
Theory of Computing Systems
https://doi.org/10.1007/s00224-020-09985-6

Consistent Query Answering for Primary Keys
in Datalog

Paraschos Koutris1 · Jef Wijsen2

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We study the complexity of consistent query answering on databases that may vio-
late primary key constraints. A repair of such a database is any consistent database
that can be obtained by deleting a minimal set of tuples. For every Boolean query
q, CERTAINTY(q) is the problem that takes a database as input and asks whether
q evaluates to true on every repair. In Koutris and Wijsen (ACM Trans. Database
Syst. 42(2), 9:1–9:45, 2017), the authors show that for every self-join-free Boolean
conjunctive query q, the problem CERTAINTY(q) is either in P or coNP-complete,
and it is decidable which of the two cases applies. In this article, we sharpen this
result by showing that for every self-join-free Boolean conjunctive query q, the
problem CERTAINTY(q) is either expressible in symmetric stratified Datalog (with
some aggregation operator) or coNP-complete. Since symmetric stratified Datalog
is in L, we thus obtain a complexity-theoretic dichotomy between L and coNP-
complete. Another new finding of practical importance is that CERTAINTY(q) is on
the logspace side of the dichotomy for queries q where all join conditions express
foreign-to-primary key matches, which is undoubtedly the most common type of join
condition.

Keywords Conjunctive queries · Consistent query answering · Datalog ·
Primary keys

This article belongs to the Topical Collection: Special Issue on Database Theory (ICDT 2019)
Guest Editor: Pablo Baceló

This article extends an earlier, shorter version entitled “Consistent Query Answering for Primary
Keys in Logspace” which was presented at the 22nd International Conference on Database Theory
(ICDT 2019) [23] .

� Jef Wijsen
jef.wijsen@umons.ac.be

Paraschos Koutris
paris@cs.wisc.edu

1 University of Wisconsin-Madison, Madison, WI, USA

2 University of Mons, Mons, Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-020-09985-6&domain=pdf
mailto: jef.wijsen@umons.ac.be
mailto: paris@cs.wisc.edu

Theory of Computing Systems

1 Motivation

Consistent query answering (CQA) with respect to primary key constraints is
the following problem. Given a database db that may violate its primary key
constraints, define a repair as any consistent database that can be obtained by
deleting a minimal set of tuples from db. For every Boolean query q, the prob-
lem CERTAINTY(q) takes a database as input and asks whether q evaluates to true
on every repair of db. In this article, we focus on CERTAINTY(q) for queries q

in the class sjfBCQ, the class of self-join-free Boolean conjunctive queries. For
all Boolean first-order queries q, CERTAINTY(q) is in coNP and therefore can be
solved by expressive formalisms like answer set programming [28], binary inte-
ger programming [19], and SAT solvers [11]. These solutions are, theoretically, an
overkill when CERTAINTY(q) also belongs to a lower complexity class. In partic-
ular, given a query q in sjfBCQ, it is decidable [21] whether CERTAINTY(q) is
in the low complexity class FO. Moreover, if the problem CERTAINTY(q) is in
FO, then it is possible to construct a first-order query for solving CERTAINTY(q),
which is also called a consistent first-order rewriting for q. This construction is
detailed in [21, Section 5] and has already been implemented [31]. It has been
observed, however, that a theoretically lower complexity may not manifest itself in
practice [11].

In [21], the authors also show that for every query q in sjfBCQ, the problem
CERTAINTY(q) is either in P or coNP-complete, and it is decidable (in polyno-
mial time in the size of q) which of the two cases applies. The authors show how
to construct a polynomial-time algorithm for CERTAINTY(q) when it does not lie
on the coNP-hard side of the dichotomy. Unfortunately, unlike for consistent first-
order rewritings, this construction is complex and does not tell us what language
would be appropriate for implementing CERTAINTY(q) when it is in P \ FO. In
this article, we improve this situation: we show that if CERTAINTY(q) is in P,
then it can be implemented in symmetric stratified Datalog, which has determin-
istic logspace data complexity [12]. We thus sharpen the complexity dichotomy
of [21] as follows: for every query q in sjfBCQ, CERTAINTY(q) is either in L or
coNP-complete. It is significant that Datalog is used as a target language, because
this allows using optimized Datalog engines for solving CERTAINTY(q) whenever
the problem lies on the logspace side of the dichotomy. Rewriting into Datalog
is generally considered a desirable outcome when consistent first-order rewritings
do not exist (see, e.g., [5, page 193]). It is also worth noting that the SQL:1999
standard introduced linear recursion into SQL, which has been implemented in
varying ways in existing DBMSs [32]. Since the Datalog programs in this article
use only linear recursion, they may be partially or fully implementable in these
DBMSs.

Throughout this article, we use the term consistent database to refer to a database
that satisfies all primary-key constraints, while the term database refers to both con-
sistent and inconsistent databases. This is unlike most database textbooks, which tend
to say that databases must always be consistent. The following definition introduces
the main focus of this article; the complexity dichotomy of Theorem 1 is the main
novel contribution of this article.

Theory of Computing Systems

Definition 1 Let q be a Boolean query. LetL be some logic. A consistentL rewriting
for q is a Boolean query P in L such that for every database db, P is true in db if
and only if q is true in every repair of db. If q has a consistent L rewriting, then we
say that CERTAINTY(q) is expressible in L.

Theorem 1 For every self-join-free Boolean conjunctive query q, the problem
CERTAINTY(q) is either coNP-complete or expressible in SymStratDatalogmin.
Therefore, CERTAINTY(q) is either coNP-complete or in L.

The language SymStratDatalogmin will be defined in Section 3; informally, the
superscript min means that the language allows selecting a minimum (with respect
to some total order) from a finite set of values. Since CERTAINTY(q) is L-complete
for some queries q in sjfBCQ, the logspace upper bound in Theorem 1 is tight. The
proof of Theorem 1 relies on novel constructs and insights developed in this article.
Compared to [21], significant new contributions are the notion of garbage set and the
helping Lemmas 8 and 12.

Our second significant result in this article focuses on consistent query answering
for foreign-to-primary key joins. In Section 9, we define a subclass of sjfBCQ that
captures foreign-to-primary key joins, which is undoubtedly the most common type
of join. We show that CERTAINTY(q) lies on the logspace side of the dichotomy for
all queries q in this class. Therefore, for the most common type of joins and primary
key constraints, CQA is highly tractable, a result that goes against a widely spread
belief that CQA would be impractical because of its high computational complexity.

Organization Section 2 discusses related work. Section 3 defines our theoretical
framework, including the notion of attack graph. To guide the reader through the
technical development, Section 4 provides a high-level outline of where we are head-
ing in this article, including examples of the different graphs used. Section 5 intro-
duces the notion of garbage set for a subquery. Informally, garbage sets contain facts
which can never make the subquery hold true, and which therefore can be removed
from the database without changing the answer to CERTAINTY(q). Section 6
introduces the notion of M-graph, a graph at the schema-level, and its data-level
instantiation, called ↪→-graph. Section 7 focuses on cycles in the M-graph of a query,
and shows that garbage sets for such cycles can be computed and removed in symmet-
ric stratified Datalog. Section 8 contains the proof of our main theorem. That section
first introduces a special subclass of sjfBCQ, called saturated queries, and argues that
in the complexity classification of the problems in {CERTAINTY(q) | q ∈ sjfBCQ},
it suffices to focus on saturated queries, exploiting some good properties that are
proper to saturated queries. In particular, Lemma 12 relates cycles in attack graphs
to cycles in M-graphs, for saturated queries only. This is the last ingredient needed
for the proof of our main theorem, which is given at the end of Section 8. Section 9
shows that foreign-to-primary key joins fall on the logspace side of the dichotomy.
Finally, Section 10 summarizes in a single theorem the complexity classification of
all problems in {CERTAINTY(q) | q ∈ sjfBCQ} obtained over the years.

Expressibility in symmetric stratified Datalog (with or without aggregation)
is shown by means of constructive proofs, which act as guides for a practical

Theory of Computing Systems

implementation of our theoretical results. Such constructive proofs are given in the
main body of this article. To lighten the reading, full proofs which are less essential
to the practice of consistent rewriting have been moved to an appendix; some of these
proofs are nevertheless sketched in the main body of this article. Moreover, to help
readability, Appendix A contains a list of notations for easy reference.

2 RelatedWork

Consistent query answering (CQA) started with the seminal work by Arenas,
Bertossi, and Chomicki [2], and is the topic of a monograph by Bertossi [7], who
also authored an overview of twenty years of research in CQA [8]. Another recent
overview of CQA is [37]. The term CERTAINTY(q) was coined in [34] to refer to
CQA for Boolean queries q on databases that violate primary keys, one per relation,
which are fixed by q’s schema. The ICDT 2005 article of Fuxman and Miller [14,
15] started with the research of classifying all problems in the set {CERTAINTY(q) |
q ∈ sjfBCQ} into common complexity classes like FO, P, and coNP-complete. A
survey of early progress in this research is [36]. A significant breakthrough was
the proof that the above set exhibits an effective P-coNP-complete dichotomy [20,
21]. Furthermore, it was shown that membership of CERTAINTY(q) in FO is decid-
able for queries q in sjfBCQ. The current article culminates this line of research
by showing that the dichotomy is actually between L and coNP-complete, and—
even stronger—between expressibility in symmetric stratified Datalog (with some
aggregation operator) and coNP-complete.

The complexity of CERTAINTY(q) for self-join-free conjunctive queries with
negated atoms was studied in [22]. Little is known about CERTAINTY(q) beyond self-
join-free conjunctive queries. For UCQ (i.e., unions of conjunctive queries, possibly
with self-joins), Fontaine [13] showed that a P-coNP-complete dichotomy in the set
{CERTAINTY(q) | q is a Boolean query in UCQ} implies Bulatov’s dichotomy theo-
rem for conservative CSP [10]. This relationship between CQA and CSP was further
explored in [27]. The complexity of CQA for aggregation queries with respect to
violations of functional dependencies has been studied in [3].

The counting variant of CERTAINTY(q), which is called #CERTAINTY(q), asks
to determine the number of repairs that satisfy some Boolean query q. In [29], the
authors show a FP-#P-complete dichotomy in {#CERTAINTY(q) | q ∈ sjfBCQ}. For
conjunctive queries q with self-joins, the complexity of #CERTAINTY(q) has been
established for the case that all primary keys consist of a single attribute [30]. In
recent years, CQA has also been studied beyond the setting of relational databases,
in ontology-based knowledge bases [9, 24] and in graph databases [6].

3 Preliminaries

We assume an infinite total order (dom, ≤) of constants. We assume a set of vari-
ables disjoint with dom. If �x is a sequence containing variables and constants, then
vars(�x) denotes the set of variables that occur in �x. A valuation over a set U of

Theory of Computing Systems

variables is a total mapping θ from U to dom. At several places, it is implicitly
understood that such a valuation θ is extended to be the identity on constants and on
variables not in U . If V ⊆ U , then θ [V] denotes the restriction of θ to V . If θ is a
valuation over a set U of variables, x is a variable (possibly x /∈ U), and a is a con-
stant, then θ[x �→a] is the valuation over U ∪{x} such that θ[x �→a](x) = a and for every
variable y such that y 	= x, θ[x �→a](y) = θ(y).

Atoms and Key-equal Facts Each relation name R of arity n, n ≥ 1, has a unique
primary keywhich is a set {1, 2, . . . , k}where 1 ≤ k ≤ n. We say thatR has signature
[n, k] if R has arity n and primary key {1, 2, . . . , k}. Elements of the primary key are
called primary-key positions, while k+1, k+2, . . . , n are non-primary-key positions.
For all positive integers n, k such that 1 ≤ k ≤ n, we assume denumerably many
relation names with signature [n, k]. Every relation name has a unique mode, which
is a value in {c, i}. Informally, relation names of mode c will be used for consistent
relations, while relations that may be inconsistent will have a relation name of mode i.
We often write Rc to make clear that R is a relation name of mode c. Relation names
of mode c will be a convenient tool in the theoretical development, but they also
constitute a useful modeling primitive that can be put at the disposal of knowledge
engineers [17].

If R is a relation name with signature [n, k], then we call R(s1, . . . , sn) an R-atom
(or simply atom), where each si is either a constant or a variable (1 ≤ i ≤ n). Such
an atom is commonly written as R(�x, �y) where the primary-key value �x = s1, . . . , sk
is underlined and �y = sk+1, . . . , sn. An R-fact (or simply fact) is an R-atom in
which no variable occurs. Two facts R1(�a1, �b1), R2(�a2, �b2) are key-equal, denoted

R1(�a1, �b1) ∼ R2(�a2, �b2), if R1 = R2 and �a1 = �a2.
We will use letters F, G, H for atoms. For an atom F = R(�x, �y), we denote

by key(F) the set of variables that occur in �x, and by vars(F) the set of variables
that occur in F , that is, key(F) = vars(�x) and vars(F) = vars(�x) ∪ vars(�y). We
sometimes blur the distinction between relation names and atoms. For example, if F

is an atom, then the term F -fact refers to a fact with the same relation name as F .

Databases, Blocks, and Repairs A database schema is a finite set of relation names.
All constructs that follow are defined relative to a fixed database schema. A database
is a finite set db of facts using only the relation names of the schema such that for
every relation name R of mode c, no two distinct R-facts of db are key-equal.

A relation of db is a maximal set of facts in db that all share the same relation
name. A block of db is a maximal set of key-equal facts of db. A block of R-facts is
also called an R-block. If A is a fact of db, then block(A,db) denotes the block of
db that contains A. If A = R(�a, �b), then block(A,db) is also denoted by R(�a, �∗). We
write R(�a,) for a fact arbitrarily selected from the block R(�a, �∗). A database db is
consistent if no two distinct facts of db are key-equal (i.e., if no block of db contains
more than one fact). A repair of db is a maximal (with respect to set inclusion)
consistent subset of db. We write rset(db) for the set of repairs of db.

Boolean Conjunctive Queries A Boolean query is a mapping q that associates
a Boolean (true or false) to each database, such that q is closed under

Theory of Computing Systems

isomorphism [25]. We write db |= q to denote that q associates true to db, in which
case db is said to satisfy q. A Boolean query q can be viewed as a decision prob-
lem that takes a database as input and asks whether db satisfies q. In this article, the
complexity class FO stands for the set of Boolean queries that can be defined in first-
order logic with equality and constant symbols (which are interpreted as themselves),
but without other built-in predicates or function symbols.

A Boolean conjunctive query is a finite set q = {R1(�x1, �y1), . . . , Rn(�xn, �yn)}
of atoms, without equality or built-in predicates. We denote by vars(q) the set of
variables that occur in q. The set q represents the first-order sentence

∃u1 · · · ∃uk

(
R1(�x1, �y1) ∧ · · · ∧ Rn(�xn, �yn)

)
,

where {u1, . . . , uk} = vars(q). This query q is satisfied by a database db if there
exists a valuation θ over vars(q) such that for each i ∈ {1, . . . , n}, there exists
Ri(�a, �b) ∈ db with �a = θ(�xi) and �b = θ(�yi).

We say that a Boolean conjunctive query q has a self-join if some relation name
occurs more than once in q. If q has no self-join, then it is called self-join-free. We
write sjfBCQ for the class of self-join-free Boolean conjunctive queries. If q is a
query in sjfBCQ with an R-atom, then, by an abuse of notation, we sometimes write
R to mean the R-atom of q.

Let θ be a valuation over some set U of variables. For every Boolean conjunctive
query q, we write θ(q) for the query obtained from q by replacing all occurrences of
each x ∈ U ∩ vars(q) with θ(x); variables in vars(q) \ U remain unaffected (i.e., θ
is understood to be the identity on variables not in U).

Atoms of Mode c The mode of an atom is the mode of its relation name (a value in
{c, i}). If q is a query in sjfBCQ, then qcons is the set of all atoms of q that are of
mode c.

Functional Dependencies Let q be a Boolean conjunctive query. A functional depen-
dency for q is an expression X → Y where X, Y ⊆ vars(q). Let V be a finite set
of valuations over vars(q). We say that V satisfies X → Y if for all θ, μ ∈ V , if
θ [X] = μ[X], then θ [Y] = μ[Y]. Let � be a set of functional dependencies for q.
We say that X → Y is a logical consequence of �, denoted � |= X → Y , if for
every set V of valuations over vars(q), if V satisfies each functional dependency in
�, then V satisfies X → Y . Two sets of functional dependencies are logically equiv-
alent if each functional dependency in either set is a logical consequence of the other
set. Note that the foregoing conforms with standard dependency theory if variables
are viewed as attributes, and valuations as tuples. As with standard functional depen-
dencies, every set of functional dependencies for q is logically equivalent to a set of
functional dependencies for q with singleton right-hand sides.

