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a b s t r a c t

The optimal coordination of maintenances is becoming increasingly important to guarantee the security
of supply in renewable-dominated power systems. However, current planning tools are plagued with
tractability issues arising from the need to comply with operational security standards. The grid must
indeed safely accommodate any unexpected contingency occurring during the scheduled maintenances,
which requires simulating many different scenarios. To alleviate this computational burden, this paper
proposes to leverage machine learning models to predict the outcome of contingency analyses in a fast
and reliable manner. The methodology is tested on the full regional transmission grid of Belgium,
covering the voltage levels from 150 kV down to 30 kV. Different models, including naive Bayes classi-
fiers, support vector machines and tree-based models, are tested and compared. Outcomes reveal that
random forests consistently outperform other benchmarks, by identifying with an accuracy higher than
90% the time periods during which maintenances can be safely performed. Also, we show that the ex-
pected rise in renewable generation will impact the maintainability of the future system, with an in-
crease of up to 20% of unsuitable periods to perform maintenances in some grid areas.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Following the liberalization of the electricity sector, generation
and retail activities are now open to competition, and fully
decoupled from the transmission and distribution of electricity. The
Transmission System Operator (TSO) is thus the legal entity
responsible for designing, building and maintaining the high-
voltage electrical grid, and must therefore strive to guarantee the
security and quality of electricity supply for all connected users (i.e.
industrial and distribution grids), while facilitating the energy
transition at the lowest costs possible. This task of efficiently
managing the infrastructure is increasingly challenging due the
emergence of decentralized and more complex to forecast gener-
ation, the ageing of assets as well as the increasing demand arising
from the electrification of transportation and heating systems [1,2].
This leads to the need for more interventions on electricity systems,
while fewer suitable periods are available to securely schedule
ific Research (FNRS) at the
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these operations [3e5].
Planningmaintenance outages in modern power systems is thus

of critical importance, and requires to identify the best trade-off
between reliability and costs [6,7].
1.1. Literature review

Historically, in a context of load-driven dispatch of centralized
generation and limited market coupling between European coun-
tries, finding the optimal outage schedule on the different grid
assets was based on the knowledge of grid experts. However, the
increasing diversity of operating conditions (arising from, e.g., the
complex interdependency between cross-border flows, weather-
driven generation and demand-side management [8]), requires
innovative outage scheduling tools to achieve reliable and flexible
maintenance plans [9,10].

In particular, the deployment of metering devices in modern
energy systems has led to the advent of data-driven predictive
maintenance where the goal is to identify issues at early stages (by
analyzing the operating conditions of grid components), thus tak-
ing timely maintenance decisions that prevent unexpected outages
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Nomenclature

Sets and Indices
c2C : Set of grid assets (needing maintenance)
t2T : Set of time steps in the training set.
t 2 T : Set of time steps in the test set.
d2D : Set of all predictor variables
Dc3D : Set of important predictor variables for asset c

Parameters
xorig2RjDj�jT j : Predictor variables
xc 3xorig : Predictor variables related to asset c
yc,t ¼ {0, 1} : Maintenance feasibility of asset c at time t
ŷc;t : Predicted maintenance feasibility of asset c at

time t
qc : Parameters of the model predicting the

maintenance feasibility of asset c
q*c : Optimal values of parameters qc
fqc : Model predicting the maintenance feasibility of

asset c
L : Loss function of the classification study
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[11,12]. In this way, deep learning is used in Ref. [13] to provide
information on the health status of components to human experts,
thus helping them in deciding whether maintenance actions are
needed. Then, a support vector machine (SVM) model is developed
in Ref. [14] to predict (unplanned) outages of grid components in
presence of extreme events (e.g., imminent hurricane). In Ref. [15],
multiple classifiers are combined for improved maintenance rec-
ommendations, while the potential of tree-based models is
demonstrated in Ref. [16] for predicting the likelihood of failure
based on a continuous monitoring of machine conditions.

However, although these machine learning-based decision tools
are useful to preventively identify defaults on specific assets, they
are not able to anticipate the effect of the outages on the remaining
system. This makes them poorly suited for outage scheduling in
power grids [17] since the planned outages may result into stressed
operating conditions (e.g., overloading of transmission lines),
which can be very costly due to the need of redispatching decisions
such as load shedding [18].

In this work, the objective is thus to complement current pre-
dictive maintenance strategies with a new machine learning tool
able to identify the effect of a planned outage in the electricity
transmission system. In other words, based on the outcome of
predictive maintenance (deciding which components need
servicing), the goal is to identify time periods during which
maintenance operations can be performed without jeopardizing
the security of the power system. A similar research question is
tackled in Ref. [19], where a machine learning tool is built for
predicting the power system operating conditions during the
maintenance of grid components. In Ref. [20], a new sequential
formulation for preventive maintenance in multi-energy micro-
grids is introduced, wherein maintenances and the optimal grid
operation are jointly optimized.

