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Abstract: State observers require a process model and some available measurements for 
reconstructing on-line unmeasured states. To enhance the sensitivity of these unmeasured 
states with respect to the measured ones, and in turn, to improve the quality of the 
estimates, a new cost function is discussed in this. paper, which combines a maximum 
likelihood criterion with a sensitivity measure. Minimization of this combined cost function 
produces a model dedicated to state estimation purposes. A thorough analysis of the 
procedure is presented in the context of fed-batch bioreactor modeling, including parameter 
identification, model validation and design of extended Kalman filters and full horizon 
observers. 
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I . INTRODUCTION 

From a process model and some available 
measurements, state observers (or software sensors) 
allow unmeasured state variables to be reconstructed 
on-line. State estimation techniques are particularly 
important in biotechnology, where hardware sensors 
are extremely costly and have stringent operating 
conditions (sterilization, long processing times, etc.). 

When a process model is established, the unknown 
parameters are usually estimated by minimizing a 
least squares or maximum likelihood criterion. These 
conventional criteria however do not express the 
condition that the unmeasured states - as reproduced 
by the process model - should be sensitive to the 
measured ones. Otherwise, even if the system is 
observable, the software sensor might produce poor 
estimates of the unmeasured states. 

In previous studies (Bogaerts and Vande Wouwer, 
2000a, b), the authors suggested a new parameter 
identification procedure yielding a model dedicated to 
state estimation purposes. Based on the concept of U­
uniform observability of a non linear system (Gauthier 

415 

and Kupka, 1994), a "measure of observability" is 
derived, which quantifies the ability to detect in the 
output trajectories any differences in the initial states. 
State estimation sensitivity is enforced by minimizing 
a cost function combining a conventional maximum 
likelihood criterion with this observability measure. 
The effectiveness of this parameter identification 
procedure was demonstrated with the design of a full 
horizon observer reconstructing biomass and glucose 
concentrations in batch CHO animal cell cultures 
from experimental measurements of glutamine and 
lactate concentrations. 

Even though this real-case application was very 
successful, one might raise the objection that our 
observations were influenced by several specific 
choices and/or experimental conditions: 

(a) the selection of a model structure and 
parametrization (i.e., the general kinetic model 
structure proposed in (Bogaerts and Hanus, 
2000b», 

(b) the quantity and quality of the measurement data 
(i.e., rare and asynchronous measurements of 
biomass, glutamine, glucose and lactate 



concentrations), 
(c) the implementation of a specific state estimation 

algorithm (i.e., a full horizon observer (Bogaerts 
and Hanus, 2000a) reconstructing on-line the 
most likely initial conditions). 

Of course, (a) and (b) could influence parameter 
identifiability, while (c) could have an effect on the 
quantification of the importance of the model 
sensitivity on the quality of the state estimates. 

The objective of the present study is to alleviate. these 
potential problems and to demonstrate the usefulness 
of the "identification for state estimation" concept 
even in the situation where the exact model structure 
is known and large sets of good-quality measurement 
data are available (of course, this ideal situation can 
only be investigated in simulation). Further, this study 
aims at showing that, whatever the state observer 
structure, model sensitivity significantly influences 
the quality of the unmeasured state estimates. 

This paper is organized as follows. A fed-batch 
bioprocess, which will be used as a test-example 
throughout the complete study, is described in Section 
2. In Section 3, the experimental conditions are 
detailed and the kinetic parameters are estimated by 
minimizing a classical maximum likelihood criterion. 
Section 4 briefly discusses the design of an extended 
Kalman filter and a full horizon observer and shows 
that, even a high-quality model (in the classical 
sense), can lead to poor estimates of unmeasured 
states. Section 5 presents a new cost function, which 
enforces state estimation sensitivity, and highlights 
the influence of the parameter identification step on 
the performance of both state estimators. Finally, 
Section 6 is devoted to concluding remarks. 

