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Examples of Sorting problems
Sorting = sorting into ordered categories

Credit scoring

Assign applicants to categories
labelled “accept”, “requires
further examination”, “reject”,
or referring to some other ordi-
nal scale of risk evaluation, ac-
cording to characteristics of the
applicant.

ASA score
Score assigned to patients by
anesthesiologists before going
to surgery depending on the pa-
tients medical parameters
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Examples of Sorting problems (cont’d)

Rating projects or candidates for a position
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Examples of Sorting problems (cont’d)

Grading students: pass or fail ; honors
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Characteristics of Sorting problems

These problems differ in several ways:

I assignments are to be made routinely or the decision problem
is one-shot

I assignments are made by using explicit regulatory rules or they
integrate the values or preferences of the decision maker(s)

I assignment data are available or not; they are abundant or not

In the sequel, we mainly focus

I on one-shot decisions

I the preferences of the DM have to be taken into account

I the number of assignment data that can be obtained is
limited (a few dozens)
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Multiple criteria sorting

I objects or alternatives sorted in ordered categories (preference)

I they are evaluated w.r.t. several criteria (direction of
preference)

I assignment to categories respects dominance : if a is at least
as good as b on all criteria, then a is not assigned to a worse
category than b

We assume w.l.o.g. that, for all criteria, the more the better
(maximize evaluations)
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Aim of this talk

Eyke Hüllermeier, at DA2PL 2014, Paris:
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Aim of this talk (cont’d)

Leitmotiv : How can we validate the usage of a sorting method in
MCDA ?

I Make a guided tour in the country of MC sorting methods

I Try to identify what has been done in order to validate the
choice of a model and its usage

I Try to identify some issues that deserve further investigation
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UTADIS
Utilité Additive DIScriminante (Jacquet-Lagrèze & Siskos
1982)

I Based on additive utility (additive value function)

u(a) =
n∑

i=1

ui (ai ),

with ui nondecreasing function of the evaluation ai of a on
criterion i

I Categories C1, . . .Ch, . . .CH ; the greater h the better

I Thresholds Uh

Assignment rule:

a ∈ Ch iff Uh ≤ u(a) < Uh+1
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Electre Tri

Yu Wei PhD Thesis 1992, Roy & Bouyssou 1993

I Based on pairwise comparisons recorded in an outranking
relation S

I Principle: a outranks b (aSb) is considered true if there are
sufficient arguments to affirm that a is not worse than b and
there is no essential argument to refuse this assertion

I Categories C1, . . .Ch, . . .CH ; the greater h the better

I For each category Ch, define a lower profile bh of the category

Assignment rule: (pessimistic or pseudo-conjunctive)

a ∈ Ch iff aSbh and Not[aSbh+1]
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How to use such models for sorting ?

I Select a model (UTADIS or Electre Tri or . . . )

I Determine the model’s parameters

Second issue first, using UTADIS as example.

I Direct elicitation

I Indirect elicitation or Learning

12/52



Determine the model’s parameters

Direct elicitation

I build an additive utility function by interacting with the DM
methods: indifference judgments, SMART, direct rating, . . .

I specify the minimal utility value Uh for category Ch

e.g., the DM specifies a (possibly artificial) alternative that
has minimal utility in Ch

Indirect elicitation / Learning

Use assignment examples to infer the parameters of the model
Issues:

I indeterminacy (more than one model compatible with
assignment examples)

I incompatibility (no model compatible with all assignment
examples)
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Indirect elicitation in MCDA

I Often the case that the number of assignment examples is not
sufficient to determine a model with reasonable precision →
indeterminacy / no incompatibility

I In case the DM is available for answering assignment
questions, incremental elicitation strategies can be envisaged
(cf. active learning)

I In the sequel, we concentrate on the analysis of indirect
elicitation in a static situation in which a fixed and “small” set
of assignment examples is available

14/52



Table of contents

Multiple criteria sorting

Two landmark models

Indirect elicitation of a model’s parameters

Model selection

Analysis of monotone sorting models

Discussion and Research issues

Bibliography

15/52

The case of UTADIS
I Learning method known as preference disaggregation or

ordinal regression
I Resolution of a Linear Programming formulation

(Jacquet-Lagrèze & Siskos 1982)

Piecewise linear marginal utilities

u(a) =
∑n

i=1 ui (ai ) with ui piecewise linear (number of pieces is a
parameter)

gi (a) = ai ;
∑
i

ui (βi ) = 1 ; ui (x
j
i ) = uji
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A linear programming formulation

A∗ = set of assignment examples =
⋃

hAh
∗

Ah
∗ = alternatives assigned to Ch

Linear program (LP1)

max δ
s.t. u(a) ≥ Uh + δ ∀a ∈ Ah

∗, ∀h
u(a) ≤ Uh+1 − ε− δ ∀a ∈ Ah

∗, ∀h

Variables : thresholds Uh ; utilities at breakpoints uji ; δ

Comments

I If the LP has a solution, the latter assigns the examples a
utility that is as far as possible from the thresholds Uh

