winning for P1 in Gτ
p for initial credit vτ ∈ Nk. We claim that s′ is winning in Gp for initial credit

v0 = vτ + vR. Indeed, let λ τ
1 and λ R

1 resp. denote winning strategies for P1 in Gτ
p and GR

p . Let P1 use the following
strategy. Player P1 plays λ τ

1 as long as P2 does not play any edge of R. If such an edge is played, then P1 switches to
strategy λ R

1 and plays it until edge τ is played again by P2, in which case P1 switches back to λ τ
1 , and so on. In this

way, the outcome of the game is guaranteed to be a play π = s′ . . .s . . .s . . .s . . . resulting from a merge between a play
consistent with λ τ

1 over Gτ
p (whose energy level is bounded by −vτ at all times), and a play consistent with λ R

1 over
GR

p (whose energy level is bounded by −vR at all times). Therefore, the combined overall energy level of any prefix
ρ of this play is bounded by (−vτ − vR) as positive cycles in Gτ

p and GR
p do remain positive in Gp. Furthermore, the

parity condition is preserved in Gp. Indeed, suppose it is not. Thus, there exists a state visited infinitely often in the
outcome s.t. its priority is minimal and odd. However, as the outcome results from merging plays resp. consistent with
λ τ

1 and λ R
1 , this implies that one of those strategies yields an odd minimal priority, which contradicts the fact that they

are winning. This proves the claim.
(II) We apply the induction scheme of [12, Lemma 18] on r = |{(s, t)∈ E | s∈ S2}|−|S2| ≤ (d−1) · |S|, the choice

degree of P2. Notice that our translation Tr : Gp 7→ G′p′ maintains this choice degree unchanged. The claim is that for
a winning state s′, there is an epSCT of depth bounded by 2r ·h(W, |S|,k). We have proved that for the base case r = 0,
similar to S2 = /0, this claim is true. So assume it holds for r, it remains to prove that it is preserved for r + 1. Let
s ∈ S2 be s.t. P2 has at least two outgoing edges. As before, we define Gτ

p and GR
p . Clearly, the choice degree of P2
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is at most r in both games. Let s′ be a winning state in Gp. As P2 has less choices in both Gτ
p and GR

p , clearly s′ is
still winning in those games. If an epSCT in either of them (which are guaranteed to exist and have depth bounded by
2r ·h(W, |S|,k) by hypothesis) do not contain the state s, then the claim is verified. Now suppose we have two epSCTs
for games Gτ

p and GR
p s.t. they both contain state s. Notice that s is winning in those two games and as such, is the root

of two respective epSCTs of depth less than 2r ·h(W, |S|,k). Applying (I) on states s′ and s, we get an epSCT for s′ in
Gp of depth 2 ·2r ·h(W, |S|,k), which concludes the proof. ut

From multi energy parity games to multi energy games. Let Gp be a MEPG and assume that P1 has a winning
strategy in that game. By Lemma 3, there exists an epSCT whose depth is bounded by l. As a direct consequence of
that bounded depth, we have that P1, by playing the strategy prescribed by the epSCT, enforces a stronger objective
than the parity objective. Namely, this strategy ensures to “never visit more than l states of odd priorities before seeing
a smaller even priority” (which is a safety objective). Then, the parity condition can be transformed into additional
energy dimensions.

While our transformation shares ideas with the classical transformation of parity objectives into safety objectives,
first proposed in [5] (see also [26, Lemma 6.4]), it is technically different because energy levels cannot be reset (as
it would be required by those classical constructions). The reduction is as follows. For each odd priority, we add one
dimension. The energy level in this dimension is decreased by 1 each time this odd priority is visited, and it is increased
by l each time a smaller even priority is visited. If P1 is able to maintain the energy level positive for all dimensions
(for a given initial energy level), then he is clearly winning the original parity objective; on the other hand, an epSCT
strategy that wins the original objective also wins the new game.

Lemma 4. Let Gp = (S1,S2,sinit ,E,k,w, p) be a multi energy parity game with priorities in {0,1, . . . ,2 ·m}, s.t. W is
the maximal absolute weight appearing on an edge. Then we can construct a multi energy game G with the same set of
states, (k+m) dimensions and a maximal absolute weight bounded by l, as defined by Lemma 3, s.t. P1 has a winning
strategy in G iff he has one in Gp.

Proof. Let Gp = (S1,S2,sinit ,E,k,w, p) be a MEPG with priorities in {0,1, . . . ,2 · m}. Let G =
(S1,S2,sinit ,E,(k+m),w′) be the MEG obtained from the following transformation: ∀ (s, t) ∈ E, ∀ 1 ≤ j ≤ k,
w′((s, t))( j) = w((s, t))( j), and (a) if p(t) is even, ∀ k < j ≤ p(t)

2 , w′((s, t))( j) = 0 and ∀ p(t) < j ≤ k + m,
w′((s, t))( j) = l, or (b) if p(t) is odd, ∀ k < j ≤ k+m, j 6= p(t)

2 , w′((s, t))( j) = 0 and w′((s, t))( p(t)
2 ) = −1. We have

to prove both ways of the equivalence.
First, suppose λ1 ∈ Λ PF

1 is a winning strategy for P1 in the MEPG Gp. By Lemma 3, there is an epSCT of depth
at most l for sinit . Thus, we know that in every repeated sequence of l states, the minimal visited priority will be
even. Therefore, for all additional dimensions, ranging from k+1 to k+m, the effect of a sequence of l states will be
bounded from below by −1 · (l− 1)+ l, which is positive. Thus strategy λ1 is also winning in G (with initial credit
bounded by l on additional dimensions).

Second, suppose λ1 ∈ Λ PF
1 is a winning strategy for P1 in the MEG G, as defined above. Since λ1 is winning, it

yields a SCT (epSCT without the parity condition) of bounded depth s.t. P1 is able to enforce positive energy cycles.
By definition of weights over G, this cannot be the case if the minimal priority infinitely often visited is odd. Thus this
strategy is winning for parity on Gp, and stays winning for energy over dimensions 1 to k as weights are unchanged.

ut

Bounding the width. Thanks to Lemma 4, we continue with multi energy games without parity. In order to bound
the overall size of memory for winning strategies, we consider the width of self-covering trees. The following lemma
states that SCTs, whose width is at most doubly exponential by application of Lemma 3, can be compressed into
directed acyclic graphs (DAGs) of single exponential width. Thus we eliminate the second exponential blow-up and
give an overall single exponential bound for memory of winning strategies.

Lemma 5. Let G = (S1,S2,sinit ,E,k,w) be a multi energy game s.t. W is the maximal absolute weight appearing on
an edge and d the branching degree of G. Suppose there exists a finite-memory winning strategy for P1. Then, there
exists λ D

1 ∈Λ PF
1 a winning strategy for P1 described by a DAG D of depth at most l = 2(d−1)·|S| · (W · |S|+1)c·k2

and
width at most L = |S| · (2 · l ·W +1)k, where c is a constant independent of G. Thus the overall memory needed to win
this game is bounded by the single exponential l ·L.
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The sketch of this proof is the following. By Lemma 3, we know that there exists a tree T , and thus a DAG, that
satisfies the bound on depth. We construct a finite sequence of DAGs, whose first element is T , so that (1) each DAG
describes a winning strategy for the same initial credit, (2) each DAG has the same depth, and (3) the last DAG of the
sequence has its width bounded by |S| · (2 · l ·W +1)k. This sequence D0 = T,D1,D2, . . . ,Dn is built by merging nodes
on the same level of the initial tree depending on their labels, level by level. The key idea of this procedure is that what
actually matters for P1 is only the current energy level, which is encoded in node labels in the self-covering tree T .
Therefore, we merge nodes with identical states and energy levels: since P1 can essentially play the same strategy in
both nodes, we only keep one of their subtrees.

It is possible to further reduce the practical size of the compressed resulting DAG by merging nodes according to
a “greater or equal” relation over energy levels rather than simply equality (Fig. 2). This improvement is part of the
algorithm that follows, and it has a significant impact on the practical width of DAGs as it can then be bounded by the
number of incomparable labeling vectors instead of unequivalent ones.

〈s0,(0,0)〉

〈s1,(−1,1)〉 〈s2,(0,2)〉

〈s3,(−1,2)〉 〈s3,(0,2)〉

〈s4,(0,1)〉 〈s5,(−2,3)〉

〈s0,(0,0)〉 〈s3,(0,3)〉

Fig. 2. Merge between comparable nodes.

r

ϑ

ν

ς

ξ

Fig. 3. Cycles have positive energy levels.

The remainder of this subsection is dedicated to the proof of Lemma 5. We need to introduce some notations and
two intermediate lemmas. If he so wishes, the reader may directly proceed to the next subsection and Lemma 8 for
results on lower memory bounds.

We first introduce some notations. Let T = (Q,R) be a self-covering tree (i.e., epSCT without the parity condition).
We define the partial order � on Q s.t. for all ς1,ς2 ∈ Q s.t. Θ(ς1) = 〈t1,u1〉 and Θ(ς2) = 〈t2,u2〉, we have ς1 � ς2 iff
t1 = t2 and u1≤ u2. We denote the equivalence by' s.t. ς1' ς2 iff ς1� ς2 and ς2� ς1. For all ς ∈Q, let Anc and EnAnc
resp. denote the set of ancestors and energy ancestors of ς in T : Anc(ς) = {ϑ ∈ Q\{ς} | ϑ � ∃♦ς}, where we use
the classical CTL notation to denote that there exists a path from ϑ to ς in T , and EnAnc(ς) = {ϑ ∈ Anc(ς) | ϑ � ς}.