2. PROCESS DESCRIPTION AND MODELING 

Consider a simple macroscopic reaction scheme 

growth: (I) 

<Pm 
maintenance: SI +vxX~vx X+vpP (2) 

where X, SJ, S2 and P represent biomass, substrate 1-2 
and product, respectively, and vs" Vx and vp are 

pseudo-stoechiometric coefficients. The symbol 
" ~I\ " means that the growth reaction is auto­
catalyzed by X and the presence of "vx X" in both 
sides of the maintenance reaction means that X 
catalyzes this latter reaction. 
The growth rate <pg and the maintenance rate <Pm are 
described by classical Monod laws and inhibition 
factors 

(3) 
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_ m SI K~ X 
<Pm - Jlmax K~ +SI K~ + X 

(4) 

These growth and maintenance reactions take place in 
a bioreactor operated in fed-batch mode with a time­
varying inlet flow rate Fin(t) and constant inlet 
substrate concentrations SI .in and S2, in' Simple mass 
balances allow the following dynamic model to be 
derived : 

dX 
-=<P -DX 
dt g 

~ = -en + D (SI' - SI) dt 'Ym ,m 

dS 2 =-vs <Pg+D(S2in- S2) 
dt 2 • 

dP 
- =VP<Pm -DP 
dt 

dV =F 
dt m 

(5) 

(6) 

(7) 

(8) 

(9) 

where X, S" S2, P now denotes the respective 
component concentrations, V is the culture volume 
and D(t)=Fin(t)N(t) is the dilution rate. 

The model equations (5-9) together with the 
numerical values of the several parameters listed in 
Table 1 define the reference system, which is 
investigated in simulation in the continuation of this 
study. 

Table 1. Model parameters 

vs, = 0.2 rnMI( I 05 cell/ml) Kg 
I 

= 70mM 

vp = 1.7 Jl;ax =0.1 h·1 

j.I.~ax = 0.05 h·1 
K~ = 0.2mM 

Kg 
M = O.lmM Km 

I = 3 105 cell/ml 

3. CLASSICAL PARAMETER IDENTIFICATION 

For identification purposes, it is assumed that the 
component concentrations can be measured off-line at 
regular time intervals (e.g., every 5 hours). These 
measurements are spoiled by normally distributed, 
white noises with zero mean and variance matrix Q. 
Constant relative errors are considered (e.g., 

E~I = 0.1, E~I = 0.05, E~I = 0.05, E~I = 0.05). We 

also assume that the pseudo-stoechiometric 
coefficients as well as the model initial conditions 
(initial concentrations and volume) are known exactly 
and that only the values of the kinetic parameters must 
be inferred from measurement data. At this stage, note 
that a systematic identification procedure has been 
proposed in (Bogaerts and Hanus, 2000b), which 
allows the pseudo-stoechiometric coefficients to be 
estimated independently of the kinetic coefficients 
(Bastin and Dochain, 1990) by minimizing a 



maximum likelihood criterion. This procedure also 
considers the estimation of the most likely initial 
conditions (since the concentration measurements are 
corrupted by noise at each sampling time, including 
the initial one). 

From the previous discussion, the model and 
measurement equations can be rewritten in short form 

dx 
- = f(x(t), u,~) 
dt 
y(t k ) = X(tk)+E(tk ) 

(10) 

(11) 

where x(t) is the state vector (concentrations and 
volume), u(t) is the input (dilution rate), ~ is the 
unknown parameter vector (kinetic parameters), y(tk) 

and E(~) are the measurement and noise vector, 
respectively. 

The maximum likelihood estimation ~ of ~ is given 
by 

~=Argmin FmJ(~)' with (12) 
iI 

Fml (~) =..!.. I(y(t k ) - x(t k » T Q(t k )-1 (y(t k ) - x(t k» 
2 k=1 

where x(t) is the state estimate obtained by 

integration of the model equations (10) with the 

parameters ~ = ~ . 

In this study, the kinetic parameters are estimated 
using measurement data taken from two experimental 
runs. A third experiment (whose data are not used for 
parameter estimation) provides a cross-validation test. 
These experiments differ in their initial conditions, 
inlet substrate concentrations and flow rate (taken, for 
instance, in the form Fin (t) = 0, for t < tb and 

Fin (I) = aCt - tb), for tb :5 t :5 tfb , with 

ex = 5xlO-4l/h2) according to Table2. 