Consistent Query Answering For every Boolean query q, CERTAINTY(q) is the deci-
sion problem that takes as input a database db, and asks whether every repair of db
satisfies q.

The Genre of a Fact Let q be a query in sjfBCQ. For every fact A whose relation
name occurs in q, we denote by genreq(A) the (unique) atom of q that has the same

Theory of Computing Systems

relation name as A. From here on, if db is a database that is given as an input to
CERTAINTY(q), we will assume that each relation name of each fact in db also
occurs in q. Therefore, for every A ∈ db, genreq(A) is well defined. Of course, this
assumption is harmless.

Attack Graph Attack graphs were first introduced in [34] as a tool in the complexity
classification ofCERTAINTY(q); we recall next a slightly generalized notion of attack
graph that first appeared in [20]. Let q be a query in sjfBCQ. We define K(q) as the
following set of functional dependencies:

K(q) := {key(F) → vars(F) | F ∈ q}.
For every atom F ∈ q, we define F+,q as the following set of variables, depending
on the mode of F :

– if F has mode i, then F+,q := {x ∈ vars(q) | K(q \ {F }) |= key(F) → x};
– if F has mode c, then F+,q := {x ∈ vars(q) | K(q) |= key(F) → x}.

The attack graph of q is a directed graph whose vertices are the atoms of q. There

is a directed edge from F to G (F 	= G), denoted F
q� G, if there exists a sequence

F0

x1
� F1

x2
� F2 · · ·

x�

� F� (1)

such that F0 = F , F� = G, and for each i ∈ {1, . . . , �}, Fi is an atom of q and xi is
a variable satisfying xi ∈ (vars(Fi−1) ∩ vars(Fi)) \ F+,q . The sequence (1) is also

called a witness for F
q� G. An edge F

q� G is also called an attack from F to G;
we also say that F attacks G. Informally, an attack from an atom R(�x, �y) to an atom
S(�u, �w) indicates that, given a valuation over vars(�x), the values for �u that make the
query true depend on the values chosen for �y.

An attack on a variable x ∈ vars(q) is defined as follows: F
q� x if F

q∪{N(x)}�
N(x) where N is a fresh relation name of signature [1, 1]. Informally, x is attacked
in q if N(x) has an incoming attack in the attack graph of q ∪ {N(x)}.

Example 1 Consider the query q1 = {R(x, y), S(y, z), U(y, z, w, x), T1(z, w),
T2(z, w), T c(z, w)}. Using relation names for atoms, we have R+,q1 = {x}. A
witness for R

q1� U is R
y

� U . The attack graph of q1 is shown in Fig. 1.

An attack F
q� G is weak if K(q) |= key(F) → key(G); otherwise it is strong.

A cycle in the attack graph is strong if at least one attack in the cycle is strong. It has
been proved [21, Lemma 3.6] that if the attack graph contains a strong cycle, then it
contains a strong cycle of length 2. The main result in [21] can now be stated.

Theorem 2 [21] For every query q in sjfBCQ,

– if the attack graph of q is acyclic, then CERTAINTY(q) is in FO;
– if the attack graph of q is cyclic but contains no strong cycle, then the problem

CERTAINTY(q) is L-hard and in P; and

Theory of Computing Systems

Fig. 1 Attack graph (left) and M-graph (right) of the same query q1 = {R(x, y), S(y, z), U(y, z,w, x),
T1(z, w), T2(z, w), T c(z, w)}. It can be verified that all attacks are weak and that the query is saturated.
The attack graph has an initial strong component containing three atoms (R, S, and U). As predicted by
Lemma 12, the subgraph of the M-graph induced by {R, S,U} is cyclic

– if the attack graph of q contains a strong cycle, then CERTAINTY(q) is coNP-
complete.

Furthermore, it can be decided in quadratic time in the size of q which of these three
cases applies.

Reductions In this article, all considered decision problems take as input databases
over some fixed schema. Let P1 and P2 be two such decision problems over schemas
S1 and S2 respectively. Let L be some logic (e.g., first-order logic or a fragment
of Datalog). A many-one reduction ρ from P1 to P2 is said to be expressible in L
if for every n-ary relation name R in S2, L contains a query ϕR(x1, . . . , xn) over
S1 such that for every database db over S1, for all constants a1, . . . , an, we have
R(a1, . . . , an) ∈ ρ(db) if and only if db |= ϕR(a1, . . . , an).

Notions from Graph Theory We adopt some terminology from [4]. A directed graph
is strongly connected if there is a directed path from any vertex to any other. The
maximal strongly connected subgraphs of a graph are vertex-disjoint and are called
its strong components. If S1 and S2 are strong components such that an edge leads
from a vertex in S1 to a vertex in S2, then S1 is a predecessor of S2 and S2 is a
successor of S1. A strong component is called initial if it has no predecessor. For
a directed graph, we define the length of a directed path as the number of edges it
contains. A directed path or cycle without repeated vertices is called elementary. If
G is a graph, then V (G) denotes the vertex set of G, and E(G) denotes the edge set
of G.

Theory of Computing Systems

Datalog with Stratified Negation We assume that the reader is familiar with the syn-
tax and semantics of Datalog. We fix some terminology for Datalog programs, most
of which is standard. A predicate that occurs in the head of some rule is called
an intensional database predicate (IDB predicate); otherwise it is an extensional
database predicate (EDB predicate).

The following definition is slightly adapted from [16, p. 185]. A stratified Datalog
program is a sequence P = (P0, . . . , Pr) of basic Datalog programs, which are
called the strata of P , such that each of the IDB predicates of P is an IDB predicate
of precisely one stratum Pi and can be used as an EDB predicate (but not as an IDB
predicate) in higher strata Pj where j > i. In particular, this means that

1. if an IDB predicate of stratum Pj occurs positively in the body of a rule of
stratum Pi , then j ≤ i, and

2. if an IDB predicate of stratum Pj occurs negatively in the body of a rule of
stratum Pi , then j < i.

Stratified Datalog programs are given natural semantics using semantics for Datalog
programs for each Pi , where the IDB predicates of a lower stratum are viewed as
EDB predicates for a higher stratum. A rule is recursive if its body contains an IDB
predicate of the same stratum.

Symmetric Stratified Datalog A stratified Datalog program is linear if in the body of
each rule there is at most one occurrence of an IDB predicate of the same stratum
(but there may be arbitrarily many occurrences of IDB predicates from lower strata).
Assume that some stratum of a linear stratified Datalog program contains a recursive
rule

L0 ← L1, L2, . . . , Lm, ¬Lm+1, . . . , ¬Ln

such that L1 is an IDB predicate of the same stratum. Then, since the program is lin-
ear, each predicate among L2, . . . , Ln is either an EDB predicate or an IDB predicate
of a lower stratum. Such a rule has a symmetric rule:

L1 ← L0, L2, . . . , Lm, ¬Lm+1, . . . , ¬Ln.

A stratified Datalog program is symmetric if it is linear and the symmetric of any
recursive rule is also a rule of the program.

It is known (see, for example, [16, Proposition 3.3.72]) that linear stratified Data-
log is equivalent to Transitive Closure Logic. The data complexity of linear stratified
Datalog is in NL (and is complete for NL). It easily follows from [12, Theorem 1]
that the data complexity of symmetric stratified Datalog is in L. Note that all com-
plexity results in this article refer to data complexity, i.e., complexity in the the size
of the input database, for any fixed query which is not part of the input. Since we
are solving a decision problem, the output can be taken to be a 0-ary predicate, for
example, TrueInEveryRepair().

We will assume that given a (extensional or intensional) predicate P of some arity
2�, we can express the following query (let �x = 〈x1, . . . , x�〉, �y = 〈y1, . . . , y�〉, and
�z = 〈z1, . . . , z�〉):

{�x, �y | P(�x, �y) ∧ ∀z1 · · · ∀z� (P (�x, �z) → �y ≤� �z)}, (2)

Theory of Computing Systems

where ≤� is a total order on dom�. Informally, the above query groups by the �

leftmost positions, and, within each group, takes the smallest (with respect to ≤�)
value for the remaining positions. Such a query will be useful in Section 7.4, where
P encodes an equivalence relation on a finite subset of dom�, and the query (2)
allows us to deterministically choose a representative in each equivalence class. The
order ≤� can be first-order defined as the lexicographical order on dom� induced
by the linear order on dom. For example, for � = 2, the lexicographical order is
defined as (y1, y2) ≤2 (z1, z2) if y1 < z1 ∨ ((y1 = z1) ∧ (y2 ≤ z2)). Nevertheless,
our results do not depend on how the order ≤� is defined. Moreover, all queries
in our study will be order-invariant in the sense defined in [18]. The order is only
needed in the proof of Lemma 10 to pick, in a deterministic way, an identifier from
a set of candidate identifiers. In Datalog, we use the following convenient syntax
for (2):

Answer(�x,min(�y)) ← P(�x, �y).

Such a rule will always be non-recursive. Most significantly, if we extend a logspace
fragment of stratified Datalog with queries of the form (2), the extended fragment
will also be in logspace. In particular, the query (2) can be expressed in first-order
logic with a total ordering, and, consequently, is in uniform AC0. Therefore, assum-
ing queries of the form (2) is harmless for our complexity-theoretic purposes. We
use SymStratDatalog for symmetric stratified Datalog, and SymStratDatalogmin for
symmetric stratified Datalog that allows queries of the form (2).

4 TheMain Theorem and an Informal Guide of its Proof

In this article, we prove the following main result.

Theorem 3 (Main Theorem) For every query q in sjfBCQ,

– if the attack graph of q contains a strong cycle, then CERTAINTY(q) is coNP-
complete; and

– if the attack graph of q contains no strong cycle, then CERTAINTY(q) is
expressible in SymStratDatalogmin (and therefore is in L).

The above result is stronger than Theorem 1, since it provides an effective crite-
rion for the dichotomy between coNP-completeness and expressibility in symmetric
stratified Datalog.

Before we delve into the proof in the next sections, we start with a guided tour that
introduces our approach in an informal way. A major contribution of this article is a
deterministic logspace algorithm for CERTAINTY(q) whenever CERTAINTY(q) is in
P but not in FO (assuming P 	= coNP). In what follows, by a logspace algorithm, we
will always mean a deterministic logspace algorithm. An exemplar query is C3 :=
{R(x, y), S(y, z), T (z, x)}, which can be thought of as a cycle of length 3. For the
purpose of this example, let q be a query in sjfBCQ that includes C3 as a subquery
(i.e., C3 ⊆ q).

Theory of Computing Systems

An important novel notion in this article is the M-graph of a query, which will be
introduced in Section 6. TheM-graph of C3 is shown in Fig. 2a. Informally, a directed
edge from an atom F to an atom G, denoted F

M−→ G, means that every variable
that occurs in the primary key of G occurs also in F . In Fig. 2a, we have T (z, x)

M−→
R(x, y), becauseR’s primary key (i.e., x) occurs in the T -atom; there is no edge from
R(x, y) to T (z, x) because z does not occur in the R-atom. Intuitively, one can think
of edges in the M-graph as foreign-to-primary key joins. In what follows, we focus
on cycles in theM-graph, calledM-cycles. As we will see later on, suchM-cycles will
occur whenever the attack graph of a query is cyclic but contains no strong attack
cycles.

Figure 2b shows an instantiation of the M-graph, called
C3

↪→-graph, whose vertices
are obtained by replacing variables with constants in R(x, y), S(y, z), or T (z, x). We

write A
C3

↪→ B to denote an edge from fact A to fact B. Each triangle in the
C3

↪→-graph

Fig. 2 Examples of three different graphs used in this article: M-graph, ↪→-graph, block-quotient graph

Theory of Computing Systems

of Fig. 2b instantiates the query C3; for example, the inner triangle is equal to θ(C3)

where θ is the valuation such that θ(xyz) = a1b2c1. We will call such a triangle a 1-
embedding. Significantly, some edges are not part of any triangle. For example, the

edge S(b1, c1)
C3

↪→ T (c1, a2) is not in a triangle, but is present because the primary

key of T (c1, a2) occurs in S(b1, c1). The notions of
C3

↪→-graph and embedding will
be defined in Definitions 4 and 5.

Let db be a database that is input to CERTAINTY(q) such that db contains (but
is not limited to) all facts of Fig. 2b. Since C3 is a subquery of q, db will typi-
cally contain other facts with relation names in q \ C3. Furthermore, db can contain
R-facts, S-facts, and T -facts not shown in Fig. 2b. Then, db has at least 23 = 8
repairs, because Fig. 2b shows two R-facts with primary key a1, two S-facts with
primary key b2, and two T -facts with primary key c1. Consider now the outermost
elementary cycle (in thick lines) of length 6, i.e., the cycle using the vertices in
r := {R(a1, b1), S(b1, c1), T (c1, a2), R(a2, b2), S(b2, c2), T (c2, a1)}, which will be
called a 2-embedding (or an n-embedding with n = 2). One can verify that r does
not contain distinct key-equal facts and does not satisfy C3 (because the subgraph
induced by r has no triangle). Let o be the database that contains r as well as all facts
of db that are key-equal to some fact in r. A crucial observation is that if db \ o has
a repair that falsifies q, then so has db (the converse is trivially true). Indeed, if s is a
repair of db \ o that falsifies q, then s∪ r is a repair of db that falsifies q. Intuitively,

we can add r to s without creating a triangle in the
C3

↪→-graph (i.e., without making
C3 true, and thus without making q true), because the facts in r form a cycle on their

own and contain no outgoing
C3

↪→-edges to facts in s. In Section 5, the set o will be
called a garbage set: its facts can be thrown away without changing the answer to

CERTAINTY(q). Note that the
C3

↪→-graph of Fig. 2b contains other elementary cycles
of length 6, which, however, contain distinct key-equal facts: for example, the cycle
with vertices R(a1, b1), S(b1, c1), T (c1, a1), R(a1, b2), S(b2, c2), T (c2, a1) contains
both R(a1, b1) and R(a1, b2).

Garbage sets thus arise from cycles in the
C3

↪→-graph that (i) do not contain distinct
key-equal facts, and (ii) are not triangles satisfying C3. To find such cycles, we con-

struct the quotient graph of the
C3

↪→-graph with respect to the equivalence relation “is
key-equal to.” Since the equivalence classes with respect to “is key-equal to” are the
blocks of the database, we call this graph the block-quotient graph (Definition 6). The
block-quotient graph for our example is shown in Fig. 2c. The vertices are database

blocks; there is an edge from block b1 to b2 if the
C3

↪→-graph contains an edge from
some fact in b1 to some fact in b2. The block-quotient graph contains exactly one
elementary directed cycle of length 6 (thick lines); this cycle obviously corresponds

to the outermost cycle of length 6 in the
C3

↪→-graph. A core result (Lemma 8) of this
article is a logspace algorithm for finding elementary cycles in the block-quotient
graph whose lengths are strict multiples of the length of the underlying M-cycle. In
our example, since the M-cycle of C3 has length 3, we are looking for cycles in the

block-quotient graph of lengths 6, 9, 12, . . . Note here that, since the
C3

↪→-graph is

Theory of Computing Systems

tripartite, the length of any cycle in it must be a multiple of 3. Our algorithm can be
encoded in symmetric stratified Datalog. This core algorithm is then extended, in the
proof of Lemma 9, to compute garbage sets for M-cycles.

In our example, C3 is a subquery of q. In general, M-cycles will be subqueries of
larger queries. The facts that belong to the garbage set for anM-cycle can be removed,
but the other facts must be maintained for computations on the remaining part of the
query, and are stored in a new schema that replaces the relations in the M-cycle with
a single relation (see Section 7.4). In our example, this new relation has attributes for
x, y, and z, and stores all triangles that are outside the garbage set for C3.

We can now sketch our approach for dealing with queries q such that
CERTAINTY(q) is in P\FO. Lemma 12 will tell us that such a query q will have anM-
cycle involving two or more atoms of mode i. The garbage set of this M-cycle is then
computed, and the facts not in the garbage set will be stored in a single new relation
of mode i that replaces the M-cycle. In this way, CERTAINTY(q) is reduced to a new
problem CERTAINTY(q ′), where q ′ contains less atoms of mode i than q. Lemma 10
shows that this new problem will be in P, and that our reduction can be expressed in
symmetric stratified Datalog. We can repeat this reduction until we arrive at a query
q ′′ such that CERTAINTY(q ′′) is in FO.