Overall, these models fail to comply with European security
standards that rely on the “N-1” criterion, whereby the loss of one
major component (such as a transmission line or a generator) does
not result into cascading events that would ultimately violate the
grid operational security limits. In this paper, we develop a new
methodology designed to predict the time windows during which
planned and unplanned outages can be safely accommodated. This
2

task is essential, but highly challenging [21]. Indeed, in the regional
Belgian grid, covering the voltage levels from 150 kV down to 30 kV,
about 7000 combinations of planned maintenance outages with
unplanned contingencies need to be simulated to have an exact
characterization of the system reliability at a given hour of the year.
Since the scheduled outages need to be simulated for all hourly
periods of the horizon of interest, the problem quickly becomes
computationally intractable as the number of maintenance activ-
ities increases.
1.2. Contributions

In light of this context, this work, which results from a collab-
oration between university and the Belgian TSO (i.e., Elia), aims at
constructing a generic machine learning proxy able to quickly and
reliably identify the time periods during which the maintenance of
a specific grid asset can be safely performed. Overall, the contri-
butions of the work are fourfold.

First, we develop a data-driven methodology able to accurately
predict (in a fast and reliable manner) the feasibility of mainte-
nance activities given specific grid conditions. Specifically, the
learning task is formulated as a binary classification problem,
which identifies whether a maintenance outage can be safely
scheduled based on (weather, load and generation) input infor-
mation. Relevant classification algorithms (Bayesian models, sup-
port vector machines, and tree-based models) are used to solve the
problem, and are compared not only in terms of accuracy but also
regarding their practical benefits for industry.

Second, we present an input selection process to select (among
hundreds of available features) the most relevant explanatory
variables to feed the classification models. In addition to inform the
TSO on the important factors affecting the maintainability of the
grid [22], this reduced-size input vector enables to reduce the
complexity of models, thus limiting overfitting risks.

Third, we adapt the classification threshold to reflect the risk
appetite of the TSO. False positives (i.e., predicting that a mainte-
nance is acceptable while it may lead to unsafe operating condi-
tions) would minimize the complexity of outage planning but
would require (costly) corrective actions during the network
operation, while false negatives (which needlessly reduce the time
periods available for maintenances) would increase the need to
invest in the grid infrastructure to enable safe outage planning.

Fourth, we extend the procedure by using the trainedmodels on
predicted scenarios of future conditions, with the goal of assessing
the long-term maintainability of the system. In particular, we
develop two novel indicators to quantify the criticality and pre-
dictability of maintenances, which provides useful information in
the context of grid development.

Overall, the outcomes from the procedure are inherently inter-
pretable, which is an important aspect to foster the acceptability of
the proposed framework by operational teams in the industry.
1.3. Organization of the paper

The rest of the paper is organized as follows. Section 2 presents
the methodology used to predict the outcome of contingency an-
alyses using machine learning. Then, section 3 conducts case
studies on the full regional transmission grid of Belgium and show
the superiority of tree-based models. In particular, we discuss how
these models can be exploited by modern TSOs at a large scale to
assess the maintainability of the grid. Finally, section 4 draws the
main conclusions and potential outlooks.
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2. Machine learning proxy for contingency analyses

When scheduling a maintenance, the TSO is preventively
adapting the topology of the grid to secure it from unplanned
contingencies. The goal is to ensure that the resulting electrical grid
complies with the “N-1-100 criterion (or quasi “N-2” criterion)
imposing that its operating conditions (arising from both planned
and unplanned outages) lie within security limits. This is evaluated
by performing contingency analyses that compute the state of the
grid for all possible outage events for each hourly time step of the
maintenance job.

To avoid to perform these time consuming and cumbersome
contingency studies, we develop a supervised learning proxy that
uses available data to learn the relationship between jDj predictors
xorigt (i.e., load, generation andweather conditions at time t) and the
maintainability yc,t of an asset c. The trained surrogate model can
then be used to reliably extrapolate (for any new system state)
whether a maintenance can be safely performed.

The global procedure is summarized in Fig. 1, and is thoroughly
described in the rest of the paper. In brief, we firstly construct the

database (in section 2.1) to align available input features xorigt 2RjDj

with the maintenance feasibility yc,t ¼ {0, 1} of all assets c2C for all
time steps t2T . The assets considered in this work are trans-
mission lines and transformers. Since each grid asset c is affected by
different parameters, a feature selection process is developed (in
section 2.2) to retain the jDcj most relevant predictors xc 3xorig.
Based on these features xc, a dedicatedmachine learning proxy fqc is
trained (in section 2.3) for each asset c.

To ensure the practical interest of the methodology for the TSO,
the proxy needs to comply with three important constraints, (i) it
must be easy to use (the model can be trained without complicated
data pre-processing), (ii) the model quality must be robust to
changes in the hyper-parameters (no strong expert knowledge and
Fig. 1. Overview of the methodology for predicting outcomes of contingency analysis.
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experience is necessary to properly fine-tune the model), and (iii)
the outcomes must be readily interpretable by operational teams
(the important features can be identified). In this work, different
types of machine learning models (e.g., naive Bayes, support vector
machine, tree-based models) will therefore be compared in regards
to these three criteria.
2.1. Construction of the database

The procedure to construct the database for training the ma-
chine learning models is depicted in Fig. 2.

We rely on a database xorig2RjDj�jT j composed of variables d2
Dmeasured at hourly time periods t2T . The jDj variables consist of
both global and local data.