Table 2. Experimental conditions 

X(O) (105 cell/ml) 
Exp I Exp2 Exp3 

I I I 
SI(O) (mM) 10 10 8 
Sl(O) (mM) 8 I 5 
P(O) (mM) I I I 
V(O) (I) 0.5 0.5 0.5 
SI .in (mM) 5 5 10 
Sl.in (mM) I I 3 
tb (h) 30 35 50 
~f(h) 80 80 90 

To avoid any convergence problem of the 
optimization algorithm ("Isqnonlin" from the MATLAB 

5.3 optimization toolbox), which would obscure the 
conclusions of our analysis, we start from the exact 
kinetic parameters given in Table I. The main effect 
of (12) is therefore to slightly adjust the parameters to 
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a specific realization ofthe measurement noise. Figure 
I shows the cross-validation test performed with 
experiment 3. In this graph, the circled points are the 
measured data and the bars represent the 99% 
confidence intervals. The solid lines are the 
concentration trajectories predicted by the identified 
model. 
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Fig. 1. Model cross-validation (experiment 3) 

4. STATE ESTIMATOR DESIGN 

Based on the model identified in the previous section, 
two different state estimators are designed, e.g., a 
continuous-discrete extended Kalman filter (Gelb, 
1974) and a full horizon observer (A\1gower et al., 
1999; Bogaerts and Hanus, 2000a.). The objective in 
this study is to obtain a continuous-time estimation of 
biomass and substrate I concentrations from discrete­
time measurements of substrate 2 and product 
concentrations. As only two component 
concentrations are measured on-line, it is necessary to 
introduce a measurement matrix C in (11), i.e., 

(13) 

where E(tk) is a measurement noise vector with 
variance matrix Q = diag(os/, 0/). 

4.1 Continuous-discrete extended Kalman filter 

The continuous-discrete extended Kalman filter is the 
generalization of the Kalman filter to nonlinear 
systems described by continuous-time state equations 
(10) and discrete-time measurement equations (13). 

Prediction step (between samples): 

dx • 
- = f(x,u), 
dt 

dP = A(x)P+PA(x)T 
dt 

Correction step (at sampling times): 

K(t k) = P(tk )CT [CP(tk )C
T + Q(tdf

l 

(14) 

(15) 

(16) 



x(t~) = X(tk) + K(tk )~(tk) - Cx(tk») (17) 

p(tn = P(tkJ-K(tk)CP(tk) (18) 

The extended Kalman filter requires the on-line 
numerical integration of the state equation (14) and 
the Ricatti equation (15). The latter involves the 
matrix A(x) = (of lox). resulting from the model 

linearization along the predicted state trajectory. 

These equations are solved starting with the initial 
conditions x(O) = Xo and P(O) = Po . For substrate 2 

and product, these values are best taken from the 
measured concentrations and the measurement error 
variances at the initial time, respectively. For the 
un measured component concentrations, these initial 
values can only be guessed based on common sense 
and process knowledge. They represent the tuning 
parameters of the Kalman filter, which are taken here 
as, e.g., X(O) = 3xl05 celVml, S,(O) = 5 mM, Po(I,I) = 
o x2 = 106 (celI/ml)2 and Po(2,2) = OS, 2 = 106 mM2

. 