I If the LP has no solution, there are other LP formulations that
are tolerant to “assignment errors”

17/52

Formulation minimizing constraint violations

Linear program tolerant to “errors” (LP2)

min
∑

a∈A∗
σ(a)

s.t. u(a) + σ(a) ≥ Uh ∀a ∈ Ah
∗, ∀h

u(a)− σ(a) ≤ Uh+1 − ε ∀a ∈ Ah
∗, ∀h

Variables : thresholds Uh ; utilities at breakpoints uji ;
σ(a), a ∈ A∗
Comments

I Such LP can deal with large sets of assignment examples

I The solution is not necessarily optimal in terms of accuracy;
no error model is postulated here
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Solution selection : centrality

Assume (LP1) has a solution
This solution maximizes the minimal utility difference between
examples belonging to consecutive categories
A major idea for selecting a solution : centrality

Seeking for centrality

UTADIS∗ computes the average of 2n extreme solutions

ACUTA (Bous et al. 2010) computes the analytic centre of
the polyhedron defined by the constraints in
parameters space

Chebyshev centre (Doumpos et al. 2014) selected solution is the
centre of the larger sphere inscribed in the feasible
polyhedron

Interesting experimental comparison of all these and other variants
in Doumpos et al. 2014
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Solution selection : most representative value function

I Greco et al. 2011

I Completely different idea, not related to centrality

I Emerged in the framework of ROR (Robust Ordinal
Regression), Greco et al. 2008
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Robust ordinal regression
I UTADISGMS (Greco et al. 2010)
I Working with all additive utility functions compatible with the

assignment examples
I Not only piecewise linear marginal utilities

Variables = uji = ui (a
j
i ) for all aj ∈ A∗ (aji denoted

yi , vi ,wi , zi in Figure); no category thresholds
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Assignment rule in ROR

For any compatible utility function u

a1 a2 a3 a4

C1

a5 a6 a7 a8 a9

C2

a10 a11

C3

u(x)

U1
U

1 U2
U

2 U3
U

3

I If u(a) falls in interval [U1,U
1
], a is assigned to C1

I If u(a) falls between U
1

and U2, a is assigned to C1 or C2

I . . .

For each compatible utility function, each alternative is assigned to
one category or an interval of two consecutive categories
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Possible and necessary assignments

Robust assignment rules

I Ch is a possible assignment for a if there is a compatible
utility function u assigning a to Ch

I Ch is a necessary assignment for a if all compatible utility
functions assign a to Ch

The possible and the necessary assignments of a are sets of
consecutive categories. The set of necessary assignments may be
empty.
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Taking account of uncertainty, imprecision, indeterminacy

The robustness idea
Many declinations to robust sorting, ranking, choosing:
Dias et al. 2002, GRIP (Figueira et al. 2008), Non-additive ROR
(Angilella et al. 2010), ElectreGKMS (Greco et al. 2011),
Hierarchy ROR (Corrente et al. 2012), UTADISGMS -Group
(Greco et al. 2012), UTADISGMS -INT (Greco et al. 2014)

Stochastic approach : SMAA

I SMAA-TRI (Tervonen et al. 2009): studies the sensitivity of
assignment when the parameters of an Electre Tri model
are considered uncertain (probability distribution assumed on
parameters space)

I For each alternative a and category Ch, it computes, by
simulation, a category acceptability index = share of possible
parameters values leading to assigning a to Ch

I Kadzinski and Tervonen 2013 combine ROR and SMAA in
case of indirect elicitation of Electre Tri
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Comments about the ROR approach

1. ROR aims to use the assignment examples without adding
arbitrary information at the price of increasing imprecision in
the assignments

Kadzinski and Tervonen 2013: “Our experiences indicate that
the range of possible assignments can be rather wide, whereas
the set of necessary assignments is often empty”

2. Ends up with a family of not explicitly identified models

Ending up with a single hypothetical model describing the
assignment mechanism has a value in terms of explainability
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Comments about the ROR approach (cont’d)

3. In case the goal of identifying an hypothetical assessment
model is abandoned, what is the justification of working with
a particular parameterized family of models (such as additive
utility or Electre Tri or . . . )?

Why not using the most general family of models, i.e., the
monotone assignment models?

In any case, observe that the possible and necessary
assignments depend on the definition of the parameterized
family of models

The latter comment drives us to the model selection issue
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Why working with a particular type of model ?