At the system scale, we have access to the total load (typically
ranging from 6 GW during off-peak periods up to 13 GW in peak
periods of winter). We also rely on the aggregated generation for
different technologies (the total installed capacity is around
23 GW). The generation mix (over the year 2020) was the
following: nuclear (39.1%), gas (34.4%), offshore (8.3%) and onshore
(5%) wind, photovoltaic (5.3%), biogas (2.5%), coal (0%), imports
(�0.3%), and others (5.7%). All these market data are continuous
variables whose hourly values are publicly available on the website
of Elia (the Belgian TSO) due to transparency obligations [23].
Weather information, including temperature, cloud cover and wind
speed at one location in the centre of Belgium, is also used in this
work but these data are not publicly available.

The local variables are the generation/consumption measure-
ments at the different nodes of the transmission system (i.e., big
industrial clients, power plants and interfaces with local distribu-
tion networks). Practically, there are more than 1000 nodes on the
Belgian transmission grid, which significantly increases the
dimensionality of the problem. These nodal energy exchanges are
confidential data pertaining to Elia. It should also be noted that the
topology of the Belgian grid, along with all its constitutive assets
are also provided by Elia, thus enabling to perform meaningful
studies on the Belgian transmission system in the case study
(section 3).

In general, historical realizations fxorigt gt2T (e.g., on the year
2020) are used to train machine learning models (of section 2.2 and
section 2.3). However, these input scenarios can also be generated
through market simulations, which can emulate a wide range of
original grid conditions (not present in the historical database). By
simulating expected market conditions (e.g., nuclear phase-out,
large integration of renewables, and increase of interconnection
capacities), one is able to construct a model that can properly
generalize to unseen future conditions (e.g., for years 2025e2030).
These aspects are further discussed in section 3.3.2, where we
assess the future maintainability of the system, which yields rele-
vant insights for identifying the necessary investments in the long-
term planning of the grid.

Evidently, there are no missing data in the simulated scenarios.
Also, there are no missing data in the historical information, since
there are legal obligations that the market data are properly vali-
dated (due to economic implications). Hence, no strategy for
consolidating the data had to be implemented in this work.

In complement to this database, the different grid assets that
need maintenance are listed. For each asset c2C, the goal is the
compute the feasibility of the maintenance for each system state
t2T of the database. This is achieved by performing an extensive
“quasi N-2” contingency analysis, simulating all relevant unplanned
outages concurring with the scheduled maintenance. Practically,
the maintenance of asset c is allowed (yc,t ¼ 1) if the following 4
different conditions are satisfied:



Fig. 2. Creation of the database used for training the machine learning models.
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1. The overloading criterion: no asset within the remaining grid
must be congested, since this could lead to a cascade effect and
further negative impacts (e.g., loss of load) in the system.

2. The voltage criterion: each connection point of grid users should
be kept within defined power quality standards (i.e., 90% and
105% of the nominal value).

3. The load at risk criterion: the aggregated power of grid users
that could be lost following a contingency should be kept below
a given MW threshold.

4. The energy at risk criterion: the total energy that could not be
supplied to grid users cannot exceed a given MWh threshold.

If any of these criteria is violated, the maintenance cannot be
scheduled (yc,t ¼ 0). This multicriteria approach allows to embed
both reliability and economic perspectives to define the feasibility
of a maintenance [24].
Fig. 3. Illustrative example of decision tree with 2 variables.
2.2. Selection of the relevant input variables

Since many different features xorigt 2RjDj are available and since
each asset c2C is affected by a different set of variablesDc, a feature
selection is performed for each asset individually. The goal is to
reduce the dimensionality of input data (that will be processed by
the subsequent classifier in section 2.3) with a minimum loss of the
initial information. In this way, we reduce model complexity (and
thus training time), while avoiding overfitting risks.

Different approaches can be used for this purpose. Principal
Component Analysis (PCA) and Linear Discriminant Analysis (LDA)
are well-known techniques that perform a linear mapping of the
data into a new space wherein most of the relevant information can
be contained in a reduced number of dimensions. A nonlinear
extension is provided by kernel PCA. Another efficient nonlinear
framework is given by auto-encoders, i.e., neural networks tailored
to learn a reduced-space representation of data. However, the main
issue with all those approaches is that the new (reduced) repre-
sentation of the data has no physical meaning, i.e., it is a combi-
nation of features that cannot be interpreted and compared to the
original data. In our work, this makes them irrelevant for grid ex-
perts that want to evaluate the practical pertinence of the selected
features. In light of this context, decision trees have been naturally
selected. Indeed, these algorithms gather valuable properties, i.e.,
they can identify the most important variables (from the original
dataset), they do not require any feature scaling (owing to their
invariance to monotonic transformations), and they do not rely on
strong assumptions (i.e., they are inherently able to capture multi-
variate non-linear dependencies).

Overall, a decision tree algorithm is used to efficiently select (for
asset c) this subset Dc of the most relevant variables, i.e., xc 3xorig,
with xc2RjDcj�jT j. As discussed in section 2.3, another decision tree
can also be used for the classification phase (to predict the feasi-
bility of a maintenance).
4

A decision tree is a supervised learning method, which consists
in partitioning the whole jDj-dimensional feature space into
smaller subspaces. As depicted in Fig. 3 for an illustrative example
with 2 variables, a decision tree is trained through a hierarchical
multi-stage process. At each stage, a new (chance) node m is
created, and the algorithm selects the variable that provides the
optimal separation among data (i.e., leading to the best differenti-
ation among classes). The variable is split into two subspaces,
respectively noted ml and mr, based on a threshold value M. The
procedure continues until further partitioning the input space no
longer brings value to the classification accuracy. The end nodes
show the final classification outcome.