We build a sequence of DAGs (Di)0≤i≤n ≡ D0 = T,D1,D2, . . . ,Dn s.t. for all 0 < i ≤ n, Di is obtained from Di−1
by merging two equivalent nodes of the same minimal level (i.e., closest to the root) of Di−1. The sequence stops when
we obtain a DAG Dn = (Qn,Rn) s.t. for all level j of Dn, there does not exist two distinct equivalent nodes on level j.
This construction induces merges by increasing depth, starting with level one. Moreover, if a DAG Di of the sequence
is the result on merges up to level j, then it has the tree property (i.e., every node has a unique father) for levels greater
than j. As the depth and the branching degree of T are finite, the defined sequence of DAGs is finite (and actually
bounded).

Let us give a formal definition of the merge operation. Consider such a DAG Di = (Qi,Ri). Let j the minimal level
of Di that contains two equivalent nodes. Let ς1,ς2 ∈Qi( j) (i.e., nodes of level j) be two nodes s.t. ς1 6= ς2 and ς1 ' ς2.
We suppose w.l.o.g. an arbitrary order on nodes of the same level so that ς1,ς2 are the two leftmost nodes that satisfy
this condition. We define Di+1 = (Qi+1,Ri+1) = merge(Di) as the result of the following transformation:

– Qi+1 = Qi \ ({ς2}∪{ςd ∈ Qi |ς2 ∈ Anc(ςd)}),
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– Ri+1 = (Ri ∩ (Qi+1×Qi+1))∪{(ϑ ,ς1) | (ϑ ,ς2) ∈ Ri}.

Thus, we eliminate the subtree starting in ς2 and replace all edges that point to ς2 by edges pointing to ς1. This follows
the idea that the same strategy can be played in ς2 as in ς1 since the present state and the energy level are the same.

Let Di = (Qi,Ri) be a DAG of the sequence (Di)0≤i≤n. Given ς ∈ Qi, ϑ ∈ Anc(ς), we denote by ϑ  ς an
arbitrary downward path from ϑ to ς in Di. Given a leaf ς ∈Qi, we denote its oldest energy ancestor by oea(ς). Recall
that a strategy is described by such a DAG according to moves of a pebble. Given a leaf ς ∈ Qi and one of its energy
ancestors ϑ ∈ EnAnc(ς), we represent the pebble going up from ς to ϑ by ς 	 ϑ . Given α,β ∈ (Qi)

∗, α 	 β naturally
extends this notation s.t. we have Last(α) 	 First(β ). We consider energy levels of paths in the tree by refering to
their counterparts in the game. Note that given ϑ ,ς ∈Qi, Θ(ϑ) = 〈t,u〉, Θ(ς) = 〈t ′,u′〉, we have EL(ϑ  ς) = u′−u.
We start with two useful lemmas.

Lemma 6. Let Di = (Qi,Ri) be a DAG of (Di)0≤i≤n. For all nodes ς1,ς2 ∈Qi s.t. ς1' ς2, we have that ∀ϑ ∈Anc(ς1)∩
Anc(ς2), EL(ϑ  ς1) = EL(ϑ  ς2).

Proof. The proof is straightforward. ut

Lemma 7. Let Di = (Qi,Ri) be a DAG of (Di)0≤i≤n. Let ς ,ϑ ,ν ,ξ ∈ Qi be four nodes s.t. ς and ξ are leafs, ν is the
deepest common ancestor of ς and ξ , and ϑ is an ancestor of ν . Let the oldest energy ancestor of ξ be an ancestor of
ς , i.e., oea(ξ ) ∈ Anc(ς). We have that EL(ϑ  ς)≤ EL(ϑ  ν  ξ 	 oea(ξ ) ς).

This lemma states that we can extract pebble cycles, which have positive energy levels, from a given path, in order
to obtain some canonical path whose energy level is lower or equal (Fig. 3).

Proof. Let χ = oea(ξ ) and ρ = ϑ  ν  ξ 	 χ  ς . Since χ ∈ Anc(ς)∩Anc(ξ ), we have χ ∈ Anc(ν)∪ {ν}.
Therefore, and applying Lemma 6, four cases are possible: χ ∈ Anc(ϑ), χ = ϑ , χ ∈ Anc(ν) \ (Anc(ϑ)∪{ϑ}), and
χ = ν . Consider the first case, χ ∈ Anc(ϑ). Then ρ = ϑ  ν  ξ 	 χ  ϑ  ν  ς . We have EL(ρ) = EL(ϑ  
ν)+EL(ν  ξ )+EL(χ  ϑ)+EL(ϑ  ν)+EL(ν  ς) = EL(χ  ϑ  ν  ξ )+EL(ϑ  ς). By definition of
χ = oea(ξ ), the first term is positive. Thus, EL(ρ)≥ EL(ϑ  ς). Arguments are similar for the other cases. ut

We proceed with the proof of Lemma 5.

Proof (Lemma 5). Let (Di)0≤i≤n be the sequence of DAGs defined above. We claim that (i) each DAG describes a
winning strategy for the same initial credit, (ii) each DAG has the same depth l, and (iii) the last DAG of the sequence
has its width bounded by |S| · (2 · l ·W +1)k.

(i) First, recall that P1 can play a strategy λ T
1 ∈ Λ PF

1 based on edges taken by a pebble on T . Notice that moving
the pebble as we previously defined is possible because nodes belonging to P1 have only one child, and nodes of P2
have childs covering all his choices once, and only once. Fortunately, the merge operation maintains this property.
Therefore, it is straightforward to see that P1 can also play a strategy λ

Di
1 ∈ Λ PF

1 for a DAG Di resulting of some
merges on T . However, while this would be a valid strategy for P1, we have to prove that it is still a winning one, for
the same initial credit v0 as λ T

1 . Precisely, we claim that ∀ i≥ 0, we have that λ
Di
1 is winning for v0.

We show it by induction on Di. The base case is trivial as D0 = T : the strategy λ T
1 is winning for v0 by definition.

Our induction hypothesis is that our claim is valid for Di−1, and we now prove it for Di, by contradiction. Let ς1,ς2 ∈
Qi−1( j) be the merged nodes, for some level j of Di−1. Suppose λ

Di
1 is not winning for v0. Thus there exists a finite

path ζ of the pebble in Di, which corresponds to a strategy λ
Di
2 ∈ Λ PF

2 of P2, s.t. it achieves a negative value on at
least one dimension m, 1 ≤ m ≤ k. We have that (v0 +EL(ζ ))(m) < 0. We aim to find a similar path η in Di−1 s.t.
EL(η)≤ EL(ζ ), thus yielding contradiction, as it would witness that λ

Di−1
1 is not winning for v0.

We denote by ςm the father of ς2 in Di−1. The only edge added by the merge operation is (ςm,ς1). Obviously, if
ζ does not involve this edge, then we can take η = ζ and immediately obtain contradiction. Thus, we can decompose
the witness path

ζ = α(1)ςmς1 β (1)	 α(2)ςmς1 β (2)	 . . . 	 α(q)ςmς1 ξ ,

for some q≥ 1 s.t. for all 1≤ p≤ q, we have that α(p),β (p),ξ ∈ (Qi∪{	})∗ are valid paths of the pebble in Di (and
Di−1); they do not involve edge (ςm,ς1), i.e., {ςmς1} 6⊆ α(p),β (p),ξ ; and β (p)∩

(
AncDi(ςm)\AncDi−1(ς1)

)
= /0,

Last(β (p)) is a leaf and oea(Last(β (p))) ∈ AncDi(ςm).
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Intuitively, ζ is split into several parts in regard to q, the number of times it takes the added edge (ςm,ς1). Each
time, this transition is preceded by some path α . It is then followed by some path β where all visited ancestors of ςm

were already ancestors of ς1 in Di−1 (thus, β paths can be kept in η). Finally, after the q-th transition ςmς1 is taken,
the path ζ ends with a finite sub-path ξ .

We define the witness path η in Di−1 as η = κ(1)β (1) 	 κ(2)β (2) 	 . . . 	 κ(q)ξ , with the following transfor-
mation of sub-paths α(p)ςmς1:

– κ(1) = r Di−1 ς1,
– ∀2≤ p≤ q,κ(p) = oea(Last(β (p−1))) Di−1 ς1,

where Di−1 denotes a valid path in Di−1. Note that given preceding definitions, this indeed constitutes a valid path in
Di−1. We have to prove that EL(η)≤ EL(ζ ). We have

EL(η) = ∑
1≤p≤q

EL(κ(p))+ ∑
1≤p≤q−1

EL(β (p))+EL(ξ ),

and
EL(ζ ) = ∑

1≤p≤q
EL(α(p)ςmς1)+ ∑

1≤p≤q−1
EL(β (p))+EL(ξ ).

Thus, it remains to show that
∑

1≤p≤q
EL(κ(p))≤ ∑

1≤p≤q
EL(α(p)ςmς1).

In particular, we claim that for all 1 ≤ p ≤ q, we have EL(κ(p)) ≤ EL(α(p)ςmς1). Indeed, notice that κ(p) and
α(p) share their starting and ending nodes and that α(p) contains a finite number of pebble cycles. Let ϑ denote
the common starting node of both κ(p) and α(p). Applying Lemma 7 on α(p), we can eliminate cycles one at a
time, without ever increasing the energy level, and obtain a path ϑ  Di ςmς1 s.t. EL(ϑ  Di ςmς1)≤ EL(α(p)). Since
ς1 ' ς2, we have by Lemma 6 that EL(ϑ  Di ςmς1) = EL(ϑ  Di−1 ςmς2) = EL(ϑ  Di−1 ς1), implying the claim.