To conclude this guided tour, we point out the role of atoms of mode c in the
computation of theM-graph, which was not illustrated by our running example. In the
M-graph of Fig. 1 (right), we have S(y, z)

M−→ U(y, z, w, x), even though w does
not occur in the S-atom. The explanation is that the query also contains the consistent
relation T c(z, w), which maps each z-value to a unique w-value. So even though w

does not occur in S(y, z), it is nevertheless uniquely determined by z. It is therefore
important to identify all relations of mode c, which is the topic of Section 8.1.

5 Garbage Sets

Let db be a database that is an input to CERTAINTY(q) with q ∈ sjfBCQ. In this
section, we show that it is generally possible to downsize db by deleting blocks
from it without changing the answer to CERTAINTY(q). That is, if the downsized
database has a repair falsifying q, then so does the original database (the converse
holds trivially true). Intuitively, the deleted blocks can be considered as “garbage”
for the problem CERTAINTY(q).

Definition 2 The following definition is relative to a fixed query q in sjfBCQ. Let
q0 ⊆ q. Let db be a database. We say that a subset o of db is a garbage set for q0 in
db if the following conditions are satisfied:

1. for every A ∈ o, we have that genreq(A) ∈ q0 and block(A,db) ⊆ o; and
2. there exists a repair r of o such that for every valuation θ over vars(q), if θ(q) ⊆

(db \ o) ∪ r, then θ(q0) ∩ r = ∅ (and therefore θ(q0) ⊆ db \ o).

The first condition in the above definition says that the relation names of facts in
o must occur in q0, and that every block of db is either included in or disjoint with

Theory of Computing Systems

o. The second condition captures the crux of the definition and was illustrated in
Section 4.

We now show a number of useful properties of garbage sets that are quite intuitive.
In particular, by Lemma 1, there exists a unique maximal (with respect to ⊆) garbage
set for q0 in db, which will be called the maximum garbage set for q0 in db.

Lemma 1 Let q be a query in sjfBCQ, and let q0 ⊆ q. Let db be a database. If o1
and o2 are garbage sets for q0 in db, then o1 ∪ o2 is a garbage set for q0 in db.

Lemma 2 Let q be a query in sjfBCQ, and let q0 ⊆ q. Let db be a database. Let
o be a garbage set for q0 in db. Then, every repair of db satisfies q if and only
if every repair of db \ o satisfies q (i.e., db and db \ o agree on their answer to
CERTAINTY(q)).

Lemma 3 Let q be a query in sjfBCQ, and let q0 ⊆ q. Let db be a database. Let o
be a garbage set for q0 in db. Then, every garbage set for q0 in db \ o is empty if and
only if o is the maximum garbage set for q0 in db.

The next two sections focus on the computation of garbage sets for subqueries of
a particular type. These subqueries correspond to cycles in the M-graph of a query,
which is defined next.

6 M-Graphs and ↪→-Graphs

In this section, we introduce the M-graph of a query q in sjfBCQ, which is a general-
ization of the notion of Markov-graph introduced in [21] (hence the use of the letter
M). We also define ↪→-graphs, which can be regarded as data-level instantiations of
M-graphs.

Definition 3 Let q be a query in sjfBCQ. TheM-graph of q is a directed graph whose
vertices are the atoms of q. There is a directed edge from F to G (F 	= G), denoted
F

M−→ G, if K(qcons) |= vars(F) → key(G). A cycle in the M-graph is called an
M-cycle.

Note that if all relation names in q have mode i, then F
M−→ G implies

key(G) ⊆ vars(F). M-Graphs are technically easier to deal with than Markov-
graphs [21] on which they are inspired. In fact, Markov-graphs in [21] were only
defined for queries not containing any atom of mode i with a composite primary
key. Therefore, atoms with composite primary keys had first to be massaged into the
form required by Markov-graphs. This drawback is resolved by the new notion of
M-graph.

Example 2 The notion of M-graph is illustrated by Fig. 1. We have K(q1
cons) =

{z → w}. Since K(q1
cons) |= vars(S) → key(U), the M-graph has a directed edge

from S to U .

Theory of Computing Systems

Given a query q, every database that instantiates the schema of q naturally gives
rise to an instantiation of the M−→-edges in q’s M-graph, in a way that is captured by
the following definition.

Definition 4 The following notions are defined relative to a query q in sjfBCQ
and a database db. The ↪→-graph of db is a directed graph whose vertices are the
atoms of db. There is a directed edge from A to B, denoted A ↪→ B, if there
exists a valuation θ over vars(q) and an edge F

M−→ G in the M-graph of q such
that θ(q) ⊆ db, A = θ(F), and B ∼ θ(G). A cycle in the ↪→-graph is also
called a ↪→-cycle. Informally, one can think of the ↪→-graph as the instantiated
M-graph.

The notion of ↪→-graph is illustrated by Fig. 3. The following lemma states that
if the ↪→-graph of a database db has a directed edge from some fact A to some G-
fact B, then A has outgoing edges to all the facts of block(B,db), and to no other
G-facts.

Lemma 4 Let q ∈ sjfBCQ and let db be a database. Then,

1. for all A, B ∈ db, if A ↪→ B, then A ↪→ B ′ for all B ′ ∈ block(B,db);
2. for all A, B, B ′ ∈ db, if A ↪→ B and A ↪→ B ′ and genreq(B) = genreq(B ′),

then B ∼ B ′.

Proof The first item is trivial. For the second item, assume A ↪→ B, A ↪→ B ′,
and genreq(B) = genreq(B ′). We can assume F, G ∈ q such that F

M−→ G,
genreq(A) = F , and genreq(B) = G. Then, there exist valuations θ1, θ2 over vars(q)

such that A ∈ θ1(q) ⊆ db, A ∈ θ2(q) ⊆ db, B ∼ θ1(G), and B ′ ∼ θ2(G). Since
θ1[vars(F)] = θ2[vars(F)] and K(qcons) |= vars(F) → key(G) (because F

M−→
G), it follows θ1[key(G)] = θ2[key(G)], hence B and B ′ must be key-equal.

Fig. 3 Left: Database that is input to CERTAINTY(q1) for the query q1 in Fig. 1. The relations for T1 and
T2, which are identical to the relation for T c, have been omitted. Right: The ↪→-graph from which, for
readability reasons, T1-facts, T2-facts, and T c-facts have been omitted

Theory of Computing Systems

7 Garbage Sets for M-Cycles

In this section, we bring together notions of the two preceding sections. We focus on
queries q in sjfBCQwhoseM-graph has a cycleC. From here on, ifC is an elementary
cycle in the M-graph of some query q in sjfBCQ, then the subset of q that contains all
(and only) the atoms of C, is also denoted by C.

Section 7.1 shows a procedural characterization of the maximum garbage set for
C. Section 7.2 shows that this maximum garbage set can be computed in linear
stratified Datalog, and Section 7.3 shows that the computation is even possible in
symmetric stratified Datalog. Finally, Section 7.4 shows a reduction, also expressible
in symmetric stratified Datalog, that replaces C with a single atom. The elimination
of M-cycles is crucial in the proof of Theorem 3, which will be given in Section 8. In
particular, it will be shown there that if CERTAINTY(q) is in P\FO, then q’sM-graph
has a cycle that can be eliminated.

7.1 Characterizing Garbage Sets forM-Cycles

We define how a given M-cycle C of length k can be instantiated by cycles in the
↪→-graph, called embeddings, whose lengths are multiples of k.

Definition 5 Let q be a query in sjfBCQ. Let db be a database. Let C be an elemen-
tary directed cycle in the M-graph of q. The cycle C naturally induces a subgraph of
the ↪→-graph, as follows: the vertex set of the subgraph contains all (and only) the
facts A of db such that genreq(A) is an atom in C; there is a directed edge from A

to B, denoted A
C

↪→ B, if A ↪→ B and the cycle C contains a directed edge from
genreq(A) to genreq(B).

Let k be the length of C. Obviously, the length of every
C

↪→-cycle must be a multi-
ple of k. Let n be a positive integer. An n-embedding of C in db (or simply embedding

if the value n is not important) is an elementary
C

↪→-cycle of length nk containing no
two distinct key-equal facts. A 1-embedding of C in db is said to be relevant if there
exists a valuation θ over vars(q) such that θ(q) ⊆ db and θ(q) contains every fact of
the 1-embedding; otherwise the 1-embedding is said to be irrelevant.

Let C and q be as in Definition 5, and let db be a database. We next point out
an intimate relationship between garbage sets for C in db and different sorts of
embeddings.

– Let A ∈ db such that genreq(A) belongs to C. If A belongs to some relevant

1-embedding of C in db, then A will have an outgoing edge in the
C

↪→-graph.
If A does not belong to some relevant 1-embedding of C in db, then A will

have no outgoing edge in the
C

↪→-graph, and block(A,db) is a garbage set for
C in db by Definition 2 (choose o = block(A,db) and r = {A}). Note inci-
dentally that if A belongs to an irrelevant 1-embedding, then A must have an

outgoing edge in the
C

↪→-graph, which implies that A also belongs to a relevant
1-embedding.

Theory of Computing Systems

– Every irrelevant 1-embedding of C in db gives rise to a garbage set. To illus-

trate this case, let C = {R(x, y, z), S(y, x, z)}. Assume that R(a, b, 1)
C

↪→
S(b, a, 2)

C
↪→ R(a, b, 1) is a 1-embedding of C in db. This 1-embedding is irrel-

evant, because 1 	= 2, whereas the third positions of R and S in C are equal to
z. It can be easily seen that R(a, ∗, ∗) ∪ S(b, ∗, ∗) is a garbage set for q in db,
where q is the query that contains C.

– Every n-embedding of C in db with n ≥ 2 gives rise to a garbage set. This was
illustrated in Section 4 by means of the outermost cycle of length 6 in Fig. 2b,
which is a 2-embedding of {R(x, y), S(y, z), T (z, x)}.

These observations lead to the following lemma which provides a procedural
characterization of the maximum garbage set for C in a given database.

Lemma 5 Let q be a query in sjfBCQ. Let C = F0
M−→ F1

M−→ · · · M−→ Fk−1
M−→

F0 be an elementary cycle of length k (k ≥ 2) in the M-graph of q. Let db be a
database. Let o be a minimal (with respect to ⊆) subset of db satisfying the following
conditions:

1. the set o contains every fact A of db with genreq(A) ∈ {F0, . . . , Fk−1} such that
A has zero outdegree in the

C
↪→-graph;

2. the set o contains every fact that belongs to some irrelevant 1-embedding of C in
db;

3. the set o contains every fact that belongs to some n-embedding of C in db with
n ≥ 2;

4. Recursive condition: if o contains some fact of a relevant 1-embedding of C in
db, then o contains every fact of that 1-embedding; and

5. Closure under “is key-equal to”: if o contains some fact A, then o includes
block(A,db).

Then, o is the maximum garbage set for C in db.

7.2 Computing n-Embeddings ofM-Cycles, n ≥ 2

In this and the following section, we translate Lemma 5 into a Datalog program
that computes the maximum garbage set for an M-cycle C. The main computational
challenge lies in Condition 3 of Lemma 5, which adds to the maximum garbage set
all facts belonging to some n-embedding with n ≥ 2, where the value of n is not
upper bounded. Such n-embeddings can be computed in nondeterministic logspace
by using directed reachability. In this section, we express this computation in linear
stratified Datalog. In the following section, we show that the computation is even
possible in symmetric stratified Datalog.

We will compute reachability in the quotient graph of the
C

↪→-graph relative to the
equivalence relation “is key-equal to,” as defined next.

Definition 6 Let q be a query in sjfBCQ. Let db be a database. Let C be an ele-
mentary directed cycle of length k ≥ 2 in the M-graph of q. The block-quotient

Theory of Computing Systems

graph is the quotient graph of the
C

↪→-graph of db with respect to the equivalence
relation ∼. 1

The edge set of the block-quotient graph of a database can obviously be computed
in FO. The following lemma states a correspondence between n-embeddings and
elementary cycles in the block-quotient graph.

Lemma 6 Let q be a query in sjfBCQ. Let db be a database. Let C be an elementary
directed cycle of length k ≥ 2 in the M-graph of q. The following are equivalent for
every positive integer n:

1. if A0
C

↪→ A1
C

↪→ · · · C
↪→ Ank−1

C
↪→ A0 is an n-embedding of C in db and

bi := block(Ai,db) for 0 ≤ i ≤ nk − 1, then (b0,b1, . . . ,bnk−1,b0) is an
elementary directed cycle in the block-quotient graph; and

2. whenever (b0,b1, . . . ,bnk−1,b0) is an elementary directed cycle in the block-

quotient graph, then there exist A0 ∈ b0, . . . , Ank−1 ∈ bnk−1 such that A0
C

↪→
A1

C
↪→ · · · C

↪→ Ank−1
C

↪→ A0 is an n-embedding of C in db.

Lemma 6 tells us that there is an n-embedding of C in db, for some n ≥ 2, if
and only if the block-quotient graph has an elementary directed cycle whose length
is a strict multiple of k, where k is the length of C. To test whether such cycles
exist in the block-quotient graph, we will verify the existence of a directed open path
Pforth := (b0,b1, . . . , bk−1,bk), with k edges, for which there is a directed path
Pback from bk to b0 that uses no vertices among b1, . . . ,bk−1. In Datalog, we will
define a (k + 1)-ary predicate Pk for Pforth, and a (k + 1)-ary predicate DCon for
Pback. In the remainder of this section, we give a full program in linear stratified
Datalog, and thus in NL. But recall that this program will be replaced, in the next
subsection, by a program in symmetric stratified Datalog, with data complexity in
L. We still give this theoretically suboptimal program because of its simplicity and
because the theoretical optimization from NL to L may not be significant in practice
when existing Datalog engines are used.

From here on, let the elementary cycle in the M-graph be C = F0
M−→ F1

M−→
· · · M−→ Fk−1

M−→ F0 where k ≥ 2 is the length of the cycle. For each i ∈ {0, . . . , k−
1}, let Fi = Ri(�xi, �yi). For every variable x and every i ∈ {†, ‡} ∪ {0, 1, 2, . . . }, we
write x(i) to denote a fresh variable such that x(i) = y(j) if and only if x = y and
i = j . This notation extends to sequences of variables and queries in the natural way.
For example, if �x = 〈x1, x2, . . . , xn〉, then �x(i) = 〈x1(i), x2

(i), . . . , xn
(i)〉. If c is a

constant, then we define c(i) = c. If q is a query, then q(i) is the query obtained from
q by replacing all occurrences of every variable x with x(i).

1The quotient graph of a directed graph G = (V ,E) with respect to an equivalence relation ≡ on V is a
directed graph whose vertices are the equivalence classes of ≡; there is a directed edge from class A to
class B if E has a directed edge from some vertex in A to some vertex in B.

Theory of Computing Systems

The following Datalog rule for the IDB predicate Pk computes open paths
in the block-quotient graph with k edges (and k + 1 vertices): the IDB fact
Pk(�a0, �a1, . . . , �ak−1, �ak) holds true if �a0 	= �ak and the block-quotient graph has
directed edges going from Ri(�ai, ∗) to Ri+1(�ai+1, ∗) for 0 ≤ i ≤ k − 1. The pred-
icates =Ri

and 	=Ri
test, respectively, for equality and disequality of primary-key

values ofRi-facts; these predicates can be easily expressed in linear stratified Datalog
(for details, see the proof of of Lemma 9).

Pk(�x(0)
0 , �x(1)

1 , . . . , �x(k−1)
k−1 , �x(k)

0) ←

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(0), q(1) , . . . , q(k−1), q(k),

�x(1)
1 =R1 �x(0)

1 ,

�x(2)
2 =R2 �x(1)

2 ,
...

�x(k−1)
k−1 =Rk−1 �x(k−2)

k−1 ,

�x(k)
0 =R0 �x(k−1)

0 ,

�x(0)
0 	=R0 �x(k)

0

(3)

The rule is visualized by Fig. 4 and illustrated by Example 3 for k = 3, for a
fact Pk(�a0, �a1, �a2, �a3). The four triangles q(0), . . . , q(3) in Fig. 4 are relevant 1-
embeddings. Every fact Ri(�ai,) has two outgoing edges, pointing to key-equal
database facts in different embeddings. For instance, R0(�a0,) has outgoing edges to
two open-square vertices, which represent key-equal database facts. If we require �a0
and �a3 to be distinct, then the curved edges form an open path.