At each stage, the best model parameters (the best feature m to
be split and the corresponding threshold value M) are based on an
impurity function. In this work, the Gini impurity is used [25]:

GiniðmÞ ¼ 2pmð1�pmÞ (1)

where pm is the probability that a maintenance is classified as
possible at node m. It can be seen that the Gini indice varies be-
tween 0 and 0.5. It is equal to 0 when the nodem is pure, i.e., when
all samples pertaining to that node belong to a single class. The
indice is equal to 0.5 when the impurity of the node is maximum,
i.e., when all samples of that node are equally distributed between
both classes (feasible and infeasible maintenances).

Once the decision tree (corresponding to an asset c) is trained, it
can be used to determine the Dc most important features, based on
their position in the tree. In this way, the importance of a variable is
calculated as the decrease in node impurity weighted by the
probability of reaching that node. Since a single variable can be
used at different nodes of the tree, its global importance is the sum
of its individual contributions. However, this ranking of important
variables does not provide information on the cut-off value under
which variables have no real interest for classification. To identify
this threshold value in a generic way (applicable for each asset), a
random variable is added to the list of predictors xorig, and the tree
is trained on this augmented dataset of size RðjDjþ1Þ�jT j. Since the
random variable has no influence on the asset maintainability, all
variables with a lower score are removed from the dataset. To
ensure stability of the outcome, the score of each variable is



J.-F. Toubeau, L. Pardoen, L. Hubert et al. Energy 238 (2022) 121993
averaged over 10 repetitions of the procedure.

2.3. Classification tools

In this part, the goal is to develop a quick and reliable tool to
predict the maintainability yc,t of an asset c at time t given the grid
conditions specified by xc,t. The problem is formulated as a classi-
fication task with a binary outcome, i.e., yc,t ¼ 1 when the asset can
be safely put out of operation, and yc,t ¼ 0 when the maintenance
results into stressed conditions for the remaining system.

The objective is to optimize the parameters qc of these (asset-
specific) surrogates fqc such that the output yc,t can be accurately
predicted based on the given inputs xc,t [26]:

q*c ¼ arg min
qc

X
t2T

L

0
BB@fqc ðxc;tÞ|fflfflfflffl{zfflfflfflffl}

ŷc;t

; yc;t

1
CCA; (2)

where L is the loss function used to reduce the classification error
between the predicted ŷc;t and actual yc,t outputs during the
learning phase. At the end of the training, the optimal parameters

q*c of themodel are obtained, and it can be used (in the online stage)
to predict the outcome ŷc;t of a contingency analysis under new
system conditions xc,t (when grid asset c is in maintenance). This
procedure is described in Fig. 4, and is tested for different machine
learning models.

2.3.1. Decision tree
As previously explained, the training phase of a decision tree

(DT) consists in a greedy search, in which the optimal model

parameter q*c;m at a node m is the optimal split of the feature m. In
this part, the model is trained with a particular attention to avoid
overfitting issues (e.g., by controlling the depth of the tree) to
ensure optimal generalization capabilities on unseen data. The
decision tree is then compared with useful benchmarks in statis-
tical classification, i.e., a naïve Bayes classifier and a support vector
machine (SVM) framework.

2.3.2. Naive Bayes classifier
The Naive Bayes classifier relies on the assumption that the jDcj

inputs xc;t ¼ ðx1;t ;…; xjDc j;tÞ are fully independent, and have an
equal contribution to predict the outcome yc,t ¼ {0, 1}. Hence, the
Bayes’ theorem can be expressed as [27]:

P
�
yc;t

���x1;t ;…; xjDcj;t
�
¼

Pðyc;tÞ
QjDcj

i¼1Pðxi;t
��yc;tÞ

Pðx1;t ;…; xjDcj;tÞ
(3)

Since Pðx1;t ;…; xjDcj;tÞ is constant for a given database, the following
classification rule can be used:
Fig. 4. Online utilization of the trained classification model.
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ŷc;t ¼ arg maxyc;t Pðyc;tÞ
YjDcj

i¼1

Pðxi;t
��yc;tÞ (4)

where P (yc,t) and P (xi,tryc,t) are easily computed using the
Maximum A Posteriori estimation. In this way, P (yc,t ¼ 0) is the
relative frequency of yc,t ¼ 0 ct in the training set, such that P
(yc,t ¼ 0) þ P (yc,t ¼ 1) ¼ 1.

2.3.3. Support Vector Machine
Support Vector Machine (SVM) aims to find a jDcj � 1-dimen-

sional hyperplane in the Dc-dimensional space (defined by the jDcj
input features) that distinctly classifies the data points yc,t ¼ 0 and
yc,t ¼ 1. Among all possible hyperplanes, the goal is to find the one
that leads to the maximum distance between points of both classes
(yc,t ¼ 0 and yc,t ¼ 1) such that future outcomes can be classified
with more confidence [28]. The problem is formulated as the
following optimization model:

maxa ¼
XjT j

t¼1

at �
1
2

XjT j

t¼1

XjT j

u¼1

atauyc;tyc;uKðxc;t ;xc;uÞ (5)

s.t.