Consequently, we obtain EL(η)≤ EL(ζ ), which witnesses that Di−1 was not winning. This contradicts our induc-
tion hypothesis and concludes our proof that for all 0≤ i≤ n, λ

Di
1 is winning for v0.

(ii) Second, the merge operation only prunes some parts of the tree T , without ever adding any new state, and
added edges are on existing successive levels. Therefore, each Di has noticeably the same depth l.

(iii) Third, the last DAG of the sequence, Dn, is s.t. for all level j, for all ς1,ς2 ∈ Qn( j), we have (ς1 6= ς2)⇒
(ς1 6' ς2). Therefore the width of this DAG is bounded by the number of possible non-equivalent nodes. Recall that
two nodes are equivalent if they have the same labels, i.e., they represent the same state of the game and are marked
with exactly the same energy level vector. Since the maximal change in energy level on an edge is W , and the depth
of the DAG is bounded by l = 2(d−1)·|S| · (W · |S|+1)c·k2

thanks to Lemma 3, we have possible vectors in {−l ·W,−l ·
W +1, . . . , l ·W −1, l ·W}k for each state. Consequently, the width of Dn is bounded by

|S| · (2 · l ·W +1)k = |S| ·
(

2d·|S| · (W · |S|+1)c·k2
·W +1

)k
,

which is still single exponential. ut

Lower bound. In the next lemma, we show that the upper bound is tight in the sense that there exist families of games
which require exponential memory (in the number of dimensions), even for the simpler case of multi energy objectives
without parity and weights in {−1,0,1} (Fig. 4). Note that for one-dimension energy parity, it was shown in [16] that
exponential memory (in the encoding of weights) may be necessary.

Lemma 8. There exists a family of multi energy games (G(K))K≥1, = (S1,S2,sinit ,E, k = 2 ·K,w : E→{−1,0,1})k

s.t. for any initial credit, P1 needs exponential memory to win.

The idea is the following: in the example of Fig. 4, if P1 does not remember the exact choices of P2 (which
requires an exponential size Moore machine), there will exist some sequence of choices of P2 s.t. P1 cannot counteract
a decrease in energy. Thus, by playing this sequence long enough, P2 can force P1 to lose, whatever his initial credit
is.
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Fig. 4. Family of games requiring exponential memory.

Proof. We define a family of games (G(K))K≥1 which is an assembly of k = 2 ·K gadgets, the first K belonging to P2,
and the remaining K belonging to P1 (Fig. 4). Precisely, we have |S1|= |S2|= 3 ·K, |S|= |E|= 6 ·K = 3 · k (linear in
k), k = 2 ·K, and w defined as:

∀1≤ i≤ K,w((◦,si)) = w((◦, ti)) = (0, . . . ,0),
w((si,si,L)) =−w((si,si,R)) = w((ti, ti,L)) =−w((ti, ti,R)),

∀1≤ j ≤ k, w((si,si,L))( j) =


1 if j = 2 · i−1
−1 if j = 2 · i
0 otherwise

,

where ◦ denotes any valid predecessor state.
There exists a winning strategy λ

exp
1 for P1, for initial credit vexp

0 = (1, . . . ,1). Indeed, for any strategy of P2, for
any state ti belonging to P1, it suffices to play the opposite choice as P2 made on its last visit of si to maintain at all
times an energy vector which is positive on all dimensions. This strategy thus requires to remember the last choice of
P2 in all gadgets, which means P1 needs K bits to encode these decisions. Thus, this winning strategy is described by
a Moore machine containing 2K = 2

k
2 states, which is exponential in the number of dimensions k.

We claim that, for any initial credit v0, there exists no winning strategy λ1 that can be described with less than 2K

states and prove it by contradiction. Suppose P1 plays according to such a strategy λ1. Then there exists some 1 ≤
x≤ K s.t. λ1(s1 . . .sxsx,L . . . tx) = λ1(s1 . . .sxsx,D . . . tx), i.e., P1 chooses the same action in tx against both choices of the
adversary. Suppose that P1 chooses to play tx,L in both cases, that is λ1(s1 . . .sxsx,L . . . tx) = λ1(s1 . . .sxsx,D . . . tx) = tx,L.
By playing sx,L, P2 can force a decrease of the energy vector by 2 on dimension 2 ·x every visit in gadget x. Similarly,
if the strategy of P1 is to play tx,R, P2 wins by choosing to play sx,R as dimension 2 · x−1 decreases by 2 every visit.
Therefore, whatever the finite initial vector of P1, P2 can enforce a negative dimension by playing long enough. This
contradicts the fact that λ1 is winning and concludes our proof that exponential memory is necessary for this simple
family of games (G(K))K≥1. ut

We summarize our results in Theorem 1.

Theorem 1 (Optimal memory bounds). The following assertions hold: (1) In multi energy parity games, if there
exists a winning strategy, then there exists a finite-memory winning strategy. (2) In multi energy parity and multi
mean-payoff games, if there exists a finite-memory winning strategy, then there exists a winning strategy with at most
exponential memory. (3) There exists a family of multi energy games (without parity) with weights in {−1,0,1} where
all winning strategies require at least exponential memory.

Proof. Thanks to [19, Theorem 3], we have equivalence between finite-memory winning for multi energy and multi
mean-payoff games. The rest follows from straigthforward application of Lemma 1, Lemma 4, Lemma 5, and
Lemma 8. ut
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4 Symbolic synthesis algorithm

We now present a symbolic, incremental and optimal algorithm to synthesize a finite-memory winning strategy in a
MEG.4 This algorithm outputs a (set of) winning initial credit(s) and a derived finite-memory winning strategy (if one
exists) which is exponential in the worst-case. Its running time is at most exponential. So our symbolic algorithm can
be considered (worst-case) optimal in the light of the results of previous section.

This algorithm computes the greatest fixed point of a monotone operator that defines the sets of winning initial
(vectors of) credits for each state of the game. As those sets are upward-closed, they are symbolically represented by
their minimal elements. To ensure convergence, the algorithm considers only credits that are below some threshold,
noted C. This is without giving up completeness because, as we show below, for a game G = (S1,S2,sinit ,E,k,w), it
is sufficient to take the value 2 · l ·W for C, where l is the bound on the depth on epSCT obtained in Lemma 3 and W
is the largest absolute value of weights used in the game. We also show how to extract a finite state Moore machine
representing a corresponding winning strategy (states of the Moore machine encode the memory of the strategy) from
this set of minimal winning initial credits and how to obtain an incremental algorithm by increasing values for the
threshold C starting from small values.

A controllable predecessor operator. Let G = (S1,S2,sinit ,E,k,w) be a MEG, C ∈N be a constant, and U(C) be the
set (S1 ∪ S2)×{0,1, . . . ,C}k. Let U(C) = 2U(C), i.e., the powerset of U(C), and the operator CpreC : U(C)→U(C)
be defined as follows:

E(V ) = {(s1,e1) ∈U(C) | s1 ∈ S1∧∃(s1,s) ∈ E,∃(s,e2) ∈V : e2 ≤ e1 +w(s1,s)},
A(V ) = {(s2,e2) ∈U(C) | s2 ∈ S2∧∀(s2,s) ∈ E,∃(s,e1) ∈V : e1 ≤ e2 +w(s2,s)},

CpreC(V ) = E(V ) ∪ A(V ). (1)

Intuitively, CpreC(V ) returns the set of energy levels from which P1 can force an energy level in V in one step. The
operator CpreC is ⊆-monotone over the complete lattice U(C), and so there exists a greatest fixed point for CpreC
in the lattice U(C), denoted by Cpre∗C. As usual, the greatest fixed point of the operator CpreC can be computed by
successive approximations as the last element of the following finite ⊆-descending chain. We define the algorithm
CpreFP that computes this greatest fixed point:

U0 =U(C), U1 = CpreC(U0), . . . , Un = CpreC(Un−1) =Un−1. (2)

The set Ui contains all the energy levels that are sufficient to maintain the energy positive in all dimensions for i steps.
Note that the length of this chain can be bounded by |U(C)| and the time needed to compute each element of the chain
can be bounded by a polynomial in |U(C)|. As a consequence, we obtain the following lemma.

Lemma 9. Let G=(S1,S2,sinit ,E,k,w) be a multi energy game and C∈N be a constant. Then Cpre∗C can be computed
in time bounded by a polynomial in |U(C)|, i.e., an exponential in the size of G.

Symbolic representation. To define a symbolic representation of the sets manipulated by the CpreC operator, we
exploit the following partial order: let (s,e),(s′,e′) ∈U(C), we define

(s,e)� (s′,e′) iff s = s′ and e≤ e′. (3)

A set V ∈ U(C) is closed if for all (s,e),(s′,e′) ∈U(C), if (s,e) ∈V and (s,e)� (s′,e′), then (s′,e′) ∈V . By definition
of CpreC, we get the following property.

Lemma 10. All sets Ui in eq. (2) are closed for �.

Therefore, all sets Ui in the descending chain of eq. (2) can be symbolically represented by their minimal elements
Min�(Ui) which is an antichain of elements for �. Even if the largest antichain can be exponential in G, this repre-
sentation is, in practice, often much more efficient, even for small values of the parameters. For example, with C= 4
and k = 4, we have that the cardinality of a set can be as large as |Ui| ≤ 625 whereas the size of the largest antichain
is bounded by |Min�(Ui)| ≤ 35. Antichains have proved to be very efficient: see for example [2,24,25]. Therefore, our
algorithm is expected to have good performances in practice.

