Effect of the synthetic malaria pigment β -hematin on water NMR relaxation times: implications for malaria diagnosis by NMR

UMONS

M (µB/Fe)

Yves Gossuin^{1*}, Philippe Okusa Ndjolo², Quoc Lam Vuong¹, Pierre Duez²

*1Presenting author, Biomedical Physics Department, UMONS - yves.gossuin@umons.ac.be, ²Therapeutic Chemistry and Pharmacognosy, UMONS

Reliable, fast and low-cost diagnosis of malaria is crucial for an efficient treatment. A method using the paramagnetism of hemozoin - a by-product of haemoglobin detoxification by the parasite causing the disease - has recently been proposed with a detection based on the Nuclear Magnetic Resonance (NMR) relaxation induced by hemozoin. In this work the magnetic and NMR relaxometric properties of β hematin, the synthetic analog of hemozoin, are studied.

1. Malaria, hemozoin and β -hematin

- About 200 million patients suffer from malaria, a parasitic disease.
- •Caused by protozoans of the genus Plasmodium transferred to humans by mosquito bites.
- Production of hemozoin because of the detoxification of haemoglobin released by red blood cells.
- •β-hematin = synthetic analog of hemozoin, both contain Fe³⁺ ions and form microscopic crystals.

2. Magnetic properties of β -hematin: para- or superpara-magnet?

- \bullet β-hematin supposed to be paramagnetic because of Fe³⁺ ions, as shown by Brémard¹.
- A recent study² hypothesized a superparamagnetic behavior for β-hematin crystals
- •Easy to check: is there any remanence at very low temperature? If no => Paramagnetic

3. NMR relaxometry to detect β -hematin and malaria

For our samples: no remanence at 1.85 K,

- ⇒ Hematin is paramagnetic.
- ⇒ (very) Small magnetic moments compared to those of superparamagnetic particles.

Anisotropy of the iron magnetic moments in the hematin crystals³.

⇒ Significantly different from the the Brillouin function.

Figure 1: (a) Production of hemozoin in infected red blood

cells, (b) structure of hematin and (c) crystals of β -hematin

Coronado et al, BBA - Gen. Subj. 1840, 2032 (2014)

commercial β-hematin 70.4MHz commercial β-hematin 30.2MHz

Figure 4: Effect of the interecho time on the

transverse relaxation time

Magnetic field (T) **Figure 2:** M-B curve of β -hematin samples (powders)

During the infection, production of hemozoin by the parasites

T = 1.85 K

- ⇒ Creation of magnetic field inhomogeneities by the large magnetic crystals.
- \Rightarrow Shortening of T_2 , the transverse relaxation time of water protons⁴.
- \Rightarrow Could be detected by a measurement of $T_2^{4,5}$.
- But is the effect strong enough for a sensitive detection?
- Which are the best conditions $(T_1 \text{ or } T_2, \text{ magnetic field, echo time?})$

Figure 2: (a) Effect of the presence of hemozoin on water transverse relaxation in blood and (b) micromagnetic resonance relaxometry system(reproduced from 5)

/T₂ (s⁻¹)

Figure 3: Evolution of 1/T, with magnetic field (expressed as Larmor frequency) of β -hematin samples (3.88 mg/ml) at 25°C. A value of T_1 is also shown for comparison.

Sample	Normalised 1/T ₂
	at 60 MHz (s ⁻¹ ml mg ⁻¹)
Commercial β-hematin	8.84±0.27 (at 62 MHz)
Mons β-hematin	6.39±0.19
β-hematin, Karl et al ⁴	8.33

Table: Normalised $1/T_2$ of the β -hematin samples and comparison with previous data

What do we learn from these graphs

- √ T₁ effect far smaller => use T₂!
- √ 1/T₂ increases with the field
- ⇒ High fields are better
- 1/T₂ increases with the intercho time of the CPMG sequence
- ⇒ Use large echo times

Is it possible?

- High fields for micro NMR?? Not easy
- Long echo times ↔ excellent B₀ homogeneity
- Sensitivity of the method: not so good without the centrifugation step!
- The centrifugation used in 5 allows to increase [hemozoin] by a factor of 170?

4. References

- 1. Brémard, C. et al. J Mol Struct 267, 117-122 (1992).
 - 2. Inyushin, M. et al. Sci. Rep. 6, 26212 (2016).
 - 3. Butykai, A. et al. Sci. Rep. 3, 1431 (2013).
- 4. Karl, S. et al. Am. J. Trop. Med. Hyg. 85, 815-817 (2011).
 - 5. Peng, W. K. et al. Nat. Med. 20, 1069–1073 (2014)