0 � at � C (6)

XjT j

t¼1

atyc;t ¼ 0 (7)

where C is a constant employed to penalize training errors, and K is
the kernel function used to map the input features into a high-
dimensional space, which allows to efficiently handle complex
classification problems. In this work, the linear kernel function
Kðxc;t ; xc;uÞ ¼ xuc;txc;u was found to yield good performance. By
solving this problem (5)-(7), we obtain the regularization param-
eters a that provides the wider margins between samples of both
classes.

2.3.4. Preliminary model selection
The models are tested for predicting the maintainability of a

70 kV line in the Belgium transmission system in different condi-
tions. In particular, we use a full year of data, which is subdivided
into a training set (composed of 70% of the database) and a test set
(consisting in the remaining 30%, i.e., 2621 hourly periods). The
accuracy of the methods are compared using the success rate r,
which is defined as the number of accurately classified samples (i.e.,
true positives and true negatives) on the 2621 points of the test set.
Interestingly, the decision tree and the Naïve Bayes classifier do not
require data pre-processing, while the SVM relies on the Min-Max
technique (8) to normalize the data into the [0, 1] interval before
training the model.

xorigd;t ¼
xorigd;t �minðxorigd Þ

maxðxorigd Þ �minðxorigd Þ
cd2D (8)

where xorigd is the vector of values (for all time steps t of the data-
base) associated with variable d2D. Then, to make a fair compar-
ison between classifiers, an extensive search is performed to find
the best combination of hyper-parameters of each model, in order
to maximize generalization capabilities and classification accuracy
[29]. For each technique, different models were trained (with
different values of hyper-parameters), and the best one is selected



Table 1
Confusion matrix of the different studied classifiers.

Bayes SVM DT

ŷ0 ŷ1 ŷ0 ŷ1 ŷ0 ŷ1

y1 112 2114 18 2508 16 2510
y0 92 3 35 60 70 25
r 95.6% 96.4% 98.4%
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based on its accuracy achieved through a cross-validation proced-
ure [30]. Outcomes are summarized in Table 1.

The decision tree (DT) outperforms both other classifiers in term
of success rate r with a high score of 98.4%. The decision tree pre-
dicts that maintenance cannot be performed (i.e. ŷc;t ¼ 0) for 16 h
during which it could have been safely done (i.e., yc,t ¼ 1), and
recommends a secure maintenance operation for 25 h during
which reliability issues can be actually created in the transmission
system. The SVM model is biased towards predicting safe mainte-
nances, while the Naive Bayes classifier is globally less efficient but
provides safer recommendations (with only 3 false positives). It is
also worth mentioning that, in contrast with other models, the
naive Bayes classifier is able to determine the maintainability yc,t
even in the absence of some predictor values. However, due to the
perfect state of the available database, this property is not useful in
the context of this work.

Overall, the decision tree is selected as a basis for the rest of the
study, which arises from their high accuracy (that lead to few false
positives while suggesting sufficient time slots to perform main-
tenance actions), combined with their useful properties for field
experts. Indeed, such techniques can be easily and intuitively un-
derstood, and can be fed by any type of input feature (continuous,
integer) without the requirement to normalize these data. This
bypasses the need to pre-process the database, which may lead to
poor results if it is not properly realized.

2.3.5. Improvements of the classifier
In order to further improve the performance of the basic deci-

sion tree algorithm (without altering its ease of use and inter-
pretability), different variants have been investigated. The idea is to
combine multiple decision trees in order to decrease the variability
of the resulting model. Such tree-based models have shown high
predictive accuracy, even in high-dimensional problems with
highly correlated features [31]. Two different learning strategies
can be used.

On the one hand, bagging methods, such as random forest (RF),
create (in a single step) NRF independent decision trees, but each
tree is built on a random subset of features, and each split of each
tree is constructed based on a random sub-sample of the remaining
data set. The final prediction is determined by averaging the results
of the NRF individual trees.

On the other hand, boostingmethods, such as Gradient Boosting
Decision Trees (GBDT) and eXtreme Gradient Boosting Trees
(XGBoost), sequentially creates newmodels (in an additive fashion)
to forecast the residuals of the global model obtained at the pre-
vious stage.

These models are tested in section 3, to illustrate their practical
value for the TSO.

3. Case study

The proposed methodology is used on real data of Belgium. All
classification tools have been implemented using the (open-source)
R programming language. The network simulations have be carried
out using the ‘Power Factory’ software, which performs
6

contingency analysis, i.e., load-flow computations estimating the
state of the power system in different contingency (outage of grid
assets) scenarios.

In this part, we firstly present the metrics used to evaluate the
performance of the different models in section 3.1. Then, we discuss
the outcomes from the feature selection and the subsequent
training of machine learning proxies in section 3.2 for two repre-
sentative assets. Finally, the results are generalized, and the global
maintainability of different electrical zones is studied in section 3.3.