Example 3 Let q = {R0(x, y), R1(y, z), R2(z, x)}. Then, for i ∈ {0, 1, 2, 3}, we
obtain q(i) by making a copy of q with all variables renamed. In this example, we

Fig. 4 Illustration of the ↪→-subgraph searched for by the body of the rule for Pk with k = 3. Rectan-
gular nodes with the same color (white, gray, black) are key-equal. The curved arrows form a path of
length k

Theory of Computing Systems

use the renaming {x �→ xi , y �→ yi , z �→ zi}. Then, rule (3) is as follows (up to a
renaming of variables):

Pk(x0, y1, z2, x3) ←

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0(x0, y0), R1(y0, z0), R2(z0, x0),

R0(x1, y1), R1(y1, z1), R2(z1, x1),

R0(x2, y2), R1(y2, z2), R2(z2, x2),

R0(x3, y3), R1(y3, z3), R2(z3, x3),

y1 = y0,

z2 = z1,

x3 = x2,

x0 	= x3

Note incidentally that the latter rule can be equivalently shortened as follows, by
identifying x3 and x2.

Pk(x0, y1, z2, x2) ←

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R0(x0, y0), R1(y0, z0), R2(z0, x0),

R0(x1, y1), R1(y1, z1), R2(z1, x1),

R0(x2, y2), R1(y2, z2), R2(z2, x2),

y1 = y0,

z2 = z1,

x0 	= x2

This simplification can be generalized and applied to (3). However, such simplifica-
tions are beyond the focus of the current paper.

The following rules use directed reachability in the block-quotient graph. A
fact DCon(�a0, �a†0, �a1, . . . , �ak−1) is true if Pk(�a′

0, �a1, . . . , �ak−1, �a′′
0) is true, for some

�a′
0 and �a′′

0 , and the block-quotient graph has a directed path from R0(�a0, ∗)

to R0(�a†0, ∗) that uses no vertices in {Ri(�ai, ∗)}k−1
i=1 . The recursive rule for

DCon is:

DCon(�x(0)
0 ,�x(†)

0 ,�x(1)
1 , �x(2)

2 ,. . ., �x(k−1)
k−1)←

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DCon(�x(0)
0 , �x(‡)

0 , �x(1)
1 , �x(2)

2 ,. . ., �x(k−1)
k−1),

Pk(�x(‡)
0 ,�x(k+1)

1 , �x(k+2)
2 ,. . ., �x(2k−1)

k−1 ,�x(†)
0),

�x(k+1)
1 	=R1 �x(1)

1 ,

�x(k+2)
2 	=R2 �x(2)

2 ,
...

�x(2k−1)
k−1 	=Rk−1 �x(k−1)

k−1

The non-recursive rule for DCon is:

DCon(�x(†)
0 , �x(†)

0 , �x(1)
1 , . . . , �x(k−1)

k−1) ← q(†), Pk(�x(0)
0 , �x(1)

1 , . . . , �x(k−1)
k−1 , �x(k)

0)

Theory of Computing Systems

Finally, an n-embedding exists whenever we have Pk(�a0, �a1, . . . , �ak−1, �ak)

together with a directed path in the block-quotient graph from R0(�ak, ∗) to R0(�a0, ∗)

that uses no vertices in {Ri(�ai, ∗)}k−1
i=1 .

InLongDCycle(�x(0)
0 , �x(1)

1 , . . . , �x(k−1)
k−1) ←

{
Pk(�x(0)

0 , �x(1)
1 , . . . , �x(k−1)

k−1 , �x(k)
0),

DCon(�x(k)
0 , �x(0)

0 , �x(1)
1 , . . . , �x(k−1)

k−1)

7.3 Computing Garbage Sets forM-Cycles

In Section 7.2, n-embeddings were computed in nondeterministic logspace by using
directed reachability in the block-quotient graph. This section shows a trick that
allows doing the computation by using only undirected reachability, which, by the
use of Reingold’s algorithm [33], will lead to an algorithm that runs in deterministic
logspace and can be expressed in SymStratDatalog.

The following Lemma 7 implies that if a given vertex of the
C

↪→-graph is in a
strong component that has an n-embedding with n ≥ 2, then that vertex is a database
fact of the maximum garbage set. Consequently, for the purpose of constructing the
maximum garbage set, it suffices to solve the decision problem that asks whether

a given strong component of the
C

↪→-graph has an n-embedding with n ≥ 2. The
latter problem can be first-order reduced to a problem called LONGCYCLE(k) whose
complexity will be established by Lemma 8.

Lemma 7 Let C be an elementary cycle in the M-graph of a query q in sjfBCQ. Let

S be a strong component in the
C

↪→-graph of a database db. If some fact of S belongs
to the maximum garbage set forC in db, then every fact of S belongs to the maximum
garbage set for C in db.

Proof We first show the following property: if A
C

↪→ B and B belongs to the max-
imum garbage set for C in db, then A also belongs to the maximum garbage set

for C in db. To this end, assume A
C

↪→ B such that B belongs to the maximum
garbage set for C in db. We can assume an edge F0

M−→ F1 in C and a valu-
ation θ over vars(q) such that θ(q) ⊆ db, A = θ(F0), and B ∼ θ(F1). Since
B belongs to the maximum garbage set for C in db, we have that θ(F1) belongs
to the maximum garbage set by Definition 2. From θ(C) ⊆ db, it follows that

A
C

↪→ θ(F1) is an edge of a relevant 1-embedding of C in db. It follows from the
recursive Condition 4 in Lemma 5 that A belongs to the maximum garbage set for
C in db.

The proof of the lemma can now be given. Assume that B ∈ S belongs to the
maximum garbage set for C in db. Let A ∈ S. Since S is a strong component, there

exists a path A0
C

↪→ A1
C

↪→ · · · C
↪→ A� such that A0 = A and A� = B. By repeating

the property of the previous paragraph, we find that the maximum garbage set for C

in db contains A�, A�−1, . . . , A0.

Theory of Computing Systems

Definition 7 Let k be an integer such that k ≥ 2. A k-circle-layered graph [26]
is a k-partite directed graph G = (V , E) where edges only exist between adjacent
partitions. More formally, the vertices of G can be partitioned into k groups such that
V = V0 ∪ V1 ∪ · · · ∪ Vk−1 and Vi ∩ Vj = ∅ if i 	= j . The only edges from a partition
Vi go to the partition V(i+1) mod k . The problem LONGCYCLE(k) is now defined as
follows:

Problem: LONGCYCLE(k)

Instance: A connected k-circle-layered graph G = (V , E) such that every edge of
E belongs to a directed cycle of length k.

Question: Does G have an elementary directed cycle of length at least 2k?

Lemma 8 For every integer k such that k ≥ 2, LONGCYCLE(k) can be expressed in
SymStratDatalog (and therefore is in L).

Sketch Let G = (V , E) be an instance of LONGCYCLE(k). A cycle of length k in G

is called a k-cycle. Let Ĝ be the undirected graph whose vertices are the k-cycles of
G; there is an undirected edge between two vertices if their k-cycles have an element
in common. The full proof in Appendix C shows that G has an elementary directed
cycle of length ≥ 2k if and only if one of the following conditions is satisfied:

– for some n such that 2 ≤ n ≤ 2k − 3, G has an elementary directed cycle of
length nk; or

– Ĝ has a chordless undirected cycle (i.e., a cycle without cycle chord) of length
≥ 2k.

The first condition can be tested in FO; the second condition can be reduced to an
undirected connectivity problem, which is in logspace [33] and can be expressed in
SymStratDatalog.

The following lemma uses the observation that the strong components of the
C

↪→-
graph that contain some n-embedding of C, n ≥ 2, can be recognized by executing
the Datalog program of Lemma 8 on the block-quotient graph.

Lemma 9 Let q be a query in sjfBCQ. Let C be an elementary cycle of length k

(k ≥ 2) in the M-graph of q. There exists a program in SymStratDatalog that
takes a database db as input and returns, as output, the maximum garbage set for
C in db.

Proof Let the elementary cycle in the M-graph be C = F0
M−→ F1

M−→ · · · M−→
Fk−1

M−→ F0 where k ≥ 2 is the length of the cycle. For each i ∈ {0, . . . , k − 1}, let
Fi = Ri(�xi, �yi). Furthermore, for every i ∈ {0, . . . , k − 1} such that the signature of
Ri is [n, �]:
– let �ui and �wi be sequences of fresh distinct variables of lengths � and n − �

respectively. Thus, the atom Ri(�ui, �wi) is syntactically well-defined;

Theory of Computing Systems

– let RlvantRi be an IDB predicate of arity n;
– let GarbageRi be an IDB predicate of arity �.

Informally, whenever a fact GarbageRi(�ai) will be derived, then the input database
contains a block Ri(�ai, ∗) that belongs to the maximum garbage set for C. The
stratification of our Datalog program is shown in Fig. 5. We start by defining the
IDB predicates RlvantRi, where RlvantRi(�ai, �bi) indicates that Ri(�ai, �bi) belongs to
a relevant 1-embedding of C. For every i ∈ {0, 1, . . . , k − 1}, we add the rules:

RlvantRi(�xi, �yi) ← q

GarbageRi(�ui) ← Ri(�ui, �wi), ¬RlvantRi(�ui, �wi)

These rules implement Condition 1 in Lemma 5; Condition 5 is also captured
since the argument of GarbageRi is limited to primary-key positions, which identify
blocks rather than individual facts. To implement Condition 4 in Lemma 5, we add,
for every i, j ∈ {0, 1, . . . , k − 1} such that i < j , the rules:

GarbageRi(�xi) ← q,GarbageRj(�xj)

GarbageRj(�xj) ← q,GarbageRi(�xi)

These rules are each other’s symmetric version.
For every variable x and every i ∈ {†, ‡} ∪ {0, 1, 2, . . . }, we write x(i) to denote

a fresh variable such that x(i) = y(j) if and only if x = y and i = j . This notation
extends to sequences of variables and queries in the natural way. For example, if
�x = 〈x1, x2, . . . , xn〉, then �x(i) = 〈x1(i), x2

(i), . . . , xn
(i)〉. If c is a constant, then we

define c(i) = c.
We will need to compare composite primary-key values for disequality. To this

end, we add the following rules for every i ∈ {0, 1, . . . , k − 1}:
EqRi(�xi, �xi) ← Ri(�xi, �yi)

NeqRi(�xi, �x(†)
i) ← Ri(�xi, �yi), Ri(�x(†)

i , �y(†)
i), ¬EqRi(�xi, �x(†)

i)

Note that if Ri(�xi, �yi) contains constants or repeated variables, then it can be falsified
by an Ri-fact. The rule for EqRi, however, only applies to Ri-facts that satisfy the
rule body {Ri(�xi, �yi)}. This suffices, because Ri-facts falsifying {Ri(�xi, �yi)} cannot
belong to a relevant 1-embedding, and will be added to the garbage set by previous
rules.

Fig. 5 Stratification for the symmetric stratified Datalog program constructed in the proofs of Lemmas 9
and 10. The predicate IdentifiedBy is computed by a non-recursive rule that uses aggregation

Theory of Computing Systems

In what follows, NeqRi(�xi, �x(†)
i) will be abbreviated as �xi 	=Ri

�x(†)
i . Likewise,

EqRi(�xi, �x(†)
i) will be abbreviated as �xi =Ri

�x(†)
i . Of course, in Datalog with 	=, these

predicates can be expressed by using disequality (=) instead of negation (¬).
The predicate Any1Emb computes all 1-embeddings of C. Then, Rel1Emb com-

putes the relevant 1-embeddings, and Irr1Emb the irrelevant 1-embeddings, which is
needed in the implementation of Condition 2 in Lemma 5. The body of the rule for the
IDB predicate Any1Emb is illustrated by Fig. 6. Figure 7 illustrates that k-cycles in
the block-quotient graph can be induced by 1-embeddings of C that are not relevant.

Any1Emb(�x(0)
0 , �y(0)

0 , . . . , �x(k−1)
k−1 , �y(k−1)

k−1) ←

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(0), q(1), . . . , q(k−1),

�x(0)
0 =R0 �x(k−1)

0 ,

�x(1)
1 =R1 �x(0)

1 ,

�x(2)
2 =R2 �x(1)

2 ,
...

�x(k−1)
k−1 =Rk−1 �x(k−2)

k−1

Rel1Emb(�x0, �y0, �x1, �y1, . . . , �xk−1, �yk−1) ← q

Irr1Emb(�x(0)
0 , . . . , �x(k−1)

k−1) ←
{
Any1Emb(�x(0)

0 , �y(0)
0 , . . . , �x(k−1)

k−1 , �y(k−1)
k−1),

¬Rel1Emb(�x(0)
0 , �y(0)

0 , . . . , �x(k−1)
k−1 , �y(k−1)

k−1)

To finish the implementation of Condition 2 in Lemma 5, we add, for every i ∈
{0, . . . , k − 1}, the following rules:

GarbageRi(�x(i)
i) ← Irr1Emb(�x(0)

0 , �x(1)
1 , . . . , �x(k−1)

k−1)

We now add rules that implement the algorithm given in the proof of Lemma 8,
capturing Condition 3 in Lemma 5. From here on, whenever C occurs as an

Fig. 6 Illustration of the ↪→-subgraph searched by the body of the rule for Any1Emb with k = 3.
Rectangular nodes with the same color (white, gray, black) are key-equal. The curved arrows form a
k-cycle

Theory of Computing Systems

Fig. 7 The
C

↪→-graph contains two relevant 1-embeddings (thick arrows) and four irrelevant 1-
embeddings. The block-quotient graph contains four elementary cycles of length 4; the outer-
most cycle (curved arrows) and the innermost cycle (straight arrows) are induced by irrelevant
1-embeddings

Theory of Computing Systems

argument of a predicate, then it is understood to be a shorthand for the sequence
〈�x0, �x1, . . . , �xk−1〉. The IDB predicate Ê is used for undirected edges between ver-
tices that are k-cycles in the block-quotient graph, and the predicate Eq tests whether
two vertices are equal. Figure 8 shows the Ê-edges for the example of Fig. 2. It
suffices to consider only k-cycles of the block-quotient graph induced by relevant 1-
embeddings of C, because irrelevant 1-embeddings are already added to the garbage
set by previous rules.

Eq(�x0, . . . , �xk−1; �x0, . . . , �xk−1) ← q

The use of the semicolon is for readability only. For all i ∈ {0, . . . , k − 1}, add the
following rules:

Ê(C(0), C(1)) ←
{

q(0), q(1), ¬Eq(C(0), C(1)),

�x(0)
i =Ri

�x(1)
i

The predicate UCon computes undirected connectivity in the graph defined by Ê; it
takes 2k − 1 vertices as operands, and holds true if there exists an undirected path
between the first two operands such that no vertex on the path is equal or adjacent to
any of the remaining 2k−3 operands. In the following rules, we use some self-evident
abbreviations; for example,

{
¬Eq(C(1), C(i)), ¬Ê(C(1), C(i))

}2k−1

i=3

is a shorthand for the following sequence: ¬Eq(C(1), C(3)), ¬Ê(C(1), C(3)),. . . ,
¬Eq(C(1), C(2k−1)), ¬Ê(C(1), C(2k−1)).