I In Machine learning / Preference learning, prediction accuracy
is a major criterion

I In MCDA, the model has to appeal to (“speak” to) the DM
and make sense for the analyst ( = expert in MC methods)

The model as a communication and reasoning tool

A model has

I an intuitive content

I and a formal or technical content implementing or
operationalizing its intuitive content
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Intuitive content of models (for ranking, choosing, sorting)

Additive utility sophisticates weighted sum (Keeney Raiffa 1976)

Outranking relations based on pairwise comparisons,
independently of the other alternatives (Roy 1968)

I comparing a and b : balancing pros and cons
I different operationalizations of this “balance of

pros and cons” : Electre (Roy Bouyssou
1995), Promethee (Brans Vincke 1985)

AHP builds a value function through pairwise comparisons
organized in a hierarchy (Saaty 1980)

TOPSIS minimizes distance to ideal and maximizes distance
to anti-ideal (Hwang Yoon 1981); many variants

Methods based on the idea of clustering Define class centers and
assign to the “closest” center
I k-means, Electre Tri-C, Flowsort, Chen et

al. 2007, 2008, . . .
I Do not always guarantee monotonicity
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Intuitive content of models (cont’d)

I Lots of ideas that can constitute a basis for communicating
with the DM

I These intuitive ideas are implemented in, sometimes,
complicated models and methods
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Example of implementation: Electre Tri

I For simplicity: sorting the set of all alternatives X in 2
categories A (acceptable) and U (unacceptable)

I Lower limit profile of category A: p = (p1, . . . , pn)

I Assignment rule (pessimistic or pseudo-conjunctive)

a ∈ A iff aSp

Outranking relation S

Defined for all a, b ∈ X . We have aSb if

I a is “at least as good” as b w.r.t. a sufficient subset of criteria
(measured by a concordance index)

I and there is no criterion on which a is unacceptably worse
than b (measured by a discordance index)
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Concordance

Marginal concordance index ci(ai , bi)

ai − bi

1

-qi-pi 0

ci(ai, bi)

qi : indifference threshold
pi : preference threshold
gradual concordance between −pi and −qi
Concordance index c(a, b)

c(a, b) =
n∑

i=1

wici (ai , bi )

wi : weight of criterion i
32/52



Discordance

Marginal discordance index di(ai , bi)

ai − bi

1

-pi-vi

di(ai, bi)

vi : veto threshold
pi : preference threshold
gradual discordance between −pi and −qi
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Outranking à la Electre Tri

ai − bi

1

-qi-pi 0

ci(ai, bi)

-vi

di(ai, bi)

Outranking relation S

a outranks b, i.e., aSb if the degree of credibility

σ(a, b) = c(a, b)
∏

i :di (ai ,bi )>c(a,b)

1− di (ai , bi )

1− c(a, b)

passes some threshold λ with .5 ≤ λ ≤ 1

Clearly, there are simpler ways of implementing the intuitive idea of
outranking. This one favors a certain dose of graduality
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Outranking à la Electre I

ai − bi

1

-qi
=-pi

0

ci(ai, bi)

-vi

di(ai, bi)

Outranking relation S

a outranks b, i.e., aSb if the degree of credibility

σ(a, b) = c(a, b)
n∏

i=1

(1− di (ai , bi ))

passes some threshold λ ∈ [.5, 1]

In other words: aSb if c(a, b) ≥ λ and di (ai , bi ) = 0 for all i
35/52

Simpler Electre Tri

The Electre Tri model using the outranking relation à la
Electre I has inspired

I the Non Compensatory Sorting model (NCS model)
characterized by Bouyssou Marchant 2007

I the Majority Rule sorting model (MR-Sort, Leroy et al. 2011,
Sobrie et al. 2019) and the Majority Rule sorting model with
coalitional Veto (Sobrie et al. 2017),

Learning a MR-Sort model using a large set of assignment
examples is computationally feasible (Sobrie et al. 2016, Sobrie et
al. 2019)
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Role of the analyst

Responsibility of the analyst

Has to be convinced that the selected model and the way it is used

I can be rationally justified in the decision context

I are logically correct

To achieve these goals, need for theoretical analysis of the models
and methods
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Analysis of models and methods

I Manifesto (Bouyssou et al. 1993); Evaluation and decision
models (Bouyssou et al. 2000, 2006)

I Analysis: study the properties and characterize models and
methods

Characterization

I as a procedure: e.g., Electre Tri is the only procedure
having properties A,B and C (in the spirit of characterizations
of voting procedures in social choice)

I of the preferences that can be represented by a model

Helps to

I identify the key concepts underlying the models (e.g.,
tradeoffs, weights etc)

I and use them correctly in elicitation processes

In the rest: illustration of benefits of analysis
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Monotone sorting models

Setting

I Xi , the scale of criterion i ; Xi ⊆ R; ≥, the natural order on Xi

I X =
∏n

i=1 Xi , the set of all possible evaluation vectors (=
alternatives)