3.1. Evaluation metric

For TSOsworldwide, false positives that erroneously predict safe
outage windows should remain limited. It is thus necessary to
control the trade-off between true and false positives, depending
on the cost of misclassification for the TSO. This can achieved by
adapting the threshold r fromwhich a maintenance is classified as
feasible. Typically, this threshold is fixed at r ¼ 0.5 for binary
classification tasks (i.e., a maintenance is deemed feasible if the
classifier yields a probability higher than 50% that no contingency
scenarios leads to unreliable or uneconomic grid conditions).
However, more conservative values r > 0.5 can be privileged to
decrease the prevalence of false positives. To guide the optimal
selection of the decision threshold r, a receiver-operating charac-
teristic (ROC) analysis is performed.

ROC curves display the rate of true positives (i.e., sensitivity)
against the rate of false positives (1-specificity) for different cut-off
values r. A perfect classifier has a ROC curve including the point (0,
1), which corresponds to no false positive and 100% of true posi-
tives. In this work, the optimal decision threshold r* is thus defined
as the one leading to the smallest Euclidean distance between the
ROC curve and the optimal point (0, 1). In addition, it should be
noted that the area under the ROC curve (which is referred to as
AUC) also provides a valuable performance indicator. Indeed, a
random classifier has a linear ROC curve passing though the point
(0.5, 0.5) where the model cannot discriminate classes. This cor-
responds to an AUC of 0.5. A perfect classifier passing through the
optimal point (0, 1) has an AUC of 1. This AUC metric, pertaining to
the [0.5, 1] interval, is thus used to compare the accuracy of
different classification models.

3.2. Performance of tree-based models

In this part, we evaluate the performance of the methodology in
predicting outcomes from contingency analyses (to assess whether
the maintenance of a specific asset can be performed without
jeopardizing the operational security of the grid). To that end, we
use one year of data, i.e., jT j ¼ 8736 hourly states, which are divided
into a training set (including 70% of the samples) and a test set
(with the remaining data). The analysis is performed for two
different assets.

3.2.1. Asset 1
First, we investigate the maintainability of a major high-voltage

transmission line of the Belgian system. To that end, we firstly
select the most relevant explanatory variables (to predict the
feasibility of maintenance actions in different conditions) by
training a decision tree on the whole database. It should be noted
that the trainedmodel cannot be graphically represented due to the
high-dimensionality of input data (i.e., more than 1000 variables).
However, thanks to the methodology described in section 2.2, it is
possible to quantify the importance of variables from the trained
model. As a reminder, the most significant variables are those with
an importance level higher than the one achieved by a fully random
variable. Outcomes are depicted in Fig. 5.



Fig. 5. Ranking of important variables affecting the feasibility of the maintenance of
asset 1. Fig. 7. Out-of-bag error as a function of the number of trees in the random forest.

Fig. 8. ROC curves of the random forest (a), and gradient boosting decision tree (b),
using the features selected by the decision tree.
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In particular, we observe that the maintainability of the studied
asset is strongly influenced by global grid conditions (i.e., the total
Belgian load as well as the total wind and PV generation). Those
results are coherent since the studied asset is a backbone overhead
line of the transmission system, and it is thus logical that it is
mainly affected by aggregated power exchanges. From these out-
comes, it can be concluded that defining the maintenance plan of
the studied line is not a simple task since the main explanatory
factors cannot be reliably predicted over long horizons.

Then, we analyze the accuracy of the decision tree, by quanti-
fying its performance on both training and test data. To that end, we
use the ROC performance curve (presented in section 3.1), and the
results are represented in Fig. 6.

In accordance with the current literature, we observe that the
decision tree has a high variance, which leads to overfitting with a
significant decrease of accuracy between training and test data, i.e.,
the AUC drops from 0.88 (in training) down to 0.8 when unseen
data are fed into the trained model. Hence, in this work, decision
trees are only used for their ability to identify the most important
variables during the training (and to quantify the importance of
those features), and the actual predictions are performed with
advanced tree-based models.

Based on the selected features, a Random Forest (RF) can be
trained. In RF, an important hyper-parameter is the number of
decision trees that are averaged to reduce the variance of the
model. When the number of trees increases, the resulting model
takes more time to train, and it is thus valuable to find the optimal
trade-off between accuracy and simulation time. In Fig. 7, we
therefore depict the out-of-bag error of the RF, which is computed
by feeding each tree (of the RF) with the samples that were not
used in the learning procedure, and by averaging the classification
errors.

One can see that the optimal solution is to use around 100 de-
cision trees in the forest. Indeed, when this number increases, the
Fig. 6. Performance of the decision tree, measured o
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performance gains become marginal, while the simulation time
inherently increases. The number of false positives and negatives
are those associated with a default value of the decision threshold,
i.e., r ¼ 0.5.

It is also important to optimize the other hyper-parameters of
the RFmodel (tomaximize performancewhile limiting overfitting).
Here, individual trees (forming the RF) are trained with 75% of the
feature space, and a minimum of 5 samples are required to split an
internal node. However, we fix no limit on the depth of each tree
(i.e., we do not limit the maximum number of allowed splits of the
input space). For GBDT, the number of boosting stages is fixed at
100 (to reach a good trade-off between accuracy and computation
time). An additional hyper-parameter to be optimized is the
learning rate (which weights the contribution of each tree). Here, a
value of 0.1 is selected. Once the hyper-parameters are fixed, both
RF and GBDTmodels are trained, and are then evaluated on the test
set. The resulting outcomes are shown in Fig. 8.