4 Note that the symbolic algorithm can be applied to MEPGs and MMPPGs after removal of the parity condition by applying the
construction of Lemma 4.
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Correctness and completeness. The following two lemmas relate the greatest fixed point Cpre∗C and the existence of
winning strategies for P1 in G. We start with the correctness of the symbolic algorithm.

Lemma 11 (Correctness). Let G= (S1,S2,sinit ,E,k,w) be a multi energy game, let C∈N be a constant. If there exists
(c1, . . . ,ck) ∈ Nk s.t. (sinit ,(c1, . . . ,ck)) ∈ Cpre∗C, then P1 has a winning strategy in G for initial credit (c1, . . . ,ck) and
the memory needed by P1 can be bounded by |Min�(Cpre∗C)| (the size of the antichain of minimal elements in the fixed
point).

Given the set of winning initial credits output by CpreFP, it is straightforward to derive a corresponding winning
strategy of at most exponential size. Indeed, for winning initial credit c ∈ Nk, we build a Moore machine which (i)
states are the minimal elements of the fixed point (antichain at most exponential in G), (ii) initial state is any element
(t,u) among them s.t. t = sinit and u ≤ c, (iii) next-action function prescribes an action that ensures remaining in the
fixed point, and (iv) update function maintains an accurate energy level in the memory.

Proof. We denote by c the k-dimensional credit vector (c1, . . . ,ck). W.l.o.g. we assume that states of G alternate
between positions of P1 and positions of P2 (otherwise, we split needed edges by introducing dummy states). From
Cpre∗C, we construct a Moore machine M = (QM,qM

0 ,∆ M,ActM) which respects the following definitions:

– QM = Min�{(t,u) ∈ S1×{0 . . .C}k | (t,u) ∈ (Cpre∗C)}. The set of states of the machine is the antichain of �-
minimal elements that belongs to P1 in the fixed point. Note that the length of this antichain is bounded by an
exponential in the size of the game.

– qM
0 is any element (t,u) in QM s.t. t = sinit and u≤ c. Note that such an element is guaranteed to exist as (sinit ,c) ∈

Cpre∗C.
– For all (t,u)∈QM , we define ActM((t,u)) by choosing any element (t, t ′)∈ E s.t. there exists (t ′,u′)∈ Cpre∗C with

u′ = u+w(t, t ′). Such an element is guaranteed to exist by definition of CpreC and the fact that (t,u) ∈ Cpre∗C.
– ∆ M : QM × ((S2× S)∩E) 7→ QM is any partial function that respects the following constraint: if ActM((t,u)) =

(t, t ′) then ∆ M((t,u),(t ′, t ′′)) is defined for any (t ′, t ′′) ∈ E and can be chosen to be equal to any (t ′′,u′′) s.t.
u′′ ≤ u+w(t, t ′)+w(t ′, t ′′), and such an u′′ is guaranteed to exist by definition of CpreC and because Cpre∗C is a
fixed point.

Now, let us prove that for any initial prefix s0s1 . . .s2n of even length in G, which is compatible with M, we have that
c+EL(s0s1 . . .s2n−1)≥ 0 and c+EL(s0s1 . . .s2n)≥ 0. To establish this property, we first prove the following property
by induction on n: c+EL(s0s1 . . .s2n) ≥ u where u is the energy level of the label of the state reached after reading
the prefix s0s1 . . .s2n with the Moore machine M. Base case n = 0 is trivial. Induction: assume that the property is
true for n−1, and let us establish it for n. By induction hypothesis, we have that c+EL(s0s1 . . .s2(n−1)) ≥ u where u
is the energy level of the label of state q that is reached after reading s0s1 . . .s2(n−1) with the Moore machine. Now,
assume that ActM(q) = (t, t ′). So, s2(n−1) = t and the choice of P1 is to play (t, t ′). So, s2(n−1)+1 = t ′. Now for all
possible choices (t ′, t ′′) of P2, we know by definition of M that the energy level u′′ that labels the state ∆ M(q,(t ′, t ′′)) is
u′′ ≤ u+w(t, t ′)+w(t ′, t ′′), which establishes our property. Therefore, the strategy of P1 based on M is s.t. the energy
always stays positive for initial credit c, which concludes the proof. ut

Completeness of the symbolic algorithm is guaranteed when a sufficiently large threshold C is used as established
in the following lemma.

Lemma 12 (Completeness). Let G = (S1,S2,sinit ,E,k,w) be a multi energy game in which all absolute values of
weights are bounded by W. If P1 has a winning strategy in G and T = (Q,R) is a self-covering tree for G of depth l,
then (sinit ,(C, . . . ,C)) ∈ Cpre∗C for C= 2 · l ·W.

Remark 1. This algorithm is complete in the sense that if a winning strategy exists for P1, it outputs at least a winning
initial credit (and the derived strategy) for C= 2 · l ·W . However, this is different from the fixed initial credit problem,
which consists in deciding if a particular given credit vector is winning and is known to be EXPSPACE-hard by
equivalence with deciding the existence of an infinite run in a Petri net given an initial marking [12,30]. In general,
there may exist winning credits incomparable to those captured by algorithm CpreFP. More precisely, given a constant
C ∈ N, the algorithm fully captures all the winning initial credits smaller than (C, . . . ,C). Indeed, the fixed point
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computation considers the whole range of initial credits up to the given constant exhaustively, and only removes
credits if they do not suffice to win. By Lemma 12, it is moreover guaranteed that if an arbitrary winning initial credit
exists, then there exists one in the range defined by the constant C= 2 · l ·W . Nevertheless, since our algorithm works
in exponential time while the problem of finding all the winning initial credits is EXPSPACE-hard, there may be some
incomparable credits outside that range that are not captured by the algorithm (comparable credits are captured since
we work with upper closed sets). Indeed, if our algorithm was able to compute exhaustively all winning credits in
exponential time, this would induce that EXPTIME is equal to EXPSPACE. Notice that defining a class of games for
which the algorithm CpreFP proves to be incomplete (in the sense that uncomparable winning credits exist outside the
region captured by constant C= 2 · l ·W ) is an interesting open problem.

Proof. To establish this property, we first prove that from the set of labels of T , we can construct a set f which is
increasing for the operator CpreC, i.e., CpreC( f ) ⊇ f , and s.t. (sinit ,(C, . . . ,C)) ∈ f . We define f from T = (Q,R)
as follows. Let C ∈ N be the smallest non-negative integer s.t. for all q ∈ Q, with Θ(q) = (t,u), for all dimensions i,
1 ≤ i ≤ k, we have that u(i)+C ≥ 0. C is bounded from above by l ·W because on every path from the root to a leaf
in T , every dimension is at most decreased l times by an amount bounded by W , and at the root all the dimensions are
equal to 0. For any q ∈ Q, we denote by Θ(q)+C the label of q where the energy level has been increased by C in all
the dimensions, i.e., if Θ(q) = (t,u) then Θ(q)+C = (t,u+(C, . . . ,C)). Note that for all nodes in Q, the label is at
most l ·W and thus the shifted label remains under C= 2 · l ·W . Now, we define the set f as follows:

f = {(t,u) ∈U(C) | ∃q ∈ Q,Θ(q)+C � (t,u)}. (4)

So, f is defined as the �-closure of the set of labels in T shifted by C in all the dimensions.
First, note that (sinit ,(C, . . . ,C)) ∈ f as the label of the root in T is (sinit ,(0, . . . ,0)). Second, let us show that

CpreC( f ) ⊇ f . Take any (t,u) ∈ f and let us show that (t,u) ∈ CpreC( f ). We decompose the proof in two cases. (A)
t ∈ S1. By definition of f , there exists q ∈ Q s.t. Θ(q)+C � (t,u). W.l.o.g. we can assume that q is not a leaf as
otherwise there exists an ancestor q′ of q s.t. Θ(q′) �Θ(q) (recall the set is described by its minimal elements). By
definition of T , there exists (t, t ′) ∈ E and q′ ∈ Q s.t. (q,q′) ∈ R and Θ(q′) =Θ(q)+w(t, t ′). Let (t ′,v) =Θ(q′)+C.
By definition of f , we have (t ′,v) ∈ f . By eq. (1), it follows that (t,u) ∈ CpreC( f ). (B) t ∈ S2. By definition of f , there
exists q∈Q s.t. Θ(q)+C� (t,u). Again, w.l.o.g. we can assume that q is not a leaf as otherwise there exists an ancestor
q′ of q s.t. Θ(q′)�Θ(q). By definition of T , for all (t, t ′)∈E, there is q′ ∈Q s.t. (q,q′)∈R and Θ(q′) =Θ(q)+w(t, t ′).
Let (t ′,v) =Θ(q′)+C. By definition of f , we have (t ′,v) ∈ f . By eq. (1), it follows that (t,u) ∈ CpreC( f ).

Now, let us show that f ⊆ Cpre∗C. This is a direct consequence of the monotonicity of CpreC: it is well known
that for any monotone function on a complete lattice, its greatest fixed point is equal to the least upper bound of all
post-fixed points (points e s.t. e ⊆ CpreC(e)), i.e., Cpre∗C =

⋃
{e | e ⊆ CpreC(e)} ⊇ f . As (sinit ,(C, . . . ,C)) ∈ f , that

concludes the proof. ut

Remark 2. Note that the exponential bound on memory, obtained in Lemma 5, can also be derived from the Moore
machine construction of Lemma 11 as this method is complete according to Lemma 12. Still, the DAG construction
of Lemma 5 is interesting in its own right, and introduces the concept of node merging, which is underlying to the
symbolic algorithm correctness, while transparent in its use.