UCon(C(1), C(1), C(3), . . . , C(2k−1)) ←
{

q(1), q(3), . . . , q(2k−1),
{¬Eq(C(1), C(i)), ¬Ê(C(1), C(i))

}2k−1
i=3

Fig. 8 Ê-edges for the example
of Fig. 2, where k = 3. There is
no chordless cycle of
length 2k = 6. However, since
the inequalities 2 ≤ n ≤ 2k − 3
have solutions n = 2 and n = 3,
the Datalog program will also
contain non-recursive rules for
detecting 2-embeddings and
3-embeddings

Theory of Computing Systems

UCon(C(1), C(2), C(3), . . . , C(2k−1)) ←

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

UCon(C(1), C(†), C(3), . . . , C(2k−1)),

Ê(C(†), C(2)),
{¬Eq(C(†), C(i)), ¬Ê(C(†), C(i))

}2k−1
i=3 ,

{¬Eq(C(2), C(i)), ¬Ê(C(2), C(i))
}2k−1
i=3

UCon(C(1), C(†), C(3), . . . , C(2k−1)) ←

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

UCon(C(1), C(2), C(3), . . . , C(2k−1)),

Ê(C(†), C(2)),
{¬Eq(C(†), C(i)), ¬Ê(C(†), C(i))

}2k−1
i=3 ,

{¬Eq(C(2), C(i)), ¬Ê(C(2), C(i))
}2k−1
i=3

The latter two rules are each other’s symmetric version.
We are now ready to encode the two conditions for the existence of an elementary

directed cycle of length ≥ 2k in the proof of Lemma 8. We add non-recursive rules
that detect n-embeddings for every n such that 2 ≤ n ≤ 2k − 3. We show here only

the rules for n = 2, i.e., for
C

↪→- cycles of length 2k without key-equal atoms. We
add, for every i ∈ {0, . . . , k − 1}, the following rules, where Pk was defined before
by rule (3):

GarbageRi(�xi) ←

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pk(�x(0)
0 , �x(1)

1 , . . . , �x(k−1)
k−1 , �x(k)

0),

Pk(�x(k)
0 , �x(k+1)

1 , . . . , �x(2k−1)
k−1 , �x(0)

0),

�x(1)
1 	=R1 �x(k+1)

1 ,

�x(2)
2 	=R2 �x(k+2)

2 ,
...

�x(k−1)
k−1 	=Rk−1 �x(2k−1)

k−1

The following rule checks whether C belongs to a chordless cycle of length ≥ 2k.

InLongUCycle(C(1)) ←

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ê(C(0), C(1)), Ê(C(1), C(2)), . . . , Ê(C(2k−1), C(2k)),
{¬Ê(C(i), C(j))

}
1≤i<i+1<j≤2k−1 ,

{¬Eq(C(i), C(j))
}
1≤i<j≤2k−1 ,

UCon(C(0), C(2k), C(2), . . . , C(2k−2))

Finally, to finish the implementation of Condition 3 in Lemma 5, we add, for every
i ∈ {0, . . . , k − 1}, the following rules:

GarbageRi(�xi) ← InLongUCycle(C)

This concludes the computation of the maximum garbage set for C.

Theory of Computing Systems

Example 5 in Appendix C illustrates the Datalog program of Lemma 9 for the
query q = {R(x, y, z), S(y, x, z), U(z, a)}.

7.4 Elimination ofM-Cycles

Given a database db, the Datalog program of Lemma 9 allows us to compute the

maximum garbage set o for C in db. The
C

↪→-graph of db′ := db \ o will be a set of
strong components, all initial, each of which is a collection of relevant 1-embeddings

of C in db′. The following Lemma 10 introduces a reduction that encodes this
C

↪→-
graph by means of a fresh atom T (u, �w), where vars(�w) = vars(C) and u is a fresh
variable. Whenever θ(q) ⊆ db′ for some valuation θ over vars(q), the reduction will
add to the database a fact T(cid, θ(�w)) where cid is an identifier for the strong com-

ponent (in the
C

↪→-graph) that contains θ(C). Moreover, for every atom Ri(�xi, �yi) in
C, the reduction adds Nc

i (θ(�xi), cid). The Nc
i -relation is consistent, because no Ri-

fact belongs to different connected components. The construction is illustrated by
Fig. 9. The following lemma captures this reduction and states that it (i) is express-
ible in SymStratDatalogmin, and (ii) does not result in an increase of computational
complexity. In the statement of the lemma, if Fi = R(�xi, �yi) for 0 ≤ i ≤ k − 1, then
we can take T = T(u, �x0, �y0, . . . , �xk−1, �yk−1) and Ni = Nc

i (�xi, u).

Lemma 10 Let q be a query in sjfBCQ. Let C = F0
M−→ F1

M−→ · · · M−→ Fk−1
M−→

F0 with k ≥ 2 be an elementary cycle in the M-graph of q. Let u be a variable such
that u 	∈ vars(q). Let T be an atom with a fresh relation name such that key(T) = {u}
and vars(T) = vars(C)∪{u}. Let p be a set containing, for every i ∈ {0, . . . , k −1},
an atom Ni of mode c with a fresh relation name such that key(Ni) = key(Fi) and
vars(Ni) = key(Fi) ∪ {u}. Then,
1. there exists a reduction from the problem CERTAINTY(q) to the problem

CERTAINTY((q \ C) ∪ {T } ∪ p) that is expressible in SymStratDatalogmin; and
2. if the attack graph of q contains no strong cycle and some initial strong com-

ponent of the attack graph contains every atom of {F0, F1, . . . , Fk−1}, then the
attack graph of (q \ C) ∪ {T } ∪ p contains no strong cycle either.

Fig. 9 Left: Two strong components in the
C

↪→-graph of a database for an M-cycle R(x, y, z)
M−→

S(y, x, z)
M−→ R(x, y, z). The maximum garbage set is empty. Right: Encoding of the relevant 1-

embeddings in each strong component. The u-values a and c are used to identify the strong components,
and are chosen as the smallest x-values in each strong component

Theory of Computing Systems

Proof (Crux) The proof of the second item is in Appendix C. The crux in the reduc-
tion of the first item is the deterministic choice of u-values for T -blocks. In Fig. 9,
for example, the T -block encoding the top strong component uses u = a, and the
T -block encoding the bottom strong component uses u = c. These u-values are the
smallest x-values in the strong components, which can be obtained by the query (2)
introduced in Section 3. In the example, we assumed a = min{a, b} and c = min{c}.
We will now show a SymStratDatalogmin program for the reduction, the correctness
of which is shown in Appendix C.

For every i ∈ {0, . . . , k − 1}, let Fi = Ri(�xi, �yi), and let KeepRi be an IDB
predicate of the same arity as Ri . For every i ∈ {0, . . . , k − 1}, we add the following
rule:

KeepRi(�xi, �yi) ← Ri(�xi, �yi), ¬GarbageRi(�xi)

where GarbageRi is the IDB predicate defined in the proof of Lemma 9. Each pred-
icate KeepRi is used to compute the Ri-facts that are not in the maximum garbage
set.

We now introduce rules for computing the relations for T and for each Ni . For
every i ∈ {0, . . . , k − 1}, add the rule:

Link(�x0, �x(†)
0) ←

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KeepR0(�x0, �y0),
...

KeepRk−1(�xk−1, �yk−1),

KeepR0(�x(†)
0 , �y(†)

0),
...

KeepRk−1(�x(†)
k−1, �y(†)

k−1),

�xi =Ri
�x(†)
i

Informally, a fact Link(�a, �a′) tells us that the blocks R0(�a, ∗) and R0(�a′, ∗) belong to

the same strong component of the
C

↪→-graph. Obviously, Link defines a reflexive and
symmetric binary relation on sequences of constants. The predicate Trans computes
undirected connectivity in the Link relation.

Trans(�x0, �x(†)
0) ← Link(�x0, �x(†)

0)

Trans(�x0, �x(†)
0) ← Trans(�x0, �x(‡)

0), Link(�x(‡)
0 , �x(†)

0)

Trans(�x0, �x(‡)
0) ← Trans(�x0, �x(†)

0), Link(�x(‡)
0 , �x(†)

0)

The latter two rules are each other’s symmetric version. The following rule picks a
single identifier for each connected component of G, using the abbreviated syntax
for the query (2) introduced in Section 3.

IdentifiedBy(�x0,min(�x(‡)
0)) ← Trans(�x0, �x(‡)

0)

Theory of Computing Systems

Informally, IdentifiedBy(�a, �a′) means that �a′, rather than �a, will serve to uniquely
identify the strong component. The following rule computes all T -facts:

T(�x(†)
0 , �x0, �y0, . . . , �xk−1, �yk−1) ←

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

KeepR0(�x0, �y0),
...

KeepRk−1(�xk−1, �yk−1),

IdentifiedBy(�x0, �x(†)
0)

Finally, for every i ∈ {0, . . . , k − 1}, add the rule:

Ni(�xi, �x(†)
0) ← T(�x(†)

0 , �x0, �y0, . . . , �xk−1, �yk−1)

Note that in this encoding, the cardinality of the primary key of T can be greater
than 1. This is not a problem, because we can treat values for u as composite values.

8 Proof of theMain Theorem

In this section, we will prove Theorem 3, which is the main theoretical contribution
of this article. The difficult part of the proof is to show the existence of a consistent
SymStratDatalogmin rewriting in case of an attack graph without strong cycles and
without unattacked atoms. In this case, the proof uses the elimination of M-cycles
established in Section 7.4. For this proof to go through, we must first show, in the
next subsection, the existence of M-cycles that can be eliminated.

8.1 Saturated Queries

In this section, we distinguish between saturated and non-saturated queries in
sjfBCQ. It will be shown in Lemma 11 that for every non-saturated query q, there
exists a saturated query q ′ such that (i) CERTAINTY(q) can be first-order reduced
to CERTAINTY(q ′), and (ii) the attack graph of q ′ contains no strong cycles if the
attack graph of q contains no strong cycles. The advantage of saturated queries will
become apparent in Lemma 12, which states a crucial property about the existence of
M-cycles in saturated queries. This lemma fails for non-saturated queries. The defini-
tion of saturated queries refers to a particular type of functional dependencies, which
are called internal.

Definition 8 Let q be a query in sjfBCQ. Let Z → w be a functional dependency for
q with a singleton right-hand side (where set delimiters { and } are omitted).

A sequential proof for K(q) |= Z → w is a (possibly empty) sequence
F1, F2, . . . , F� of atoms in q such that for every i ∈ {1, . . . , �}, key(Fi) ⊆
Z ∪

(⋃i−1
j=1 vars(Fj)

)
and w ∈ Z ∪

(⋃�
j=1 vars(Fj)

)
. Clearly, if w ∈ vars(Fk)

for some k < �, then such a sequential proof can be shortened by omitting the
atoms Fk+1, . . . , F�. Sequential proofs mimic the computation of a closure of a

Theory of Computing Systems

set of attributes with respect to a set of functional dependencies; see, for example,
[1, p. 165].

We say that Z → w is internal to q if the following two conditions are satisfied:

1. there exists a sequential proof for K(q) |= Z → w such that no atom in the
sequential proof attacks a variable in Z ∪ {w}; and

2. for some F ∈ q, Z ⊆ vars(F).

We say that q is saturated if for every functional dependency σ that is internal to q,
we have K(qcons) |= σ .

Example 4 Consider the query q = {S1(z, u), S2(u, w), R1(z, u
′), R2(u

′, w),
T1(u, v), T2(v, w)}. By using relation names as a shorthand for atoms, we have that
S1, S2 is a sequential proof for K(q) |= z → w in which neither S1 nor S2 attacks
z or w. Indeed, S1 attacks neither z nor w because z, w ∈ S1

+,q . S2 attacks no vari-
able because vars(S2) ⊆ S2

+,q . It follows that the functional dependency z → w is
internal to q.

Lemma 11 For every query q in sjfBCQ, it is possible to compute a query q ′ in
sjfBCQ with the following properties:

1. there exists a first-order reduction from CERTAINTY(q) to CERTAINTY(q ′);
2. if the attack graph of q contains no strong cycle, then the attack graph of q ′

contains no strong cycle; and
3. q ′ is saturated.

Proof (Sketch) The full proof in Appendix D shows that whenever a functional
dependency {z1, . . . , zk} → w is internal to q, then for the query q ′ := q ∪
{Nc(z1, . . . , zk, w)}—where Nc is a fresh relation name of mode c—it holds that
(i) CERTAINTY(q) can be first-order reduced to CERTAINTY(q ′), and (ii) the attack
graph of q ′ is free of strong cycles whenever the attack graph of q is free of strong
cycles. Informally, this means that every internal functional dependency can be made
explicit in a consistent relation.

The following lemma tells us about how the existence of M-cycles goes hand in
hand with weak attack cycles. This relationship is important because, on the one
hand, our logspace algorithm for CERTAINTY(q), with q ∈ sjfBCQ, is centered on
the existence of M-cycles, and, on the other, it must apply whenever all cycles in q’s
attack graph are weak. The notion of saturated query is also needed here, because the
lemma fails for queries that are not saturated. The lemma generalizes Lemma 7.13
in [21]. Note that the lemma only considers strong components of the attack graph
that are initial, which will be sufficient for our purposes.

Lemma 12 Let q be a query in sjfBCQ such that q is saturated and the attack graph
of q contains no strong cycle. Let S be an initial strong component in the attack
graph of q with |S| ≥ 2. Then, the M-graph of q contains a cycle all of whose atoms
belong to S.

Theory of Computing Systems

8.2 Proof of Theorem 3

The proof of the main theorem, Theorem 3, is now fairly straightforward. Informally,
let q be a saturated query in sjfBCQ such that the attack graph of q has no strong
attack cycles. If q contains an atom of mode i without incoming attacks, then this
atom is rewritten in first-order logic, in the form defined by [35, Definition 8.3];
otherwise some M-cycle, which exists by Lemma 12, is eliminated in the way previ-
ously described in Section 7.4. In either case, the remaining smaller query will have
a consistent SymStratDatalogmin rewriting.

Proof of Theorem 3 Let q be a query in sjfBCQ. We can assume that q is satu-
rated; if not, we first apply the reduction of Lemma 11. The first item follows
from [21, Theorem 3.2]. In the remainder of the proof, we treat the case that the
attack graph of q contains no strong cycle. This case is analogous to the proof of
[21, Theorem 7.1], which showed membership in P, whereas the current proof shows
expressibility in SymStratDatalogmin. The proof runs by induction on the number of
atoms in q that are of mode i. The desired result is obvious if q contains no atom
of mode i. Assume next that q contains an atom of mode i. We distinguish two
cases.

Case that the Attack graph Contains an Unattacked Atom of Mode i If the attack
graph of q contains an unattacked atom of mode i, say R(�x, �y), then it is known (see,
for example, [21, Lemma 4.4]) that q is true in every repair only if there exists a val-
uation θ over vars(�x) such that θ(q) is true in every repair. Obviously, if q contains
an atom R(�a, �y), where �a contains no variables, then q is true in every repair only
if the input database contains a fact R(�a, �b) such that for every A ∈ R(�a, ∗), there
exists a valuation θ over vars(�y) such that R(�a, θ(�y)) = A and θ(q ′) is true in every
repair, where q ′ = q \ {R(�x, �y)}. All this is expressible in first-order logic, and the
induction hypothesis applies to θ(q ′).

Case that all Atoms of Mode i are Attacked Then, every initial strong component
of the attack graph contains at least two atoms. By Lemma 12, the M-graph of q

has a cycle C all of whose atoms belong to one and the same initial strong compo-
nent of the attack graph of q. By Lemma 10, there exists a reduction, expressible in
SymStratDatalogmin, from CERTAINTY(q) to CERTAINTY((q \ C) ∪ {T } ∪ p) such
that the attack graph of (q \ C) ∪ {T } ∪ p contains no strong cycle. Since the num-
ber of atoms of mode i in (q \ C) ∪ {T } ∪ p is strictly less than in q (because
C is replaced with T and all atoms in p have mode c), by the induction hypothe-
sis, CERTAINTY((q \ C) ∪ {T } ∪ p) is expressible in SymStratDatalogmin. It follows
that CERTAINTY(q) is expressible in SymStratDatalogmin.

Thus, in both cases, it is possible to build a consistent SymStratDatalogmin rewrit-
ing for q by first constructing Datalog rules for an initial strong component of q’s
attack graph, and then constructing (by induction) a Datalog program for the remain-
der of the attack graph. The initial strong component has size = 1 in the first case,
and size > 1 in the second case. All constructed rules together form a consistent
SymStratDatalogmin rewriting for q.

Theory of Computing Systems

9 Joins on Primary Keys

It is common that the join condition in a join of two tables expresses a foreign-to-
primary key match, i.e., the columns (called the foreign key) of one table reference
the primary key of another table. In our setting, we have primary keys but no foreign
keys. Nevertheless, foreign keys can often be inferred from the query. For example, in
the following query, the variable d in Movies references the primary key of Directors:

{Movies(m, t, ‘1963’, d),Directors(d, ‘Hitchcock’, b)}.

Given relation schemas
Movies(M#, Title,Year,Director) and Directors(D#,Name,BirthYear), this query

asks whether there exists a movie released in 1963 and directed by Hitchcock.
The key-join property that we define below captures this common type of join.