We see that both tree-based models exhibit a high accuracy,
with the RF (AUC ¼ 0.93) slightly outperforming the GBDT
n both training data (a), and on the test set (b).



Fig. 10. ROC curve of the random forest (on the test set) for the second studied asset.
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(AUC¼ 0.91). In that regard, the ROC curves of bothmodels are very
close to the theoretical optimum point (0, 1) that represent a per-
fect classifier. Interestingly, the models are characterized by an
optimal decision threshold r* (from which maintenances can be
classified as feasible) more conservative than the traditional cut-off
point of r ¼ 0.5. Such results are consistently observed across
simulations (for different samples t2T , for different assets c2C).

Since RF is more robust to changes in the hyper-parameters
(such that it requires less hand tuning in the training phase), and
has calculation times roughly twice as small as the GBDT, only RF is
kept by the TSO for the following of the study.

Finally, to quantify the added value of our feature selection
procedure (presented in section 2.2), the obtained solution (Fig. 5)
is compared with two other benchmarks. In the first one, we only
select the two most important variables, while the second one
considers all input features. The features selected by the different
methods are then separately fed to the RF classification tool (to
identify the feasibility of maintenances). Interestingly, we observe
an AUC of 0.87 for the model with 2 inputs (for an AUC of 0.93 with
the reference RF using the optimal number of variables). This ac-
curacy loss (due to the loss of explanatory information) is not
accompanied with significant time gains. Then, the RF with all
variables achieves an AUC of 0.94, but treating the high-
dimensional input space (>1000) significantly complicates the
training process. Moreover, this strategy prevents identifying the
most important features, which is highly valuable information for
expert teams.
3.2.2. Asset 2
The methodology is now illustrated for a power transformer

localized in a different area of the grid. A dedicated decision tree is
used to determine the most significant input features, whose
ranking is presented in Fig. 9.

The outageability of this asset is mainly affected by the load
consumption (i.e. total load). The influence of other variables (PV,
hydro and biomass generation) is very limited. The selected
explanatory variables are leveraged to train a random forest, and
the resulting ROC curve is shown in Fig. 10.

The accuracy of the RF model is very high, with an AUC of 0.97.
The optimal decision threshold is obtained for a conservative value
of r*¼ 0.9. However, this threshold still leads to around 10% of false
positives, and the TSO can thus use the ROC curve to select an even
more conservative cut-off r, while taking care that sufficient outage
windows are still available for the maintenance activities.

This framework (building fast and reliable surrogates for con-
tingency analyses) has been tested on a large scale (for many assets
in different areas), and similar results were consistently achieved.
These models can thus be reliably integrated into planning tools. In
parallel, as further discussed in the following section 3.3, these
models can also be used (following an aggregation of results) to
Fig. 9. Ranking of the most important variables influencing the operation of asset 2.
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quickly predict the global maintainability of the grid.

3.3. Model exploitation

The machine learning proxy developed in this work may serve
two main purposes. First, from an operational perspective, the
model can be used to directly inform maintenance planning tools
with time periods during which grid assets can be safely put out of
operation. In this way, there is no need to simulate all contingencies
within the decision procedure. The resulting time gains can bring a
lot of value for operational teams that have to frequently make use
of such planning tools for dynamically accommodating the outage
schedule as new information becomes available (such as delays in
previous maintenances) [32,33]. Second, given the high number of
grid assets (i.e., transmission lines and transformers), it is of high
interest for the TSO to have an overview of the maintainability of all
assets at an aggregated level. This second aspect is further inves-
tigated in the rest of the paper.

To have a global quantification of the maintainability of the
system, two complementary indicators are developed (section
3.3.1). The first one yields the prevalence of safe time slots during
which planned outage is expected to minimize reliability and
economic factors, while the second one characterizes the
complexity of accurately forecasting suitable periods for outage
scheduling. These indicators are computed for three different zones
of the Belgian transmission system (section 3.3.2), which allows to
evaluate the health status of these zones.

3.3.1. Criticality and unpredictability indicators
First, we define a criticality score characterizing the difficulty of

finding adequate periods for scheduling safe outages. This indicator
is defined as the number of working days during which the
maintenance of an asset is defined as unsafe (for at least 1 h) on the
total number of working days during the year. This indicator
therefore varies between 0 (when no opportune moment is avail-
able to plan an outage for maintenance) and 1 (when the asset can
be put out of operation during all working days without compro-
mising the grid's security).

This value is very useful for planning teams that need to define
optimal outage schedules, while assessing the robustness of the
transmission system.