Incrementality. While the threshold 2 · l ·W is sufficient, it may be the case that P1 can win the game even if its
energy level is bounded above by some smaller value. So, in practice, we can use Lemma 11, to justify an incremental
algorithm that first starts with small values for the parameter C and stops as soon as a winning strategy is found or
when the value of C reaches the threshold 2 · l ·W and no winning strategy has been found.

Application of the symbolic algorithm to MEPGs and MMPGs. Using the reduction of Lemma 4 that allows us
to remove the parity condition, and the equivalence between multi energy games and multi mean-payoff games for
finite-memory strategies (given by [19, Theorem 3]), along with Lemma 9 (complexity), Lemma 11 (correctness) and
Lemma 12 (completeness), we obtain the following result.

Theorem 2 (Symbolic and incremental synthesis algorithm). Let Gp be a multi energy (resp. multi mean-payoff)
parity game. Algorithm CpreFP is a symbolic and incremental algorithm that synthesizes a winning strategy in Gp
of at most exponential size memory, if a winning (resp. finite-memory winning) strategy exists. In the worst-case, the
algorithm CpreFP takes exponential time.

16



Proof. The correctness and completeness for algorithm CpreFP on multi energy games are resp. given by Lemma 11
and Lemma 12. Extension to mean-payoff games (under finite memory) is given by [19, Theorem 3], whereas the
parity condition can be encoded as energy thanks to Lemma 4. Exponential worst-case complexity of the algorithm
CpreFP is induced by Lemma 9. ut

Integration in synthesis tools. Following the conference version of this paper [21], our results on strategy synthesis
have been used in the Acacia+ synthesis tool. This tool originally handled the synthesis of controllers for specifications
expressed in LTL (Linear Temporal Logic, a classical formalism for formal specifications [36]) using antichain-based
algorithms and has recently been extended to the synthesis from LTL specifications with mean-payoff objectives
[8]. The addition of multi-mean-payoff objectives to LTL specifications provides a convenient way to enforce that
synthesized controllers also satisfy some reasonable behavior from a quantitative standpoint, such as minimizing the
number of unsollicited grants in a client-server architecture with prioritized clients. Numerous practical applications
may benefit from this multi-dimension framework.

The authors present an approach in which the corresponding synthesis problem ultimately reduces to strategy
synthesis on a multi-energy game [8, Theorem 26]. Their implementation uses fixed point computations similar to eq.
(2) and has proved efficient (considering the complexity of the problem) in practice. It uses antichains to provide a
compact representation of upper-closed sets and implements the incremental approach proposed before (regarding the
constant C). In practical benchmarks, winning strategies can generally be found for rather small values of C. Hence,
the incremental approach overcomes the need to compute up to the exponential theoretical bound C= 2 · l ·W in many
cases. Sample benchmarks and experiments can be found in [8], and the tool can be used online [1].

5 Trading finite memory for randomness

In this section, we answer the fundamental question regarding the trade-off of memory for randomness in strategies:
we study on which kind of games P1 can replace a pure finite-memory winning strategy by an equally powerful, yet
conceptually simpler, randomized memoryless one and discuss how memory is encoded into probability distributions.
Note that we do not consider wider strategy classes (e.g., randomized finite-memory), nor do we allow randomization
for P2 (which on most cases is dispensable anyway). Indeed, we aim at a better understanding of the underlying
mechanics of memory and randomization, in order to provide alternative strategy representations of practical use; not
exploration of more complex games with wider strategy classes (Lemma 21 shows a glimpse of it).

Multi energy and energy parity Multi MP (parity) MP parity

one-player ×
√ √

two-player × ×
√

Table 1. When pure finite memory for P1 can be traded for randomized memorylessness.

We present an overview of our results in Tab. 1 and summarize them in Theorem 3. Note that we do not consider
the opposite implication, i.e., does there always exist a way of encoding a randomized memoryless strategy into an
equivalent finite-memory one. In general, this is not the case even for classes of games where we can trade memory
for randomness, and it can easily be witnessed on the one-player multi mean-payoff game depicted on Fig. 5. Indeed,
expectation (1,1) is achievable with a simple uniform distribution while it is not achievable with a pure, arbitrary high
memory strategy (even infinite).

We break down these results into three subsections: energy games, multi mean-payoff (parity) games, and single
mean-payoff parity games. We start with energy games.

5.1 Randomization and energy games

Randomization is not helpful for energy objectives, even in one-player games. The proof argument is obtained from
the intuition that energy objectives are similar in spirit to safety objectives.
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Fig. 5. Randomization can replace memory, but not the opposite.

Lemma 13. Randomization is not helpful for almost-sure winning in one-player and two-player energy, multi energy,
energy parity and multi energy parity games: if there exists a finite-memory randomized winning strategy, then there
exists a pure winning strategy with the same memory requirements.

Proof. Let Gp be a game fitted with an energy objective. Consider an almost-sure winning strategy λ1. If there exists a
single path π consistent with λ1 that violates the energy objective, then there exists a finite prefix witness ρ to violate
the energy objective. Moreover, as the finite prefix has positive probability (otherwise the play is not consistent), and
the strategy λ1 is almost-sure winning, it follows that no such path exists. In other words, λ1 is a sure winning strategy.
Since randomization does not help for sure winning strategy, it follows that randomization is not helpful for one-player
and two-player energy, multi energy, energy parity and multi energy parity games. ut

5.2 Randomization and multi mean-payoff (parity) games

Randomized memoryless strategies can replace pure finite-memory ones in the one-player multi mean-payoff parity
case, but not in the two-player one, even without parity. We first note a useful link between satisfaction and expectation
semantics for the mean-payoff objective.

Lemma 14. Let G = (S1,S2,sinit ,E,k,w) be a game structure with mean-payoff objective φ = MeanPayoffG(v) for
some threshold vector v ∈ Qk. Let λ1 ∈ Λ1 be a strategy of P1. If λ1 is almost-sure winning for φ (i.e., winning for
1-satisfaction), then λ1 is also winning for v-expectation for the mean-payoff function MP. The opposite does not hold.

Proof. We first discuss the claimed implication. Suppose 1-satisfaction is verified. Then, for all strategy λ2 ∈ Λ2 of
P2, the set of consistent plays of value ≥ v has measure 1, while the one of value < v has measure 0, by definition.
Therefore, the expectation Eλ1,λ2

sinit (MP) is at least v and v-expectation is verified.
To show that the opposite does not hold, consider the simple one-player game depicted on Fig. 5. Let λ1 be a simple

coin flipping on s1, i.e., λ1(s1)(s2) = 1/2, λ1(s1)(s3) = 1/2, λ1(s2)(s2) = 1 and λ1(s3)(s3) = 1. The expectation of
this strategy is v = (1,1). Nevertheless, the probability of achieving mean-payoff of at least v is 0 < 1, which shows
that it does not verify 1-satisfaction for MeanPayoffG(v). ut

The fundamental difference between energy and mean-payoff is that energy requires a property to be satisfied at
all times (in that sense, it is similar to safety), while mean-payoff is a limit property. As a consequence, what matters
here is the long-run frequencies of weights, not their order of appearance, as opposed to the energy case.

Lemma 15. Pure finite-memory winning strategies can be traded for equally powerful randomized memoryless ones
for one-player multi mean-payoff parity games, for both satisfaction and expectation semantics. For two-player games,
randomized memoryless strategies are not as powerful, even limited to expectation semantics, no parity condition, and
only 2 dimensions.

For the one-player case, we extract the frequencies of visit for edges of the graph from the regular outcome that
arises from the finite-memory strategy of P1. We build a randomized strategy with probability distributions on edges
that yield the exact same frequencies in the long-run. Therefore, if the original pure finite-memory of P1 is surely
winning, the randomized one is almost-surely winning. For the two-player case, this approach cannot be used as
frequencies are not well defined, since the strategy of P2 is unknown. Consider a game which needs perfect balance
between frequencies of appearance of two sets of edges in a play to be winning (Fig. 6). To almost-surely achieve
mean-payoff vector (0,0), P1 must ensure that the long-term balance between edges (s4,s5) and (s4,s6) is the same
as the one between edges (s1,s3) and (s1,s2). This is achievable with memory as it suffices to react immediately to
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s1

s2 s3

s4

s5 s6

(1,−1) (−1,1)

(0,0) (0,0)
(1,−1) (−1,1)

(0,0) (0,0)

Fig. 6. Memory is needed to enforce perfect long-term balance.

compensate the choice of P2. However, given a randomized memoryless strategy of P1, P2 always has a strategy to
enforce that the long-term frequency is unbalanced, and thus the game cannot be won almost-surely by P1 with such
a strategy. Achieving expected mean-payoff (0,0) is also excluded.

Proof. We begin with the one-player case. Let Gp be a multi mean-payoff parity game. Let λ
p f
1 ∈ Λ PF

1 be the pure
finite-memory strategy of the player. Since it is pure and finite, its outcome is a regular word π = ρ1 ·ρω

2 , with ρ1 ∈ S∗,
ρ2 ∈ S+. Let φ = MeanPayoffGp(v)∩ParityGp be the multi mean-payoff parity objective for some threshold vector
v ∈Qk. Suppose this strategy verifies α-satisfaction for φ and β -expectation for the MP function, for some α , β . We
claim that there exists a randomized memoryless strategy λ rm

1 ∈ Λ RM
1 that is also α-satisfying for φ and that satisfies

β -expectation for the MP function; and we show how to build it.
We denote concatenation by the · symbol. Given a finite word ρ ∈ S∗, two states s,s′ ∈ S, we resp. denote by

occ(s,ρ) and occ((s,s′),ρ) the number of occurences of the state s and the transition (s,s′) in the word ρ . We add the
subscript ◦ when we count the first state of the word as the successor of the last one (i.e., the word is a cycle in the
game graph). That is, occ◦(∗,ρ) = occ(∗,ρ ·First(ρ)).