I partial order ≥ on X : a ≥ b if ai ≥ bi ,∀i
I assumption: X is finite

I the elements of X are sorted in 2 categories (for simplicity):
A (acceptable); U (unacceptable)

I the partition 〈A,U〉 of X is monotone: if b ∈ A and a ≥ b
then a ∈ A; similarly for U
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Result 1

Characterization of monotone partitions

〈A,U〉 is a monotone partition of X
iff there is a nondecreasing function F (a1, . . . , an) on X such that

a ∈ A iff F (a1, . . . , an) ≥ 0

I Proof: immediate

I For a bit more sophisticated result, see: Goldstein 1991, Greco
et al. 2001, S lowiński et al. 2002, Bouyssou Marchant 2007

I This is the decision-rule preference model underlying the
Dominance-based Rough Set Approach (DRSA)

Examples

I UTADIS: a ∈ A iff F (a) =
∑n

i=1 ui (ai )− U1 ≥ 0

I Electre Tri: a ∈ A iff F (a) = σ(a, p)− λ ≥ 0
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Result 2

Equivalent model

〈A,U〉 is a monotone partition of X
iff there is a set {p1, . . . , pj , . . . , pJ} of profiles (=alternatives),
which do not dominate one another, and such that

a ∈ A iff ∃j s.t. a ≥ pj

I Proof: p1, . . . , pJ are the minimal elements in A w.r.t. the
partial order ≥

I Every monotone sorting method is equivalent to defining a set
of minimal profiles and checking whether a dominates (≥) one
of these profiles

I Every monotone sorting method can be viewed as a synthetic
way of specifying a set of minimally acceptable elements
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Example

An Electre Tri model

I n = 3

I Xi ⊂ [0, 10]: Xi = {0, .5, 1, 1.5, . . . , 9.5, 10}
I limit profile: p = (8, 7, 5)

I wi = 1
3 , qi = 1, pi = 2, vi = 4

I λ = .6

There are 6 minimal elements in A :
(7,6,2),(7,4,4),(5,6,4),(7,5.5,3.5),(6.5,3,3.5),(6.5,5.5,4)

43/52

Complexity of the model

Minimal number of questions

I An oracle tells you that the DM follows the Electre Tri
model above when answering assignment questions

I oracle gives you all the model’s parameters

I What is the minimum number of questions you have to ask
the DM in order to make sure that the oracle is not cheating
on you ?

Answer

I Ask whether the 6 minimal elements are indeed acceptable

I and Ask whether the maximal elements in U are indeed
unacceptable

Since there are 10 maximal elements in U , the minimal number of
question to be asked is 16
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Complexity depends on the granularity of evaluations scales

I Consider the same Electre Tri model defined on the scales
X ′i composed of all rationals with 1 decimal digit in [0, 10]

I The number of minimal elements in A is 92

Conclusions

I The minimal number of questions needed to completely
determine an Electre Tri model quickly grows with the
degree of precision (granularity) of the evaluations scales

I When few assignment examples are available, identifying an
Electre Tri model is illusionary. The robust approach will
have to deal with a large number of compatible models

I Similar conclusions can be drawn when using UTADIS

I Note that the number of minimally acceptable alternatives
with the simpler Electre Tri model doesn’t change with
the granularity (3 in the example)
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Discussion : complexity

In a learning situation with a small set of assignment examples:

I If the analyst is strongly convinced that a given model
perfectly matches the decision situation, then use the model,
regardless of its complexity. In case the model’s complexity is
high, using a robust approach is likely to produce very
imprecise assignments

I Otherwise, use a simpler model. Or a family of nested models
of increasing complexity. Start with the simplest model in the
family. If there is a simple model compatible with the
assignment examples, it’s fine. Otherwise, increase the
complexity until a feasible model is found
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Discussion : choice of a family of models

I Why working with UTADIS rather than Electre Tri,
Flowsort, AHP Sort, TOPSIS-Sort or . . . ?
In spite of efforts made in terms of analysis of models, the
choice of working with one of them seems to be mainly
governed by habits, education and practice

I Why not going more radically robust by eliciting the
parameters of two (or more) models belonging to different
families? Then compare the assignment results and consider
as robust those who are shared by the two approaches
(Bouyssou et al. 2000, Chapter 6, Bisdorff et al. Chapter 8)
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Research issues

I We observed that all monotone sorting methods are synthetic
ways of defining more or less complex sets of minimally
acceptable alternatives.
→ Are there monotone sorting models that are reasonably
complex, interpretable and easy to learn ?

I Is it possible to approximate the assignment behavior of, say,
Electre Tri by a less complex model? Same question for
UTADIS and MR-Sort

I For the record : study the motivations for working with a
particular family of models
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Thank you for attention!

50/52



Or else ...
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