In complement to the criticality score, we define a score quan-
tifying the unpredictability of maintenances, based on the impor-
tance of the (selected) predictor variables. The goal is to identify
assets for which safe outage windows are significantly affected by
variables that are complex to forecast (e.g., wind, solar irradiance,
etc.). Practically, this indicator is computed as the aggregated
contribution of the unpredictable variables divided by the contri-
butions of all input variables. A score of 0 means that the main-
tainability of an asset only depends on features that are easy to
predict (such as the nuclear generation), and a score of 1 is imputed
to assets whose operation conditions are influenced by more



Fig. 11. Criticality and unpredictability scores for all assets within three different zones
of the Belgian system.
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complex to forecast variables.
This information is highly valuable for the TSO that can differ-

entiate assets which can be incorporated into long-term mainte-
nance planning from assets to be scheduled in the short-run (to rely
on a consistent prediction of the stochastic variables influencing
their loading conditions). Moreover, the results are inherently
interpretable, which can strengthen the acceptability of the pro-
posed framework by operational teams.
3.3.2. Global maintainability of specific zones
The criticality and unpredictability indicators can be used to

assess the outageability for maintenance of the whole system, and
they are here computed for three different zones of the Belgian
transmission grid. To that end, all assets (i.e., transmission lines and
transformers within each of the studied zones) are displayed in
Fig. 11 in a two-dimensional space defined by the indicators. A
different symbol is used for assets located in different zones. For
ease of interpretation, the graph is divided into three different parts
(separated by iso-risk concentric circles defined by the Belgian TSO)
that yield an expert-based categorization between assets that are
“easy” and “difficult” to maintain, with an intermediate “chal-
lenging” category.

We observe that most assets are in the lower-left part of the
graph, which is an indicator of the goodmaintainability of the three
studied zones. Interestingly for the TSO, many assets are mostly
influenced by predictable variables (mainly the total Belgian load).
Moreover, those maintenance actions are likely to be performed
without compromising the security of the power grid (since many
safe time slots are available throughout the year). This clearly
Fig. 12. Evolution of the maintainability of zone 1 up until 2030
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highlights the robustness of the transmission system in these
studied areas. However, some assets are located far away from the
optimal point (0, 0), i.e., with high values of unpredictability and
criticality indicators, and the TSO should thus keep a particular
focus on the zones containing such grid assets.

A solution is to investigate the evolution of the maintainability
of the zones over the next few years. This is achieved by relying on
representative scenarios of the future climate years (for estimating
more closely the real situations faced in operation, such as years
with long heat waves, or years with a lot of wind), along with
projection of the future load behavior and generation mix
(including the renewable energy uptake). These scenarios are then
used as inputs for the trained tree-based models in order to predict
the outageability of each asset for each hourly period of the studied
years. This procedure is performed for all grid assets (of the three
studied zones) for three different years, i.e., 2023, 2025 and 2030.
The outcomes are depicted in Fig. 12. It should be noted that the
light computation burden of using (trained) random forests, those
results are obtained in less than 15 min.

It can be seen in Fig. 12 that the maintainability of the three
studied zones are expected to follow different trends. In Fig. 11, it
was observed that many assets of zones 3 were affected by
renewable-based generation. Hence, with the projected increase of
these resources [34], predicting the feasibility of outages for
maintenance activities will become more challenging. However,
the future maintainability of assets pertaining to zones 1 and 2 is
predicted to remain stable (with only a small decrease over the next
decade). In that regard, the maintenance of more than 75% of assets
of zone 2 will still be easily scheduled in 2030. It is therefore not
necessary for the TSO to consider reinforcing the network in this
zone in the near future. By applying this procedure at the grid scale,
operational teams can thus improve their knowledge of the grid,
and easily identify the problematic zones as well as the specific
challenges therein. This information may then serve as a reliable
basis to take adequate investment solutions.
4. Conclusions

In this paper, a new framework to improve security-constrained
outage planning in modern power systems is presented. Different
machine learning techniques are tested to provide fast and accurate
surrogates of contingency analyses, with the goal of predicting the
feasibility of a maintenance in specific grid conditions. To reduce
overfitting risks, while identifying the most important explanatory
variables, the tools are enriched with a tailored input selection
process.

The methodology is applied to different assets pertaining to the
Belgian transmission system. First, it is observed that the feature
screening procedure provides relevant outcomes (typically
based on the expected input scenarios of the Belgian TSO.



J.-F. Toubeau, L. Pardoen, L. Hubert et al. Energy 238 (2022) 121993
reducing the initial set of more than 1000 features down to 5 to 15
variables), which is illustrated by the performance of subsequent
classification tools (dedicated to predicting the feasibility of
maintenance actions). In particular, random forests achieve the
highest prediction accuracy, with a success rate steadily higher
than 90%. We also show that further reducing the input space
(down to 2 features) may strongly affect the prediction perfor-
mance, with a loss in accuracy higher than 5%.

Then, simulations on scenarios of the future Belgian grid (for
years 2025e2030) reveal that the maintainability of the system
may be significantly impacted by the penetration of renewable
generation, with a reduction of down to 20% of the safe mainte-
nance periods in some grid areas.

Overall, the random forests developed in this work have
attractive characteristics, by combining high performance, easy of
use and interpretability properties, thus bridging the gap between
machine learning and field expertise.

As a interesting perspective, the models could be trained to deal
with uncertainties, translating the fact that the values of input
features throughout the planning horizon are not perfectly known.
Moreover, the integration of these models into outage planning
tools is an important future step to improve the cost-efficiency of
grid maintenances.
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