Informally, a query has the key-join property if whenever two atoms have a variable
in common, then their set of shared variables is either equal to the set of primary-
key variables of one of the atoms, or contains all primary-key variables of both
atoms.

Definition 9 We say that a query q in sjfBCQ has the key-join property if for all
F, G ∈ q, either vars(F) ∩ vars(G) ∈ {∅, key(F), key(G)} or vars(F) ∩ vars(G) ⊇
key(F) ∪ key(G).

Theorem 4 shows that if a query q in sjfBCQ has the key-join property, then
CERTAINTY(q) falls on the logspace side of the dichotomy of Theorem 3.

Theorem 4 For every query q in sjfBCQ that has the key-join property, the problem
CERTAINTY(q) is expressible in SymStratDatalogmin (and therefore is in L).

It is worth noting that many of the queries covered by Theorem 4 have an acyclic
attack graph as well, and therefore even have a consistent first-order rewriting.

10 Conclusion

The main result of this article is that for every query q in sjfBCQ (i.e., the class
of self-join-free Boolean conjunctive queries), the problem CERTAINTY(q) is either
coNP-complete or expressible in SymStratDatalogmin (and therefore in L). Since
CERTAINTY(q) is L-complete for some queries q in sjfBCQ, the logspace upper
bound in this theorem is tight. The theorem thus culminates a long line of research
that started with the ICDT 2005 article of Fuxman and Miller [14]. The outcome of
this research is the following theorem.

Theorem 5 For every self-join-free Boolean conjunctive query q,

– if the attack graph of q is acyclic, then CERTAINTY(q) is in FO;

Theory of Computing Systems

– if the attack graph of q is cyclic but contains no strong cycle, then the
problem CERTAINTY(q) is L-complete and expressible in SymStratDatalogmin;
and

– if the attack graph of q contains a strong cycle, then CERTAINTY(q) is coNP-
complete.

An intriguing open problem is to extend these complexity results to Boolean con-
junctive queries with self-joins and to UCQ. Progress in the latter problem may
deepen our understanding of relationships between CQA and CSP, which were first
discovered in [13].

Appendix A: Overview of Different Graphs and Notations

Graph Vertices Edge Notation Short Description

attack graph query atoms F
q� G See Section 3. Informally,

F
q� G means that there

exists a “yes”-instance of
CERTAINTY(q) in which
two key-equal F -facts join
with (and only with) two
G-facts that are not key-
equal (cf. [35, Proposi-
tion 6.4]).

M-graph query atoms F
M−→ G Definition 3. Informally,

F
M−→ G states that the

functional dependency
vars(F) → key(G) is
a logical consequence
of the primary keys in
atoms of mode c.

↪→-graph database facts A ↪→ B Definition 4, data-level
instantiation of the M-
graph

C
↪→-graph database facts A

C
↪→ B Definition 5, subgraph of

the ↪→-graph induced by
an M-cycle C

block-quotient graph database blocks (b,b′) Definition 6, quotient graph

of the
C

↪→-graph relative to
the equivalence relation “is
key-equal to”

Theory of Computing Systems

Notation Meaning

key(F) the set of all variables occurring in the primary key of
atom F

vars(F) the set of all variables occurring in atom F

vars(q) the set of all variables occurring in query q

∼ the equivalence relation “is key-equal to”, e.g.,R(a, 1) ∼
R(a, 2)

rset(db) the set of all repairs of a database db
block(A,db) the set of all facts in db that are key-equal to the fact A
R(�a, ∗) the set of all database facts of the form R(�a, �b), for some �b
sjfBCQ the class of self-join-free Boolean conjunctive queries
UCQ the class of unions of conjunctive queries
Rc a relation name of mode c, which must be interpreted by a

consistent relation
qcons the set of all atoms of query q having a relation name of mode c
K(q) the set containing key(F) → vars(F) for every F ∈ q

F+,q the closure of key(F) with respect to the FDs in
K(q \ {F }) ∪ K(qcons)

genreq(A) the atom of q with the same relation name as the fact A
V (G) the vertex set of a graph G

E(G) the edge set of a graph G

� a set union that happens to be disjoint

Appendix B: Proofs of Section 5

B.1 Proofs of Lemmas 1 and 2

Proof of Lemma 1 Let o1 and o2 be garbage sets for q0 in db. For every i ∈ {1, 2},
we can assume a repair ri of oi such that

Garbage Condition: for every valuation θ over vars(q) such that θ(q) ⊆
(db \ oi) ∪ ri , we have θ(q0) ∩ ri = ∅.

Let o−
2 = o2 \ o1 and r−

2 = r2 \ o1. Then, r1 � r−
2 is a repair of o1 � o−

2 , where the
use of � (rather than ∪) indicates that the operands of the union are disjoint. Let θ be
an arbitrary valuation over vars(q) such that

θ(q) ⊆ (
db \ (o1 � o−

2)
) ∪ (r1 � r−

2).

Then, θ(q) ⊆ (db \ o1) ∪ r1. Consequently, by the Garbage Condition for i = 1,
θ(q0)∩r1 = ∅, and therefore θ(q0)∩o1 = ∅. It follows θ(q) ⊆ (db \ (o1 ∪ o2))∪r−

2 ,
hence θ(q) ⊆ (db \ o2) ∪ r−

2 . Consequently, by the Garbage Condition for i = 2,
θ(q0) ∩ r−

2 = ∅. It follows that o1 � o−
2 =o1 ∪ o2 is a garbage set for q0 in db.

Theory of Computing Systems

Proof of Lemma 2 The ⇐= -direction is trivial. For the =⇒ -direction, assume
that every repair of db satisfies q. We can assume a repair r0 of o such that for every
valuation θ over vars(q), if θ(q) ⊆ (db \ o) ∪ r0, then θ(q0) ∩ r0 = ∅. Let r be
an arbitrary repair of db \ o. It suffices to show r |= q. Since r ∪ r0 is a repair
of db, we can assume a valuation θ over vars(q) such that θ(q) ⊆ r ∪ r0. Since
θ(q) ⊆ (db \ o) ∪ r0 is obvious, it follows θ(q) ∩ r0 = ∅. Consequently, θ(q) ⊆ r,
hence r |= q. This concludes the proof.

B.2 Proof of Lemma 3

We will use two helping lemmas.

Lemma 13 Let q be a query in sjfBCQ, and let q0 ⊆ q. Let o be a garbage set for
q0 in db. If p is the union of one or more blocks of o, then o \ p is a garbage set for
q0 in db \ p.

Proof Let p be the union of one or more blocks of o. We can assume a repair r of o
such that for every valuation θ over vars(q), if θ(q) ⊆ (db \ o)∪r, then θ(q)∩r = ∅.
Let s = r \ p. Obviously, s is a repair of o \ p.

Let θ be a valuation over vars(q) such that θ(q) ⊆ ((db \ p) \ (o \ p)) ∪ s. It
suffices to show θ(q)∩ s = ∅. Since (db \ p) \ (o \ p) ⊆ db \ o and s ⊆ r, it follows
θ(q) ⊆ (db \ o) ∪ r, hence θ(q) ∩ r = ∅. It follows θ(q) ∩ s = ∅.

Corollary 1 Let q be a query in sjfBCQ, and let q0 ⊆ q. Let o be a garbage set for q0
in db. If every garbage set for q0 in db \ o is empty, then o is the maximum garbage
set for q0 in db.

Proof Proof by contraposition. Assume that o is not the maximum garbage set for q0
in db. Let o0 be the maximum garbage set for q0 in db. By Lemma 13, o0 \ o is a
nonempty garbage set for q0 in db \ o.

Lemma 14 Let q be a query in sjfBCQ, and let q0 ⊆ q. Let db be a database. If o
is a garbage set for q0 in db, and p is a garbage set for q0 in db \ o, then o ∪ p is a
garbage set for q0 in db.

Proof Assume the hypothesis holds. Note that o ∩ p = ∅. We can assume a repair
r of o such that for every valuation θ over vars(q), if θ(q) ⊆ (db \ o) ∪ r, then
θ(q) ∩ r = ∅. Likewise, we can assume a repair s of p such that for every valuation
θ over vars(q), if θ(q) ⊆ ((db \ o) \ p) ∪ s, then θ(q) ∩ s = ∅. Obviously, r ∪ s is a
repair of o ∪ p.

Let θ be a valuation over vars(q) such that θ(q) ⊆ (db \ (o ∪ p)) ∪ (r ∪ s). From
the set inclusion (db \ (o ∪ p))∪(r ∪ s) ⊆ (db \ o)∪r, it follows θ(q) ⊆ (db \ o)∪r,
hence θ(q) ∩ r = ∅. Then, θ(q) ⊆ (db \ (o ∪ p)) ∪ s = ((db \ o) \ p) ∪ s, hence
θ(q) ∩ s = ∅. It follows θ(q) ∩ (r ∪ s) = ∅.

Theory of Computing Systems

Corollary 2 Let q be a query in sjfBCQ, and let q0 ⊆ q. Let db be a database, and
let o be the maximum garbage set for q0 in db. Then, every garbage set for q0 in
db \ o is empty.

Proof Immediate from Lemma 14.

The proof of Lemma 3 can now be given.

Proof of Lemma 3 Immediate from Corollaries 1 and 2.

Appendix C: Appendix to Section 7

C.1 Proofs of Lemmas 5 and 6

Proof of Lemma 5 We will write ⊕ for addition modulo k. We first consider garbage
sets respecting the first three conditions.

– Let A be a fact of db such that genreq(A) ∈ {F0, . . . , Fk−1} and A has zero

outdegree in the
C

↪→-graph. Then, there exists no valuation θ over vars(q) such
that A ∈ θ(q) ⊆ db. It is obvious that block(A,db) is a garbage set for
C in db.

– Let A0
C

↪→ A1
C

↪→ · · · C
↪→ Ak−1

C
↪→ A0 be an irrelevant 1-embedding of C in db.

Assume without loss of generality that for every i ∈ {0, . . . , k−1}, genreq(Ai) =
Fi . Let o = ⋃k−1

i=0 block(Ai,db). Let r = {A0, . . . , Ak−1}, which is obviously
a repair of o. We show that o is a garbage set for C in db. Assume, toward
a contradiction, the existence of a valuation θ over vars(q) such that for some

i ∈ {0, . . . , k − 1}, Ai ∈ θ(q) ⊆ (db \ o) ∪ r. Then, θ(Fi)
C

↪→ θ(Fi⊕1). Since

θ(Fi) = Ai , we have Ai
C

↪→ θ(Fi⊕1). From Ai
C

↪→ θ(Fi⊕1) and Ai
C

↪→ Ai⊕1, it
follows θ(Fi⊕1) ∼ Ai⊕1 by Lemma 4. Since θ(Fi⊕1) ∈ (db \ o) ∪ r, it follows
θ(Fi⊕1) = Ai⊕1. By repeated application of the same reasoning, for every j ∈
{0, . . . , k − 1}, θ(Fj) = Aj . But then A0

C
↪→ A1

C
↪→ · · · C

↪→ Ak−1
C

↪→ A0 is a
relevant 1-embedding of C in db, a contradiction.

– Let r be a set containing all (and only) the facts of some n-embedding of C in
db with n ≥ 2. Let o = ⋃

A∈r block(A,db). It can be shown that o is a garbage
set for C in db; the argumentation is analogous to the reasoning in the previous
paragraph.

Let o0 be the minimal subset of db that satisfies all conditions in the statement of
the lemma except the recursive Condition 4. By Lemma 1 and our reasoning in the
previous items, it follows that o0 is a garbage set for C in db.

Note that the first three conditions do not recursively depend on o0. Starting with
o0, construct a maximal sequence

o0, μ0, o1, μ1, o2, μ2, . . . , om, μm, om+1

Theory of Computing Systems

such that o0 � o1 � o2 � · · · � om+1 and for every h ∈ {0, 1, . . . , m},
1. μh is a valuation over vars(q) such that μh(q) ⊆ db and μh(q) ∩ oh 	= ∅.

Therefore, μ(F0)
C

↪→ μ(F1)
C

↪→ · · · C
↪→ μ(Fk−1)

C
↪→ μ(F0) is a relevant 1-

embedding of C in db; and

2. oh+1 = oh ∪
(⋃k−1

i=0 block(μh(Fi),db)
)
.

It is clear that the final set om+1 is a minimal set satisfying all conditions in the
statement of the lemma. We show by induction on increasing h that for all h ∈
{0, 1, . . . , m, m+1}, oh is a garbage set for C in db. We have already showed that o0
is a garbage set for C in db. For the induction step, h → h+1, the induction hypoth-
esis is that oh is a garbage set for C in db. Then, there exists a repair r of oh such
that for every valuation θ over vars(q), if θ(q) ⊆ (db \ oh) ∪ r, then θ(q) ∩ r = ∅.

Fig. 10 Illustration of the
C

↪→-graph in the proof of
Lemma 5. Every vertex is a fact,
and the vertex labels indicate the
set to which each vertex
belongs. Vertices on the same
horizontal line are key-equal.
Dashed arrows represent
(possibly empty) directed paths

Theory of Computing Systems

For every i ∈ {0, . . . , k − 1}, define Ai := μh(Fi). Let s = {A0, . . . , Ak−1} \ oh.

We have oh+1 = oh �
(⋃

Aj ∈s block(Aj ,db)
)
. Let r′ = r � s. Obviously, r′ is

a repair of oh+1. Here, we use �, rather than ∪, to make clear that the operands
of the union are disjoint. Assume, toward a contradiction, the existence of a valu-
ation θ over vars(q) such that θ(q) ⊆ (db \ oh+1) ∪ r′ and θ(q) ∩ r′ 	= ∅. Since
(db \ oh+1)∪r′ ⊆ (db \ oh)∪r, it follows θ(q) ⊆ (db \ oh)∪r, hence θ(q)∩r = ∅
by our initial hypothesis. It must be the case that θ(q) ∩ s 	= ∅. We can assume

i ∈ {0, . . . , k − 1} such that Ai ∈ θ(q) ∩ s. We have θ(Fi)
C

↪→ θ(Fi⊕1). Since

θ(Fi) = Ai , we have Ai
C

↪→ θ(Fi⊕1). From Ai
C

↪→ θ(Fi⊕1) and Ai
C

↪→ Ai⊕1, it
follows θ(Fi⊕1) ∼ Ai⊕1 by Lemma 4. Therefore, θ(Fi⊕1) ∈ block(Ai⊕1,db). Two
cases are possible:

Case that block(Ai⊕1,db) ⊆ oh. Since θ(Fi⊕1) ∈ (db \ oh)∪r, it must be the case
that θ(Fi⊕1) ∈ r. However, since we have previously argued that θ(q) ∩ r = ∅,
we conclude that this case cannot occur.

Case that block(Ai⊕1,db) 	⊆ oh. By our definition of s, we have Ai⊕1 ∈ s. Since
θ(Fi⊕1) ∈ (db \ oh+1) ∪ r′, it must be the case that θ(Fi⊕1) ∈ s, and therefore
θ(Fi⊕1) = Ai⊕1.

From the above cases, it follows that Ai⊕1 ∈ θ(q)∩ s. By repeating the same reason-
ing, we obtain that Aj ∈ θ(q) ∩ s for all j ∈ {0, . . . , k − 1}. Since μh(q) ∩ oh 	= ∅
by our construction, we can assume the existence of � ∈ {0, . . . , k − 1} such that
A� ∈ oh, hence A� 	∈ s, which contradicts our earlier finding that each Aj belongs
to θ(q) ∩ s. This concludes the induction step. It is correct to conclude that om+1 is a
garbage set for C in db.

Let db′ = db\om+1. We show that the garbage set for C in db′ is empty. Assume,
toward a contradiction, that o is a nonempty garbage set for C in db′. We can assume
a repair r of o such that for every valuation θ over vars(q), if θ(q) ⊆ (db′ \ o) ∪ r,
then θ(q) ∩ r = ∅.