Let us consider the mean-payoff of the outcome of strategy λ
p f
1 . Recall that for a play π ∈ Plays(G), π =

s1,s2,s3 . . . , we have MP(π) = liminfn→∞
1
n ∑1≤i<n w(si,si+1). Since the play induced by λ

p f
1 is regular, the limit

is well defined and we may express the mean-payoff in terms of frequencies, that is

MP(π) = ∑
(s,s′)∈E

w(s,s′) · freq∞(s,s
′),

where freq∞ denotes the long-term frequency of a transition defined as

∀(s,s′) ∈ E, freq∞((s,s
′)) =

occ◦((s,s′),ρ2)

|ρ2|
.

We define the randomized memoryless strategy λ rm
1 as follows: ∀s,s′ ∈ S, (s,s′) ∈ E, X =

{(s, t) | t ∈ S,(s, t) ∈ (ρ1 ·First(ρ2))},

λ
rm
1 (s)(s′) =



1
|X |

if s ∈ ρ1 ∧ s 6∈ ρ2,

occ◦((s,s′),ρ2)

occ(s,ρ2)
if s ∈ ρ2,

0 otherwise.

Intuitively, we fix a uniform distribution over transitions of the finite prefix ρ1 as we only need to ensure reaching
the bottom strongly connected component (BSCC) defined by ρ2 with probability 1, and the relative frequencies in
ρ1 do not matter (because these weights and priorities are negligible in the long run). On the contrary, we use the
exact frequencies for transitions of ρ2 as they prevail long-term wise. Note that λ rm

1 is a correctly defined randomized
memoryless strategy.
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Obviously, λ rm
1 yields a Markov chain over states of (ρ1∪ρ2) s.t. states of (ρ1 \ρ2) are transient and states of ρ2

constitute a BSCC that is reached with probability one. Thus, the mean-payoff induced by λ rm
1 is totally dependent

on this BSCC mean-payoff value. As a consequence, proving that transition frequencies in the BSCC are exactly
the same as frequencies freq∞ defined by λ

p f
1 will imply the claim on mean-payoff. Moreover, parity will remain

satisfied as the sets of infinitely often visited states will be the same for both the pure and the randomized strategy. Let
T = {t1, t2, . . . , tm} be the set of states that appear in ρ2. This BSCC is an ergodic Markov chainMe = (T,P) with the
following matrix of transition probabilities:

P =

t1 . . . tm


t1
occ◦((t1, t1),ρ2)

occ(t1,ρ2)
...

. . .

tm
occ◦((tm, tm),ρ2)

occ(tm,ρ2)

.

Classical analysis of ergodic Markov chains grants the existence of a unique probability vector ν s.t. νP = ν , i.e.

∀1≤ i≤ m, νi = ∑
1≤ j≤m

occ◦ ((t j, ti),ρ2)

occ(t j,ρ2)
·ν j.

This vector ν represents the occurence frequency of each state in an infinite run over the Markov chain. It is easy to
see that the unique probability vector ν that satisfies νP = ν is

ν =

(
occ(t1,ρ2)

|ρ2|
, . . . ,

occ(tm,ρ2)

|ρ2|

)
.

Moreover, given a transition of the Markov chain, its frequency is simply the product of the frequency of its starting
state by the probability of the transition when the chain is in this state: for all t, t ′ ∈ T , we have freqMe

∞ ((t, t ′)) =
ν(t) ·P(t, t ′). By definition of ν and P, that is

freqMe
∞ ((t, t ′)) =

occ◦((t, t ′),ρ2)

|ρ2|
= freq∞((t, t

′)),

thus proving that the randomized strategy λ rm
1 yields the same mean-payoff and parity as the pure finite-memory one

λ
p f
1 .

Now it remains to show that this does not carry over to two-player games. Indeed, we show that randomized
memoryless strategies cannot replace pure finite-memory ones for the expectation semantics, even without parity. By
Lemma 14, this implies that it cannot be verified for 1-satisfaction semantics either. Consider the game depicted on
Fig. 6. Player P1 has a pure finite-memory strategy λ

p f
1 that ensures MP(π) ≥ (0,0), for all strategy λ2 of P2. This

strategy is simply to take the opposite choice of P2: λ
p f
1 (∗s2s4) = s6 and λ

p f
1 (∗s3s4) = s5. Now suppose P1 uses a

randomized memoryless strategy λ rm
1 s.t. λ rm

1 (s4)(s5) = p and λ rm
1 (s4)(s6) = 1− p, for some p ∈ [0,1]. We claim that

whatever the value of p, there exists a counter-strategy λ2 for P2 s.t. Eλ rm
1 ,λ2

s1 (MP) 6≥ (0,0). Suppose p ≥ 1/2 and let
λ2(s1) = s2. Then, we have

Eλ rm
1 ,λ2

s1 (MP) =
(1,−1)+ [p · (1,−1)+(1− p) · (−1,1)]

4
=

1
2
(p,−p) 6≥ (0,0).

Now suppose p < 1/2 and let λ2(s1) = s3. Then, we have

Eλ rm
1 ,λ2

s1 (MP) =
(−1,1)+ [p · (1,−1)+(1− p) · (−1,1)]

4
=

1
2
(p−1,1− p) 6≥ (0,0).

This shows that memory is needed to achieve the (0,0)-expectation objective and concludes our proof. ut
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5.3 Randomization and single mean-payoff parity games

Randomized memoryless strategies can replace pure finite-memory ones for single mean-payoff parity games. The
proof outline is as follows. We do it in two steps. First, we show that it is the case for the simpler case of MP Büchi
games (Lemma 18). Suppose P1 has a pure finite-memory winning strategy for such a game. We use the existence
of particular pure memoryless strategies on winning states: the classical attractor for Büchi states, and a strategy that
ensures that cycles of the outcome have positive energy (whose existence follows from [16]). We build an almost-
surely randomized memoryless winning strategy for P1 by mixing those strategies in the probability distributions,
with sufficient probability over the strategy that is good for energy. We illustrate this construction on the simple game
Gp depicted on Fig. 7. Let λ

p f
1 ∈ Λ PF

1 be a strategy of P1 s.t. P1 plays (s1,s1) for 8 times, then plays (s1,s2) once,
and so on. This strategy ensures surely winning for the objective φ = MeanPayoffGp(3/5). Obviously, P1 has a pure
memoryless strategy that ensures winning for the Büchi objective: playing (s1,s2). On the other hand, he also has a
pure memoryless strategy that ensures cycles of positive energy: playing (s1,s1). Let λ rm

1 ∈Λ RM
1 be the strategy defined

as follows: play (s1,s2) with probability γ and (s1,s1) with the remaining probability. This strategy is almost-surely
winning for φ for sufficiently small values of γ (e.g., γ = 1/9). Second, we extend this result to MP parity games using
an induction on the number of priorities and the size of games (Lemma 20). We consider subgames that reduce to the
MP Büchi and MP coBüchi cases. For MP coBüchi games, pure memoryless strategies are known to suffice [20].

s1 s21

−1

−1

Fig. 7. Mixing strategies that are resp. good for Büchi and good for energy.

Büchi case. A particular, simpler case of the parity objective is the Büchi objective. It corresponds to parity with
priorities {0,1}. We denote a Büchi game by G = (S1,S2,sinit ,E,w,F), with F the set of Büchi states s.t. that a play
is winning if it visits infinitely often states of the set F . We first state results on these Büchi objectives, as they are
conceptually simpler to understand. Proof arguments for parity are more involved and make use of results on Büchi
objectives. We sometimes denote the Büchi objective for the set F by �♦F (where � stands for globally and ♦ for
finally), using the classical LTL formulation [36].

We first introduce the useful notion of ε-optimality. Given a game Gp with a one-dimension5 mean-payoff objec-
tive, we define its value as

val = sup
λ1∈Λ1

inf
λ2∈Λ2

{v |OutcomeGp(λ1,λ2)⊆MeanPayoffGp(v)}.

A strategy is said optimal for the mean-payoff objective if it achieves this value. Such a strategy may not need to
exist in general, even in one-player games [20,11,17] (Fig. 8, P1 has to delay its visits of s1 for longer and longer
intervals in order to tend towards value 1). However, it is known that for all ε > 0, ε-optimal strategies (i.e., that
achieve value (val− ε)) always exist in one-dimension mean-payoff games, as a consequence of Martin’s theorem on
Borel determinacy [34].

Here, we show finite-memory strategies can be traded off for randomized memoryless ones for mean-payoff Büchi
games. Precisely, we prove that ε-optimality for mean-payoff Büchi games can as well be achieved by randomized
memoryless strategies. We first need to state two useful lemmas granting the existence of pure memoryless strategies
that are resp. good-for-energy or good-for-Büchi, in all states that are winning for the mean-payoff Büchi objective.
These strategies will help us build the needed ε-optimal strategies.

Lemma 16 (Extension of [16, Lemma 4]). Let G = (S1,S2,sinit ,E,w,F), with F the set of Büchi states. Let Win⊆ S
be the set of winning states for the mean-payoff Büchi objective with threshold 0. For all s ∈Win, P1 has a uniform

5 The multi-dimensional setting gives rise to incomparable outcomes and the need to consider Pareto-optimality.
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(i.e., independent of the starting state) memoryless good-for-energy strategy λ
gfe
1 whose outcome never leaves the set

Win, s.t. any cycle c of this outcome has energy EL(c)≥ 0.

s0 s11

1

0

Fig. 8. Mean-payoff Büchi requires infinite memory for optimality.