Figure 2 shows that the Kalman filter accurately 
estimates the measured substrate 2 and product 
concentrations as well as the unmeasured biomass 
concentration. However, it produces poor estimates of 
the unmeasured substrate I concentration, with the 
exception of the final times where substrate I 
disappears and growth limitation occurs. This latter 
observation will become clear in Section 5. 
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Fig. 2. State estimation with a continuous-discrete 
extended Kalman filter (experiment 3) 

4.2 Full horizon observer 

Between two measurement times, numerical 
integration of the state equations (10) from an 
estimate of the most likely initial conditions allows a 
prediction of the state vector to be computed on-line. 
At the next sample time, a new estimate of the initial 
conditions can be obtained by minimizing a maximum 
likelihood criterion based on all the measurements 
available up to this time. The procedure is repeated 
from sample to sample and can be summarized as 
follows : 
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Prediction step (between samples t k < t < t k+'): 

dx • dt = f(x,u), 0 ~ t < tk+' (19) 

x(O) = XO / k 

Correction step (at sampling times): 

XO /k = Arg min J dx 0) with (20) 
"0 

k 

J k (xo ) =..!. L.( y( tj) - O«t j» T Q(tj )-J (y(t j) - Cx(t j» 
2 j;J 

For the first time interval, the state equations (19) are 
solved starting with initial conditions determined in 
the same way as for the Kalman filter (i .e., S2(0) and 
P(O) are the measured values while X(O) = 3X\05 
ceIVml and S,(O) = 5 mM are a priori initial guesses). 
The minimization of (20) is performed repeatedly 
with "Isqnonlin". The tuning parameters of the 
observer are the lower and upper bounds on Xo, which 
are taken here as, e.g. , 0 < Xo < 5, 0 < S, .o <20, 0< S2.0 
< 10, 0 < Po < 5. 

The observations are basically the same as with the 
extended Kalman filter, i.e., the unmeasured substrate 
I concentration is poorly estimated (see fig. 3). 
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Fig. 3. State estimation with a full-horizon observer 
(experiment 3) 

5. IDENTIFICA nON FOR STATE ESTIMA nON 

It is now clear that, even with a high-quality model (in 
the classical sense of Section 3), state observers might 
fail to produce reliable estimates of unmeasured state 
variables. The objective of this section is to introduce 
a new cost function enforcing a higher sensitivity of 
the unmeasured part of the state with respect to the 
measured one. Complete developments can be found 
in (Bogaerts and Vande Wouwer, 2000a, b). 

Consider the non linear model equations 

dx 
-=f(x u) 
dt " 

x(O) = Xo (21) 



y=CX (22) 

Let y(t,x(O),u(t» denote the output trajectory 
corresponding to the initial condition x(O) and the 
input u(t) . The system (21-22) is observable if, for any 
couple of different initial conditions x(O) and x'(O), 
there exists an input u(t) and a time 0 < t < 00 for 
which the outputs y(t,x(O),u(t» and y(t,x'(O),u(t» are 
different. Uniform observable systems have the 
particularity that each admissible input allows any 
couple of different initial states to be distinguished. 
Locally V-uniform observability in x(O) is restricted 
to a neighborhood V(x(O» of x(O) imd to inputs in an 
admissible domain U. Any locally U-uniformly 
observable multiple input - multiple output system 
can written in a pseudo-canonical form 

yet) = XI (23) 

where 

\;fiE {l, .. . ,q}, x, E 9\n" nl ~n2 ~ ... ~ nq and L nj =n 
l~i:5:q 

and 

\;fi E {I, .,q -11 \;f(x,u) E 9\n x U : rank Mj (x ,u) = nj+1 

with 

. X U = E .;1\ 1-+1 1+1 M ( ) 
( 

afj(x,u) )T( afj(X,U») rnn x n. 

I' aXj+1 aXj+1 

If some matrices MiCx,u) are full-rank but ill 
conditioned, the system is theoretically observable but 
a difference in the initial states might be extremely 
difficult 'to detect in the output trajectories. This 
observation leads to the definition of an "observability 
measure" Fobs quantifying this ability to detect, in the 
output trajectories, any differences in the initial states. 
Assuming that the state trajectory x(t) is measured at 
discrete times tk, (k=I, ... ,N), a candidate scalar 
measure is given by 

N q- I 
Fobs = I..I..~cond(Mj(x(tk),u(tk» (24) 

hi i=1 

where "cond" represents the condition number of the 
matrix, i.e., the ratio of its largest to its smallest 
eigenvalue. 