We show that for any A ∈ r, the
C

↪→-graph contains an infinite path that starts
from A such that any vertex on the path belongs to (db′ \ o) ∪ r and any (con-
tiguous) subpath of length k contains some fact from r. To this end, let A be a
fact of r. By our construction, there exists a valuation μ over vars(q) such that

A ∈ μ(q) ⊆ db′ (otherwise A would belong to om+1). Hence, μ(F0)
C

↪→ μ(F1)
C

↪→
· · · C

↪→ μ(Fk−1)
C

↪→ μ(F0) is a relevant 1-embedding of C in db′ that contains A.
Then, for some i ∈ {0, . . . , k − 1}, it must be the case that μ(Fi) 	∈ (db′ \ o) ∪ r (or
else μ(q) ⊆ (db′ \ o) ∪ r and μ(q) ∩ r 	= ∅, a contradiction). Therefore, the

C
↪→-

graph contains a shortest path π of length < k from A to some fact B ∈ o \ r. Then,
there exists B ′ ∈ r such that B ′ ∼ B and the

C
↪→-graph contains a path of length < k

from A to B ′. This path is obtained by substituting B ′ for B in π . Since B ′ ∈ r, we
can continue the path by applying the same reasoning as for A. The path is illustrated
by Fig. 10. Since the directed path is infinite, it has a shortest finite subpath of length
≥ k whose first vertex is key-equal to its last vertex. Let D be the last but one ver-

tex on this subpath. Since the
C

↪→-graph contains a directed edge from D to the first

Theory of Computing Systems

vertex of the subpath, it contains a cycle of some length nk with n ≥ 1. Since this
cycle is obviously an n-embedding of C in db′ = db \ om+1, it must be a relevant
1-embedding of C in db′ which, moreover, contains some fact of r. Therefore, there
exists a valuation μ over vars(q) such that μ(q) ⊆ (db′ \ o) ∪ r and μ(q) ∩ r 	= ∅, a
contradiction.

Since the garbage set for db \ om+1 is empty, it follows by Lemma 3 that om+1 is
the maximum garbage set for C in db. This concludes the proof.

Proof of Lemma 6 For the first item, let A
C

↪→ A′ be any edge of the n-embedding.
We can assume F, F ′ ∈ C such that F

M−→ F ′, genreq(A) = F , and genreq(A′) =
F ′. Then, the block-quotient graph will contain a directed edge from block(A,db)

to block(A′,db). It is then obvious that (b0,b1, . . . ,bnk−1,b0) is a directed cycle in
the block-quotient graph; this cycle is elementary because no two distinct facts of an
n-embedding are key-equal.

For the second item, let i ∈ {0, . . . , nk − 1}. Since (bi ,bi+1 mod nk) is an edge
in the block-quotient graph, we can assume Ai ∈ bi and A′ ∈ bi+1 mod nk such

that Ai
C

↪→ A′. By Lemma 4, it will be the case that A0
C

↪→ A1
C

↪→ · · · C
↪→

Ank−1
C

↪→ A0. Furthermore, the latter
C

↪→-cycle is an n-embedding. Indeed, since the
cycle (b0,b1, . . . ,bnk−1,b0) is elementary, no two distinct Ais are key-equal. This
concludes the proof.

C.2 Proof of Lemma 8

We will use the following helping lemma. If G is a directed graph, then a directed
cycle in G of length k is called a k-cycle.

Lemma 15 Let G = (V , E) be an instance of LONGCYCLE(k). Let Ĝ = (V̂ , Ê)

be the undirected graph whose vertices are the k-cycles of G. There is an undirected
edge between any two distinct k-cycles P1 and P2 if V (P1) ∩ V (P2) 	= ∅. Then, the
following are equivalent:

1. Ĝ has a chordless cycle of length ≥ 2k or G has an elementary directed cycle of
length nk with 2 ≤ n ≤ 2k − 3.

2. G contains an elementary directed cycle of length ≥ 2k.

Proof Since the graph G is k-partite, every k-cycle is elementary.
Assume that 1 holds true. The result is obvious if there exists n such that

2 ≤ n ≤ 2k −3 and G has an elementary cycle of length nk. Assume next that Ĝ has
a chordless elementary cycle (P0, P1, . . . , Pm−1, P0) of lengthm ≥ 2k. We construct
a cycle C in G using the following procedure. The construction will define a labeling
function � from the vertices in C to {0, 1, . . . , m − 1}. It will be the case that w ∈
V (P�(w)) for every vertex w in C. We start with any vertex v0 ∈ V (Pm−1) ∩ V (P0)

and define its label as �(v0) := 0. At any point of the procedure, if we are at vertex
u with label �(u), we choose the next vertex w in C to be the next vertex in the k-
cycle P�(u). If �(u) < m − 1 and w also belongs to P�(u)+1, we let �(w) := �(u) + 1;

Theory of Computing Systems

otherwise �(w) := �(u). The procedure terminates when we attempt to add a vertex
that already exists in C, and therefore C will be elementary.

We first show that the termination condition will not be met for any vertex distinct
from v0. Suppose, toward a contradiction, that the sequence constructed so far is
C = 〈v0, v1, . . . , vn〉, �(vn) = i ≤ m − 1, and the next vertex in Pi is some vj with
j ∈ {1, . . . , n − 1}. Since vj belongs to both Pi and P�(vj), it must be the case that
�(vj) ≥ i − 1, because otherwise {Pi, P�(vj)} is a chord in (P0, P1, . . . , Pm−1, P0),
a contradiction. We now distinguish two cases:

Case �(vj) = i − 1. Then, vj ∈ V (Pi−1) ∩ V (Pi). By the procedure, this means
that �(vj−1) = i − 2. Indeed, if �(vj−1) = i − 1, then the procedure would
have set �(vj) to i, because vj also belongs to Pi . But then this also implies that
vj ∈ V (Pi−2), a contradiction to the fact that the cycle is chordless.

Case �(vj) = i. Then the procedure reaches a vertex on Pi that has been visited
before. Therefore, starting with this previously visited vertex on Pi , the pro-
cedure has entirely traversed Pi without ever reaching a vertex of Pi+1 mod m,
contradicting that Pi and Pi+1 mod m have a vertex in common.

It is now clear that at some point we will reach v0. Indeed, when the label becomes
m − 1, the procedure will follow the edges of Pm−1 until it reaches v0. We have that
�(v0) = 0, and the procedure is such that if some vertex has label i with i < m − 1,
then there is a vertex with label i + 1. Therefore, for every i ∈ {0, 1, . . . , m − 1},
there exists at least one vertex u in C such that �(u) = i. Therefore, C has at least m
vertices. Since m ≥ 2k, the cycle C has length ≥ 2k.

Assume that

– G contains an elementary directed cycle of length ≥ 2k, and
– for all 2 ≤ n ≤ 2k − 3, G contains no elementary directed cycle of length nk.

We will show that Ĝ contains a chordless cycle of length ≥ 2k.
We first introduce some notions that will be useful in the proof. A subpath of a

directed path is a consecutive subsequence of edges of that path. Every path is a
subpath of itself. We write start(π) and end(π) to denote, respectively, the first and
the last vertex of a directed path π . If end(π) = start(π ′), then π · π ′ denotes the
concatenation of paths π and π ′. The length of a (possibly closed) elementary path
π is the number of edges it contains, and is denoted length(π).

Covering Let O be an elementary cycle in G of size ≥ 2k. A seam in O is a subpath
of O that is also a subpath of some k-cycle. Obviously, every seam in O has length
< k. A covering of O is a set of edge-disjoint seams in O such that every edge of O

is an edge of some seam in the set. Since every edge of G belongs to some k-cycle
by our hypothesis, O has a covering. We define seamlength(O) := � if O has a
covering of cardinality � and every covering of O has cardinality ≥ �.

Cyclic Ordering of the Seams in a Covering Let C = {S0, S1, . . . , S�−1} be a
covering of O. From here on, we will assume that the seams are listed such that a

Theory of Computing Systems

traversal of O that starts with start(S0) traverses the seams of C in the order S0, S1,
. . . , S�−1.

Let O be a directed cycle of length ≥ 2k that minimizes seamlength(·). From here
on, � denotes seamlength(O). Thus, every elementary cycle O ′ in G of length ≥ 2k
satisfies seamlength(O ′) ≥ �. Let {S0, S1, . . . , S�−1} be a covering of O.

Our hypothesis is that for every directed cycle of length nk in G such that n ≥ 2,
we have n > 2k−3. Consequently, length(O) ≥ (2k−2)k. For every i ∈ {0, . . . , �−
1}, we have length(Si) ≤ k − 1 (because O is elementary with length(O) ≥ 2k).
Therefore, (2k − 2)k ≤ length(O) = ∑�−1

i=0 length(Si) ≤ �(k − 1), which implies
� ≥ 2k.

For every i ∈ {0, . . . , � − 1}, let Pi be a k-cycle of which Si is a subpath. We
define the fitness of Pi as length(S′

i) if S′
i is the longest subpath of Pi that has Si

as a subpath and that is still a seam in O. Note that the fitness of Pi is at least
length(Si). For a reason that will become apparent shortly, if multiple choices for the
k-cycle Pi are possible, we will choose a k-cycle with the greatest fitness. Assume,
toward a contradiction, that the subgraph of Ĝ induced by {P0, P1, . . . , P�−1} has
a cycle chord. We can assume without loss of generality m ∈ {2, . . . , � − 2} and
a path (P0, P1, . . . , Pm−1, Pm) in Ĝ such that {P0, Pm} ∈ E(Ĝ), while the paths
(P0, P1, . . . , Pm−1) and (P1, . . . , Pm−1, Pm) are chordless. From {P0, Pm} ∈ E(Ĝ),
it follows that V (P0) ∩ V (Pm) 	= ∅. We have V (S0) ∩ V (Sm) = ∅. Let π

be the closed directed path in G that, starting from start(Sm), traverses Pm until
a vertex (call it x) of P0 is reached. From x on, the path π follows P0 until
end(S0) is reached, and then traverses S1, S2, . . . , Sm−1. Note that it is possible that
x ∈ V (Sm) or x ∈ V (S0) (but not both). We argue next that π is an elementary
cycle.

The edges of π that are not in O belong either to the subpath (call it πm) of Pm

that goes from end(Sm) to x, or to the subpath (call it π0) of P0 that goes from x to
start(S0). Note that πm exists only if x 	∈ V (Sm), and π0 exists only if x 	∈ V (S0).
Assume toward a contradiction that π is not elementary. From our hypotheses and
construction, it must be the case that πm intersects Sm−1 in some vertex y, or that π0
intersects S1 in some vertex z. These possibilities are depicted in Fig 11. If this hap-
pens, however, P ′

m and P ′
0 have a strictly greater fitness than Pm and P0, contradicting

Fig. 11 Two possible configurations. P0 is the left outermost closed curve containing S0, x, and z; Pm is
the right outermost closed curve containing Sm, y, and x

Theory of Computing Systems

that we chose k-cycles with the greatest fitness. Here, P ′
m is the k-cycle that, starting

from end(Sm−1) = start(Sm), traverses Pm until y, and then follows Pm−1 from y

until end(Sm−1). Similarly, P ′
0 is the k-cycle that, starting from end(S0) = start(S1),

traverses P1 until z, and then follows P0 from z until end(S0). To see that P ′
m has a

strictly greater fitness than Pm, note that the subpath of P ′
m from y to end(Sm) is a

seam of O. Since x 	∈ V (Sm−1), Pm will cover a strictly smaller suffix of Sm−1 than
P ′

m does.
We show that both length(π) = k and length(π) ≥ 2k lead to a contradiction.

– Assume that π is a k-cycle. Then either S0 · S1 · · · · · Sm−1 is a seam of O or
S1 ·S2 · · · · ·Sm is a seam of O. Since m ≥ 2, we can use π to construct a covering
of O of cardinality < �, a contradiction.

– Assume that length(π) ≥ 2k. It can be easily seen that π has a covering of
cardinality m + 1 < �, which contradicts our assumption about O.

The proof of Lemma 8 can now be given.

Proof of Lemma 8 Let G = (V , E) be an instance of LONGCYCLE(k). Let Ĝ =
(V̂ , Ê) be the undirected graph defined in the statement of Lemma 15. Obviously, it
suffices to show that Condition 1 in the statement of Lemma 15 can be expressed in
SymStratDatalog.

All elementary cycles in G of length nk for 2 ≤ n ≤ 2k − 3 can obvi-
ously be found in FO. We now outline a program in SymStratDatalog that
tests for the existence of chordless cycles in Ĝ of length ≥ 2k. The graph Ĝ

can be constructed in SymStratDatalog. Then, the existence of a chordless cycle
of length ≥ 2k can be tested as follows: Check whether there exists a path
(P0, P1, P2, . . . , P2k−2, P2k−1, P2k) such that (i) the subpath (P1, . . . , P2k−1) is ele-
mentary and chordless, and (ii) the endpoints P0 and P2k are also connected by
another (possibly single-vertex) path that uses no vertex that is equal or adjacent to a
vertex in {P2, . . . , P2k−2}. In particular, P0 and P2k themselves must then be distinct
from and not adjacent to the vertices in {P2, . . . , P2k−2}, and, consequently, P0 	= P1
and P2k 	= P2k−1. The single-vertex path occurs if P0 = P2k .

We now give the details of the SymStratDatalog program. The following rule states
that the vertices of Ĝ are the k-cycles of G.

V̂ (x0, . . . , xk−1) ← E(x0, x1), E(x1, x2), . . . , E(xk−2, xk−1), E(xk−1, x0)

Note incidentally that every k-cycle is stored k times in this way. Since the
graph G is k-circle-layered (see Definition 7), we can assume some fixed partition
V0, V1, . . . , Vk−1 of the vertex set V . We will say that the IDB fact V̂ (a0, . . . , ak−1)

is of class Vi if a0 ∈ Vi . Thus, if V̂ (a0, a1, . . . , ak−1) is of class Vi , then
V̂ (a1, . . . , ak−1, a0) is of class Vi+1 mod k . If one partition class would be given as a
part of the input, for example as EDB facts V0(a), then an optimization consists in
adding V0(x0) to the body of the previous rule.

We will need an equality test on vertices of Ĝ:

Eq(x0, . . . , xk−1; x0, . . . , xk−1) ← V̂ (x0, . . . , xk−1)

Theory of Computing Systems

The use of the semicolon is for readability only. The following rules compute edges
in Ĝ. For every � ∈ {0, . . . , k − 1}, add the rules:

Ê(x0, . . . , xk−1; y0, . . . , yk−1) ←

⎧
⎪⎨

⎪⎩

V̂ (x0, . . . , xk−1), V̂ (y0, . . . , yk−1),

¬Eq(x0, . . . , xk−1; y0, . . . , yk−1),

x� = y�

Note that whenever Ê(a0, . . . , ak−1; b0, . . . , bk−1) holds true, then V̂ (a0, . . . , ak−1)

and V̂ (b0, . . . , bk−1) will be IDB V̂ -facts of the same class. In fact, it is suffi-
cient to compute chordless cycles all of whose V̂ -facts are of the same class. From
here on, we write �x for the sequence 〈x0, . . . , xk−1〉. Superscripts are used to create
new variables: x(i) and x(j) are distinct variables unless i = j . Finally, �x(i) is the
sequence x0

(i), . . . , xk−1
(i). Likewise for �y = 〈y0, . . . , yk−1〉, �z = 〈z0, . . . , zk−1〉,

and �w = 〈w0, . . . , wk−1〉. Add the following rule, as well as its symmetric
rule:

UCon(�x, �y, �z(1), . . . , �z(2k−3)) ←

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

UCon(�x, �w, �z(1), . . . , �z(2k−3)), Ê(�w, �y),

{¬Eq(�w, �z(i))
}2k−3
i=1 ,

{¬Ê(�w, �z(i))
}2k−3
i=1

{¬Eq(�y, �z(i))
}2k−3
i=1 ,

{¬Ê(�y, �z(i))
}2k−3
i=1

UCon(�a, �b, �c1, . . . , �c2k−3) holds true if Ĝ contains an undirected path between �a and
�b such that no vertex on the path is equal or adjacent to some �ci . The basis of the
recursion is the following rule:

UCon(�x, �x, �z(1), . . . , �z(2k−3)) ←
{

V̂ (�x), V̂ (�z(1)), . . . , V̂ (�z(2k−3)),
{¬Eq(�x, �z(i))

}2k−3
i=1 ,

{¬Ê(�x, �z(i))
}2k−3
i=1

Finally, the following rule tests for the existence of a chordless cycle in Ĝ of length
≥ 2k.

Chordless() ←

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ê(�x(0), �x(1)), Ê(�x(1), �x(2)), . . . , Ê(�x(2k−1), �x(2k)),
{¬Eq(�x(i), �x(j))

}
1≤i<j≤2k−1 ,

{¬Ê(�x(i), �x(j))
}
1≤i<i+1<j≤2k−1 ,

UCon(�x(0), �x(2k), �x(2), . . . , �x(2k−2))

This concludes the proof.