Lemma 17 (Classical attractor). Let G = (S1,S2,sinit ,E,w,F), with F the set of Büchi states. Let Win ⊆ S be the
set of winning states for the mean-payoff Büchi objective with threshold 0. For all s ∈Win, P1 has a uniform (i.e.
independent of the starting state) memoryless good-for-Büchi strategy λ

♦F
1 , an attractor strategy for F, whose outcome

never leaves the set Win, s.t. it ensures reaching F in at most |S| steps.

The randomized memoryless strategy of P1 will thus consist in mixing these two strategies, with a very low
probability on the good-for-Büchi strategy. Indeed, the Büchi objective will be satisfied whatever this probability is,
provided it is strictly positive. On the other hand, by giving more weight to the good-for-energy strategy, P1 can obtain
a mean-payoff that is arbitrary close to the optimum.

Lemma 18. In mean-payoff Büchi games, ε-optimality can be achieved surely by pure finite-memory strategies and
almost-surely by randomized memoryless strategies.

Proof. Let G = (S1,S2,sinit ,E,w,F), with F the set of Büchi states. We consider the mean-payoff objective with
threshold 0 (w.l.o.g.). Let Win ⊆ S be the set of winning states for the mean-payoff Büchi objective. By Lemma 16
and Lemma 17, for all s ∈Win, P1 has two uniform memoryless strategies λ

gfe
1 and λ

♦F
1 , whose outcomes never leave

the set Win, s.t. λ
gfe
1 ensures that any cycle c of its outcome has energy EL(c) ≥ 0, and λ

♦F
1 , an attractor strategy for

F , ensures reaching F in at most |S| steps.
We first build ε-optimal pure finite-memory strategies based on these two pure memoryless strategies. Let ε > 0.

As usual, W denotes the largest absolute weight on any edge. Let us define λ
p f
1 s.t. (a) it plays λ

gfe
1 for 2·W ·|S|

ε
− |S|

steps, then (b) it plays λ
♦F
1 for |S| steps, then again (a). This ensures that F is visited infinitely often as λ

♦F
1 is played

infinitely many times for |S| steps in a row. Furthermore, the total cost of phases (a) + (b) is bounded by −2 ·W · |S|,
and thus the mean-payoff of the outcome is at least −ε , against any strategy of the adversary.

Second, we show that based on the same pure memoryless strategies, it is possible to obtain almost-surely ε-
optimal randomized memoryless strategies, i.e.,

∀ε > 0, ∃λ
rm
1 ∈Λ

RM
1 , ∀λ2 ∈Λ2,

Pλ rm
1 ,λ2

sinit (π � �♦F) = 1 ∧ Pλ rm
1 ,λ2

sinit (MP(π)≥−ε) = 1.

Note that pure memoryless strategies suffice for P2 as he essentially has to win against the Büchi or the mean-payoff
criterion [11]. Therefore, given ε > 0, we need to build some strategy λ rm

1 ∈Λ RM
1 s.t.

∀λ
pm
2 ∈Λ

PM
2 , Pλ rm

1 ,λ
pm
2

sinit (π � �♦F) = 1 ∧ Pλ rm
1 ,λ

pm
2

sinit (MP(π)≥−ε) = 1.

We build such a strategy as follows:

∀s ∈ S, λ
rm
1 (s) =

{
λ

gfe
1 (s) with probability 1− γ,

λ
♦F
1 (s) with probability γ,

for some well-chosen γ ∈ ]0,1[.

22



It is straightforward to see that the Büchi objective is almost-surely satisfied for all values of γ > 0 as at all times,
the probability of playing according to λ

♦F
1 for |S| steps in a row, and thus ensuring a visit of F , is γ |S|, which is strictly

positive.
It remains to study if choosing such a constant γ s.t. the MeanPayoffGp(−ε) objective is almost-surely satisfied is

always possible. Consider such a strategy λ rm
1 ∈Λ RM

1 and some fixed strategy λ
pm
2 ∈Λ PM

2 of P2: the game reduces to
a Markov chainMc = (S,δ ,w), where δ : E → [0,1] is the transition probability function resulting from fixing those

strategies. Suppose λ
pm
2 is winning for P2. Thus, Pλ rm

1 ,λ
pm
2

sinit (MP(π)<−ε) > 0. The mean-payoff depends on limit
behavior: the probability measure of plays that do not enter in a bottom strongly connected component (BSCC) is zero
[4], whereas in an BSCC of expected mean-payoff v, we have probability one of obtaining mean-payoff v. This implies
that there exists some BSCC C inMc s.t. PMc (♦C)> 0 and EC (MP(π))<−ε . We claim that it is possible to choose
γ s.t. all BSCCs, in all Markov chains induced by pure memoryless strategies of P2, have expectation greater or equal
to ε , thus proving that strategy λ rm

1 is almost-surely ε-optimal with regard to mean-payoff. Intuitively, the smaller this
constant γ is chosen, the nearer will the expected mean-payoff induced by λ rm

1 be to the one induced by λ
gfe
1 , that is

zero. Since the number of pure memoryless strategies of P2 is finite, and so is the number of BSCCs induced by λ rm
1

(regardless of the exact value of γ ∈ ]0,1[, we obtain the same BSCCs in terms of states and edges), one can compute
a suitable γ for each of them, and then take the mininum to ensure that the needed property will be satisfied in all
possible cases.

Therefore, let us fix some strategy λ
pm
2 of P2, and some BSCC C of the induced Markov chain when played against

strategy λ rm
1 of P1. It remains to show that there exists γ∗ ∈ ]0,1[ s.t. for all γ ≤ γ∗, we have EC(MP(π)) ≥ −ε to

conclude this proof. In C, all states bear two outgoing edges, one from λ
gfe
1 , and one from λ

♦F
1 (we suppose w.l.o.g. that

they are distinct), with respective probabilities 1− γ and γ . Consider the stochastic processMe depicting alternation
between sequences of edges from λ

gfe
1 and λ

♦F
1 (Fig. 9).

gfe ♦F1− γ γ

γ

1− γ

Fig. 9. Stochastic process depicting alternation between sequences of edges from λ
gfe
1 and λ

♦F
1 .

By definition of λ
gfe
1 , a sequence of gfe edges of length k has its energy bounded below by −W · |S| (i.e., it does

not depend on k). Indeed, recall that all cycles have positive energy. Thus, the energy level of a sequence is a sum of
positive terms (cycles), plus a sum of at most |S| terms bounded from below by −W , as having more than |S| edges
produces cycles. Moreover, each♦F edge has energy bounded below by−W . Thus the overall mean-payoff for a play
that consists of repeated sequences of k gfe edges followed by one ♦F edge is −W ·(|S|+1)

k . By putting more probability
on lengthy sequences of gfe edges, we will thus be able to obtain an overall expected mean-payoff that is closer to
zero, and particularly, greater or equal to −ε . Indeed, we decompose the overall expected mean-payoff according to
the length of gfe sequences before seeing a ♦F edge. Let seqb

a denote a sequence of a edges of length b. We have:

EC(MP(π)) =
∞

∑
k=0

P(seqk
gfeseq1

♦F) ·E(MP |seqk
gfeseq1

♦F),

=
∞

∑
k=0

(1− γ)k
γ ·E(MP |seqk

gfeseq1
♦F).

Now we divide this sum in two parts, according to some value k∗ s.t. for all k ≥ k∗, we have E(MP |seqk
gfeseq1

♦F) =

−W ·(|S|+1)
k+1 ≥−W ·(|S|+1)

k∗+1 =−η >−ε . It suffices to take k∗ = W ·(|S|+1)
ε

to achieve this. Notice that the mean-payoff of
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a play is also trivially bounded below by −W , the largest negative weight on any edge. We obtain:

EC(MP(π))≥
k∗−1

∑
k=0

(1− γ)k
γ · (−W )+

∞

∑
k=k∗

(1− γ)k
γ · (−η),

≥ k∗γ · (−W )+(1− k∗γ) · (−η).

Thus, one can achieve EC(MP(π))≥−ε by choosing any γ ≤ γ∗ = −ε+η

k∗(η−W ) . Notice that such a γ∗ is indeed present in
]0,1[ for sufficiently small values of ε , independently of values of |S| and W . As we are interested in ε arbitrary close
to zero, this concludes our proof. ut

Parity Case. Given those results for mean-payoff Büchi games, we now consider the more general case of mean-
payoff parity games. We start by introducing the useful notion of subgames.
Subgame. Let Gp = (S1,S2,sinit ,E,k,w, p) be a game and A ⊆ S be a subset of states in Gp. If E is such that for all
s ∈ A, there exists s′ ∈ A with (s,s′) ∈ E, then we define the subgame Gp ↓ A as (S1 ∩A,S2 ∩A,E ∩ (A×A),w′, p′)
where w′, p′ are the functions w, p restricted to the subdomain A. Note that for subgames, we do not consider an initial
state.

Let Gp = (S1,S2,sinit ,E,k,w, p) and U ⊆ S. We define Attr1(U) as the set that is obtained as the limit of the
following increasing sequence: U0 = U , and Ui = Ui−1 ∪ {s ∈ S1 | ∃s′ ∈ Ui−1, (s,s′) ∈ E} ∪ {s ∈ S2 | ∀s′, (s,s′) ∈
E, s′ ∈ Ui−1}, for i ≥ 1. As this sequence of sets is increasing, there exists i ≤ |S| such that U j = Ui for all j ≥ i.
Attr1(U) contains all the states in G from which P1 can force a visit to U , and it is well known that P1 has a pure
memoryless strategy to force such a visit from those states. Also, it is clear that P1 does not have a strategy to leave the
states in S \Attr1(U). Attractors can be defined symmetrically for P2 and are noted Attr2(·). As direct consequence,
we have the following proposition.