Based on these results, a new form of the cost 
function combining the conventional maximum 
likelihood criterion F ml (12) with the observability 
measure Fobs (24) can be defined as 

.;} = Arg min F(~) = Arg min{Fmi (~)+ A.Fobs (~)} (25) 
~ ~ 

where A is a weighting factor. 
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A straightforward way to select this weighting factor 
is to plot the separate components Fml and Fobs as 
functions of A (see fig. 4). For increasing A., Fobs 
decreases while Fml increases. A compromise solution 
must therefore be considered, e.g., A = 0 .1 (for this 
value, Fml doubles whereas Fobs is reduced by a factor 
2.6; for larger values of A, Fml increases significantly 
whereas Fobs only slightly decreases). 

-'~L 0 0 0 0 0 0 0 0 1 
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Lambda 

-1- 0 0 0 0 0 0 0 0 j 
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Lambda 

Fig. 4. Evolution OfFml(A) (top) and Fobs(A) (bottom) 

With this trade-off value for A, the combined cost 
function (25) is minimized using again "Isqnonlin". 
The identified kinetic parameters are listed in Table 3. 
In comparison with Table I, the values of some 

parameters, particularly Kr and K~, have changed 

significantly . 

Table 3. Identified parameters (cost function (25» 

~~ax = 0.062 h'l ~!X =0.11 h'l 

K~ =0.046 mM K~ =0.31 mM 

Kg 
I 

=14mM Km 
I 

= 2.8 \05 cell/ml 

If these new model parameters are used in the 
extended Kalman filter designed in Section 4, the 
results graphed in figure 5 are obtained. Significant 
improvements in the estimation of the unmeasured 
substrate 1 concentration can be observed. Indeed, the 
norm of the estimation error (defined as the sum of the 
squares of the estimation errors at each sampling time 
weighted by the corresponding measurement 
variances) has been reduced by a factor 30 ! Similar 
results can be obtained with the full-horizon observer 
as illustrated in figure 6. 

A closer look at the expressions of the reaction rates 
(3-4) and a comparison of the numerical values of the 
kinetic parameters in Tables 1-2 allows a physical 

interpretation of these results. As Kf is much larger 

than S" the inhibition factor in (3) reduces to I. On 

the contrary, SI is much larger than K~, at least at 

the beginning of the experiments 1-2, so that the 
Monod factor in (4) also tends to unity. As a 



consequence, the system is intrinsically insensitive to 
the variations of substrate 1 ! It is apparent from Table 
2 that the minimization of the combined cost function 
(25) attempts to compensate these effects by 

significantly reducing the value of Kf and by 

increasing the value of K~. 
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Fig. 5. State estimation with a continuous-discrete 
extended Kalman filter using a model 
identified with the combined criterion (25) 
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Fig. 3. State estimation with a full-horizon observer 
using a model identified with the combined 
criterion (25) 

6. CONCLUSIONS 

In this study, a new parameter identification procedure 
yielding a model dedicated to state estimation 
purposes is thoroughly analyzed. Basically, a new cost 
function is proposed which combines a classical 
maximum likelihood criterion with a "measure of 
observability" . Based on the concept of U-uniform 
observability of a nonlinear system, this measure 
quantifies the ability to detect in the output trajectories 
any differences in the initial states. Minimizing the 
combined cost function enforces higher model 
sensitivities and in turn, a better transfer of 
information from measured to unmeasured variables. 
The simulation studies described in this paper show 
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that this goal is achieved by modifying the numerical 
values of some model parameters in order to 
compensate an intrinsic lack of sensitivity with 
respect to some of the state variables. This model 
"falsification" allows significant improvements in the 
quality of state estimates provided by software 
sensors. 

These results confirm previous authors' observations 
made in the context of batch animal cell cultures 
(Bogaerts and Vande Wouwer, 2000a, b). In these 
experimental applications, the degrees of freedom 
available at the modeling stage, e.g., the selection of 
the model structure and parametrization, can be used 
to enhance the sensitivity of the unmeasured states 
with respect to the measured ones. 
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