Proposition 1. Let Gp = (S1,S2,sinit ,E,k,w, p) be a game, let U ⊆ S and Attr1(U) be such that B = S \Attr1(U) is
non-empty, then Gp ↓ B is a subgame.

The following lemma states that optimal pure memoryless strategies exist for P1 in games with mean-payoff
coBüchi objectives (i.e., parity with priorities {1,2}). For mean-payoff Büchi objectives, we showed in Lemma 18
that, for all ε > 0, ε-optimal randomized memoryless strategies exist.

Lemma 19 ([20, Theorem 5]). Let Gp = (S1,S2,sinit ,E,k,w, p) be a game with priorities {1,2}, and WIN
p
≥0 be the

set of nodes in Gp from which P1 wins the mean-payoff coBüchi objective for threshold 0 (w.l.o.g.). Then from all
states in WIN

p
≥0, P1 has a pure memoryless winning strategy for the coBüchi mean-payoff objective for threshold 0.

We now establish that ε-optimal randomized memoryless strategies also exist for mean-payoff parity games, and
thus, can replace pure finite-memory ones.

Lemma 20. Let Gp = (S1,S2,sinit ,E,k,w, p) and WIN
p
≥0 be the set of nodes in Gp from which P1 wins the mean-

payoff parity objective for threshold 0. Then for all ε > 0, there exists λ rm
1 ∈ Λ RM

1 , s.t. for all s ∈WIN
p
≥0 and for all

λ2 ∈Λ2, we have that:

Pλ rm
1 ,λ2

s (MP(π)<−ε) = 1 ∧ Pλ rm
1 ,λ2

s (Par(π) mod 2 = 0) = 1.

Proof. The proof is by induction on the lexicographic order � on games, defined as follows: G1
p � G2

p if G1
p has

less priorities than G2
p or G1

p has the same priorities than in G2
p but less states. Clearly, this lexicographic order is

well-founded.
The base cases are twofold: one for the number of states, and one for priorities. First, if the game is such that |S|= 1,

then obviously, if P1 can win, he can do so with a pure memoryless strategy, which respects the claim. Second, for two
priorities. W.l.o.g., we can assume that all priorities are either in {0,1} or in {1,2}. Those cases resp. correspond to
mean-payoff Büchi and mean-payoff coBüchi games. The result for mean-payoff Büchi games has been established in
Lemma 18, while the result for mean-payoff coBüchi games is a direct consequence of Lemma 19, as pure memoryless
strategies are a special case of randomized memoryless strategies.
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Let us now consider the inductive case. Suppose we have a mean-payoff parity game Gp with m priorities and |S|
states. W.l.o.g., we can make the assumption that the lowest priority in Gp is either 0 or 1, otherwise we subtract an even
number to all priorities so that we are in that case. Let U0 = {s∈WIN

p
≥0 | p(s) = 0} and U1 = {s∈WIN

p
≥0 | p(s) = 1}.

We consider the two possible following situations corresponding to U0 empty or not.

1. U0 empty. In that case U1 is not empty. Let us consider A2 = Attr2(U1) the attractor of P2 for U1. It must be the
case that WIN

p
≥0 \A2 is non-empty, otherwise this would contradict the fact that P1 is winning the parity objective

from states in WIN
p
≥0. Indeed, if it was not the case, then P2 would be able to force an infinite number of visits

to U1 from all states in WIN
p
≥0, and the parity would be odd as U0 is empty, a contradiction with the definition of

WIN
p
≥0. (i) Let B = WIN

p
≥0 \A2. First note that, as B is non-empty, by Proposition 1, Gp ↓ B is a subgame. Also,

note that from all states in B, it must be the case that P1 has a winning strategy that does not require visits of the
states outside B, i.e., states in A2, for otherwise this would lead to a contradiction with the fact that P1 is winning
the parity objective in WIN

p
≥0. So all states in the subgame Gp ↓ B are winning for P1. The game Gp ↓ B does not

contain states with priority 0, and so we can apply our induction hypothesis to conclude that P1 has a memoryless
randomized strategy from all states in B, as (Gp ↓ B)�Gp since it has one less priority. (ii) Now, let us concentrate
on states in A2. Let A1 = Attr1(B). From states in A1, P1 has a pure memoryless strategy to reach states in B, and
so from there P1 can play as in Gp ↓ B, and we are done. Let C = A2 \A1. If C is empty, we are done. Otherwise,
by Proposition 1, Gp ↓ C is a subgame (P2 can force to stay within C). We conclude that all states in this game
must be winning for P1. This game has the same minimal priority than in the original game (i.e., priority 1) but
it has at least one state less, and so we can apply our induction hypothesis to conclude that P1 has a memoryless
randomized strategy from all states in C. Therefore, by (i) and (ii), P1 has a memoryless randomized strategy from
all states in WIN

p
≥0, which proves the claim in that case.

2. U0 is not empty. Let us consider A1 = Attr1(U0). (iii) First, consider the case where A1 = WIN
p
≥0. In this case, it

means that P1 can force a visit to states in U0 from any states in WIN
p
≥0. So, we conclude that P1 wins in Gp the

mean-payoff Büchi game with threshold 0, and by Lemma 18, we conclude that P1 has a memoryless randomized
strategy from all states in Gp for almost surely winning the parity game with mean-payoff threshold 0 so we are
done. (iv) Second, consider the case where B = WIN

p
≥0 \A1 is non-empty. Then by Proposition 1, Gp ↓ B is a

subgame. So P2 can force to stay within B in the original game and so we conclude that all states in the game
Gp ↓ B are winning for P1. As Gp ↓ B does not contain states of priority 0, and thus has at least one less priority,
we can apply the induction hypothesis to conclude that P1 has a memoryless randomized strategy from all states
in B. Therefore, by (iii) and (iv), P1 has a memoryless randomized strategy from all states in WIN

p
≥0, which also

proves the case.

As we have proved the claim in both possible cases, this concludes the proof. ut

5.4 Summary for randomization

We sum up results for these different classes of games in Theorem 3 (cf. Table 1).

Theorem 3 (Trading finite memory for randomness). The following assertions hold: (1) Randomized strategies are
exactly as powerful as pure strategies for energy objectives. Randomized memoryless strategies are not as powerful
as pure finite-memory strategies for almost-sure winning in one-player and two-player energy, multi energy, energy
parity and multi energy parity games. (2) Randomized memoryless strategies are not as powerful as pure finite-memory
strategies for almost-sure winning in two-player multi mean-payoff games. (3) In one-player multi mean-payoff parity
games, and two-player single mean-payoff parity games, if there exists a pure finite-memory sure winning strategy,
then there exists a randomized memoryless almost-sure winning strategy.

Proof. (1) For energy games, results follow from Lemma 13. (2) For two-player multi mean-payoff games, they
follow from Lemma 15. (3) For one-player multi mean-payoff games, they follow from Lemma 15. For two-player
single mean-payoff parity, they are direct consequence of Lemma 20. ut

We close this section by observing that there are even more powerful classes of strategies. Their study, as well as
their practical interest, remains open.
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Lemma 21. Randomized finite-memory strategies are strictly more powerful than both randomized memoryless and
pure finite-memory strategies for multi-mean payoff games with expectation semantics, even in the one-player case.

The intuition is essentially that memory permits to achieve an exact payoff by sticking to a given side, while
randomization permits to combine payoffs of pure strategies to achieve any linear combination in between.

s0 s1

(1,−1) (−1,1)

(0,0)

Fig. 10. Randomized finite memory is strictly more powerful than randomized memorylessness and pure finite memory.

Proof. Consider the game G depicted on Fig. 10. Whatever the pure finite-memory strategy of P1, the only achievable
mean-payoff values are (1,−1) (if (s0,s1) is never taken) and (−1,1) (if (s0,s1) is taken). This is also true for ran-
domized memoryless strategies: either the probability of (s0,s1) is null and the mean-payoff has value (1,−1), or this
probability is strictly positive, and the mean-payoff has value (−1,1) as the probability mass will eventually reach s1.
On the contrary, value (0,0) is achievable by a randomized finite-memory strategy. Indeed, consider the strategy that
tosses a coin in its first visit of s0 to decide if it will play always play (s0,s0) or if it will play (s0,s1) and then always
(s1,s1). This strategy only needs one bit of memory and one bit to encode probabilities, and still, it is strictly more
powerful than any amount of pure memory or any arbitrary high precision for probabilities without memory. ut

6 Conclusion

In this work, we considered the finite-memory strategy synthesis problem for games with multiple quantitative (energy
and mean-payoff) objectives along with a parity objective. We established tight (matching upper and lower) exponen-
tial bounds on the memory requirements for such strategies (Theorem 1), significantly improving the previous triple
exponential bound for multi energy games (without parity) that could be derived from results in literature for games
on VASS. We presented an optimal symbolic and incremental strategy synthesis algorithm (Theorem 2). As discussed
in Section 4, the presented algorithm has been used as part of the synthesis tool Acacia+ for specifications combining
LTL properties and multi-dimensional quantitative objectives [8] and has proved efficient in practice. Finally, we also
presented a precise characterization of the trade-off of memory for randomness in strategies (Theorem 3).
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