C.3 Illustration of the Datalog Program in the Proof of Lemma 9

The following example illustrates the Datalog program in the proof of Lemma 9.

Theory of Computing Systems

Example 5 Let q = {R(x, y, z), S(y, x, z), U(z, a)}, where a is a constant. We show
a program in symmetric stratified Datalog that computes the garbage set for the M-
cycle C = R(x, y, z)

M−→ S(y, x, z)
M−→ R(x, y, z). In this example, k = 2. The

program is constructed as in the proof of Lemma 9.
R-facts and S-facts belong to the maximum garbage set if they do not belong to a

relevant 1-embedding. This is expressed by the following rules.

RlvantR(x, y, z) ← R(x, y, z), S(y, x, z), U(z, a)

GarbageR(x) ← R(x, y, z), ¬RlvantR(x, y, z)

RlvantS(y, x, z) ← R(x, y, z), S(y, x, z), U(z, a)

GarbageS(y) ← S(y, x, z), ¬RlvantS(y, x, z)

If some R-fact or S-fact of a relevant 1-embedding belongs to the maximum
garbage set, then every fact of that 1-embedding belongs to the maximum garbage
set. This is expressed by the following rules.

GarbageR(x) ← R(x, y, z), S(y, x, z), U(z, a),GarbageS(y)

GarbageS(y) ← R(x, y, z), S(y, x, z), U(z, a),GarbageR(x)

Note that the predicates GarbageR and GarbageS refer to blocks: whenever a fact
is added to the garbage set, its entire block is added. The following rules compute
irrelevant 1-embeddings.

Any1Emb(x, y, z, y′, x′, z′) ←
⎧
⎨

⎩

R(x, y, z), S(y, x, z), U(z, a),

R(x′, y′, z′), S(y′, x′, z′), U(z′, a),

x = x′, y = y′

Rel1Emb(x, y, z, y, x, z) ← R(x, y, z), S(y, x, z), U(z, a)

Irr1Emb(x, y′) ← Any1Emb(x, y, z, y′, x′, z′),
¬Rel1Emb(x, y, z, y′, x′, z′)

The predicate Ê is used for edges between vertices; each vertex is a (x, y)-value.
The predicate Eq expresses equality of vertices.

Eq(x, y, x, y) ← R(x, y, z), S(y, x, z), U(z, a)

Ê(x, y, x′, y′) ←
⎧
⎨

⎩

R(x, y, z), S(y, x, z), U(z, a),

R(x′, y′, z′), S(y′, x′, z′), U(z′, a),

¬Eq(x, y, x′, y′), x = x′

Ê(x, y, x′, y′) ←
⎧
⎨

⎩

R(x, y, z), S(y, x, z), U(z, a),

R(x′, y′, z′), S(y′, x′, z′), U(z′, a),

¬Eq(x, y, x′, y′), y = y′

The predicate UCon is used for undirected connectivity of the Ê-predicate. In par-
ticular, it will be the case that UCon(a1, b1, a2, b2, a3, b3) holds true if there exists a

Theory of Computing Systems

path between vertices (a1, b1) and (a2, b2) such that no vertex on the path is equal or
adjacent to (a3, b3). Recall that each vertex is itself a pair.

UCon(x1, y1, x1, y1, x3, y3) ←
⎧
⎨

⎩

R(x1, y1, z1), S(y1, x1, z1), U(z1, a),

R(x3, y3, z3), S(y3, x3, z3), U(z3, a),

¬Eq(x1, y1, x3, y3), ¬Ê(x1, y1, x3, y3)

UCon(x1, y1, x2, y2, x3, y3) ←
⎧
⎨

⎩

UCon(x1, y1, x†, y†, x3, y3), Ê(x†, y†, x2, y2),

¬Eq(x†, y†, x3, y3), ¬Ê(x†, y†, x3, y3),

¬Eq(x2, y2, x3, y3), ¬Ê(x2, y2, x3, y3)

UCon(x1, y1, x†, y†, x3, y3) ←
⎧
⎨

⎩

UCon(x1, y1, x2, y2, x3, y3), Ê(x†, y†, x2, y2),

¬Eq(x†, y†, x3, y3), ¬Ê(x†, y†, x3, y3),

¬Eq(x2, y2, x3, y3), ¬Ê(x2, y2, x3, y3)

The latter two rules are each other’s symmetric version. The following rule checks
whether a vertex (a1, b1) belongs to a chordless Ê-cycle of length ≥ 2k.

InLongUCycle(x1, y1) ←

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ê(x0, y0, x1, y1), Ê(x1, y1, x2, y2),

Ê(x2, y2, x3, y3), Ê(x3, y3, x4, y4),

¬Ê(x1, y1, x3, y3),
¬Eq(x1, y1, x2, y2), ¬Eq(x1, y1, x3, y3), ¬Eq(x2, y2, x3, y3),
UCon(x0, y0, x4, y4, x2, y2)

The following rules add to the maximum garbage sets all R-facts and S-facts that

belong to an irrelevant 1-embedding or to a strong component of the
C

↪→-graph that

contains an elementary
C

↪→-cycle of length ≥ 2k. Whenever a fact is added, all facts
of its block are added.

GarbageR(x) ← InLongUCycle(x, y)

GarbageS(y) ← InLongUCycle(x, y)

GarbageR(x) ← Irr1Emb(x, y)

GarbageS(y) ← Irr1Emb(x, y)

This terminates the computation of the garbage set. In general, we have to check

the existence of elementary
C

↪→-cycles of length nk with 2 ≤ n ≤ 2k − 3. However,
for k = 2, no such n exists.

C.4 Proof of Lemma 10

Proof of Lemma 10 Let q ′ = (q \ C)∪{T }. For every i ∈ {0, 1, . . . , k −1}, let Fi =
Ri(�xi, �yi). Here is an informal visual representation of the different queries involved:

Theory of Computing Systems

Proof of the First ItemWe show the existence of a reduction from CERTAINTY(q) to
the problem CERTAINTY(q ′ ∪ p) that is expressible in SymStratDatalogmin. We first
describe the reduction, and then show that it can be expressed in SymStratDatalogmin.

Let db0 be a database that is input to CERTAINTY(q). By Lemma 9, we can com-
pute in symmetric stratified Datalog the maximum garbage set o for C in db0. Let
db = db0 \ o. We know, by Lemma 2, that the problem CERTAINTY(q) has the same
answer on instances db0 and db. Moreover, by Lemma 3, every garbage set for C

in db is empty, which implies, by Lemma 5, that (i) every n-embedding of C in db
must be a relevant 1-embedding, and (ii) every fact A with genreq(A) ∈ C belongs
to a 1-embedding. The reduction will now encode all these 1-embeddings as T -facts.

We show that every directed edge of the
C

↪→-graph belongs to a directed cycle. To

this end, take any edge A
C

↪→ B. Since every garbage set for C in db is empty, the
C

↪→-graph contains a relevant 1-embedding containing A, and a relevant 1-embedding

containing B. Let A′ be the fact such that A′ C
↪→ B is a directed edge in the 1-

embedding containing B. Let B ′ be the fact such that A
C

↪→ B ′ is a directed edge in

the 1-embedding containing A. Since A
C

↪→ B and A
C

↪→ B ′, it follows B ∼ B ′ by
Lemma 4. From A′ C

↪→ B and B ∼ B ′, it follows A′ C
↪→ B ′. Thus, the C

↪→-graph
contains a directed path from B to A′, an edge from A′ to B ′, and a directed path

from B ′ to A. Consequently, the
C

↪→-graph contains a directed path from B to A.
It follows that every strong component of the

C
↪→-graph is initial. It can be easily

seen that if an initial strong component contains some fact A, then it contains every
fact that is key-equal to A. Let r be a repair of db. For every fact A ∈ r, there exists
a unique fact B ∈ r such that A

C
↪→ B. It follows that r must contain an elementary

C
↪→-cycle, which must be a relevant 1-embedding (because every garbage set for C

in db is empty) belonging to the same initial strong component as A. It can also be
seen that there exists a repair that contains exactly one such 1-embedding for every

strong component of the
C

↪→-graph.
We define an undirected graph G as follows: for each valuation μ over vars(q)

such that μ(q) ⊆ db, we introduce a vertex θ with θ = μ[vars(C)]. We add an edge
between two vertices θ and θ ′ if for some i ∈ {0, . . . , k − 1}, θ(�xi) = θ ′(�xi). The
graph G can clearly be constructed in logarithmic space (and even in FO). We define
a set dbT of T -facts and, for every i ∈ {0, . . . , k − 1}, a set dbi as follows: for all
two vertices θ , θ ′ of G, if

θ ′(�x0) = min
{
θ ′′(�x0) | θ ′′ ∈ V (G) belongs to the same strong component as θ

}
,

then we add to dbT the fact θ[u�→θ ′(�x0)](T), and we add to dbi the fact θ[u�→θ ′(�x0)](Ni).
In this way, every dbi is consistent. Informally, if T is the atom T (u, �w), then we
add to dbT the T -fact T (θ ′(�x0), θ(�w)), where θ ′(�x0) is treated as a single value. This
fact represents that θ belongs to the strong component that is identified by θ ′(�x0).
Since undirected connectivity can be computed in logarithmic space [33], dbT and
each dbi can be constructed in logarithmic space.

Let dbC be the set of all Fi-facts in db (0 ≤ i ≤ k − 1), and let dbshared :=
db \ dbC , the part of the database db that is preserved by the reduction. Let
dbN = ⋃k−1

i=0 dbi . Since dbN is consistent, dbshared � dbT � dbN is a legal input to

Theory of Computing Systems

CERTAINTY(q ′ ∪ p), where the use of � (rather than ∪) indicates that the operands
of the union are disjoint. Here is an informal visual representation of the reduction:

We show that the following are equivalent:

1. Every repair of db satisfies q.
2. For every s ∈ rset(dbshared), for every repair rT of dbT , s� rT � dbN |= q ′ ∪ p.
3. Every repair of dbshared � dbT � dbN satisfies q ′ ∪ p.

The equivalence 2 ⇐⇒ 3 is straightforward. We show next the equivalence 1 ⇐⇒ 2.

Let s ∈ rset(dbshared) and let rT be a repair of dbT . By our construction of
dbT , there exists a repair rC of dbC such that for every valuation θ over vars(q), if
θ(q) ⊆ s∪ rC , then for some value c, θ[u�→c](q ′ ∪p) ⊆ s∪ rT ∪dbN . Informally, rC

contains all (and only) the relevant 1-embeddings of C in ∪rC that are encoded by
the T -facts of rT . Since s ∪ rC is a repair of db, by the hypothesis 1, we can assume
a valuation θ over vars(C) such that θ(q) ⊆ s ∪ rC . Consequently, for some value

c, θ[u�→c](q ′ ∪ p) ⊆ s ∪ rT ∪ dbN . Let r be a repair of db. There exist
s ∈ rset(dbshared) and rC ∈ rset(dbC) such that r = s ∪ rC . By the construction of
dbT , there exists a repair rT of dbT such that for every valuation θ over vars(q), if
θ[u�→c](q ′∪p) ⊆ s∪rT ∪dbN for some c, then θ(q) ⊆ s∪rC (note incidentally that the
converse does not generally hold). Informally, for every strong component S of the

C
↪→-graph of db such that s∪ (rC ∩ V (S)) |= q, the set rT encodes one 1-embedding
ofC in s∪(rC ∩ V (S)). Here, V (S) denotes the vertex set of the strong component S;
thus V (S) ⊆ dbC . Since s ∪ rT ∪ dbN is a repair of dbshared � dbT � dbN , it
follows by the hypothesis 2 that there exists a valuation θ over vars(q) such that
θ[u�→c](q ′ ∪ p) ⊆ s ∪ rT ∪ dbN for some c. Consequently, θ(q) ⊆ s ∪ rC .

In the main body of this article, we have shown a program in SymStratDatalogmin

that computes the reduction.

Proof of the Second ItemAssume that the attack graph of q contains no strong cycle
and that some initial strong component of the attack graph contains every atom of
{F0, F1, . . . , Fk−1}. Since all Ni-facts have mode c, they have no outgoing attacks
in the attack graph of q ′ ∪ p. Since vars(Ni) ⊆ vars(T) for every atom Ni ∈ p, we
can limit our analysis to witnesses for attacks that do not contain any Ni . Indeed, if
Ni would occur in a witness, it can be replaced with T . Let S be an initial strong
component of the attack graph of q that contains every atom of {F0, F1, . . . , Fk−1}.
We will use the following properties:

(a) For all X, Y ⊆ vars(q), if K(q) |= X → Y , then K(q ′ ∪ p) |= X → Y .
This holds true because K(q ′ ∪ p) |= K(q). To prove the latter claim, note that
K(q) \ K(q ′ ∪ p) = {key(Fi) → vars(Fi)}k−1

i=0 . For all i ∈ {0, 1, . . . , k − 1},

Theory of Computing Systems

we have that K({T , Ni}) ≡ {u → vars(C), key(Fi) → u} with vars(Fi) ⊆
vars(C). Consequently, K(q ′ ∪ p) |= key(Fi) → vars(Fi).

(b) As an immediate consequence of (a), we have H+,q ⊆ H+,q ′∪p for every H ∈
q \ C.

(c) For everyH ∈ q\C, ifH
q ′∪p� T , thenH ∈ S. To show this result, letH ∈ q\C

such that H
q ′∪p� T . We can assume without loss of generality the existence of

a witness for H
q ′∪p� T of the form ω

v

� T with v 	= u, where the sequence
ω starts with H . We can assume the existence of j ∈ {0, . . . , k − 1} such that
v ∈ vars(Fj). From the preceding property (b), it follows that the sequence

ω
v

� Fj is a witness for H
q� Fj . Since Fj ∈ S, we conclude H ∈ S.

(d) For allG, H ∈S, we haveK(q ′∪p) |=key(G)→key(H). To show this result, let
G, H ∈ S. Since S is an initial strong component of the attack graph of q, there
exists an elementary attack cycle that contains both G and H . Since the attack

graph of q contains no strong cycle, for every edge J
q� J ′ on this attack cycle,

we have K(q) |= key(J) → key(J ′). It can now be easily seen that K(q) |=
key(G) → key(H). Finally, by property (a), K(q ′ ∪ p) |= key(G) → key(H).

We know by [21, Lemma 3.6] that if the attack graph contains a strong cycle, then
it contains a strong cycle of length 2. Therefore, to conclude the proof, it suffices to
show that every cycle of length 2 in the attack graph of q ′ ∪ p is weak. To this end,

assume that the attack graph of q ′ ∪ p contains an attack cycle H
q ′∪p� J

q ′∪p� H .
Then, either H 	= T or J 	= T (or both). We assume without loss of generality that

H 	= T . We show that the attack cycle H
q ′∪p� J

q ′∪p� H is weak. We distinguish
three cases.

Case that H
q ′∪p

	� T (therefore J 	= T) and J
q ′∪p

	� T . Then no witness for

H
q ′∪p� J or J

q ′∪p� H can contain T . By property (b), H
q� J

q� H . Since
the attack graph of q contains no strong attack cycle, K(q) |= key(H) → key(J)

and K(q) |= key(J) → key(H). Then, by property (a), K(q ′ ∪ p) |= key(H) →
key(J) and K(q ′ ∪ p) |= key(J) → key(H). It follows that the attack cycle

H
q ′∪p� J

q ′∪p� H is weak.

Case that H
q ′∪p� T . By property (c), H ∈ S. We distinguish two cases.

Case that J = T . By property (d), K(q ′ ∪ p) |= key(H) → key(F0) and
K(q ′ ∪ p) |= key(F0) → key(H). In the following, recall that {u} = key(T).
Since K(q ′ ∪ p) |= key(F0) → u and K(q ′ ∪ p) |= u → key(F0) hold by the
construction of q ′ ∪ p, we conclude K(q ′ ∪ p) |= key(H) → u and K(q ′ ∪ p)

|= u → key(H). It follows that the attack cycle H
q ′∪p� J

q ′∪p� H is weak.
Case that J 	= T . We show that J ∈ S by distinguishing two cases:

– If J
q ′∪p

	� T , then no witness for J
q ′∪p� H contains T . Then, by prop-

erty (b), any witness for J
q ′∪p� H is also a witness for J

q� H , and
therefore J ∈ S.

Theory of Computing Systems

– If J
q ′∪p� T , then J ∈ S by property (c).

From H, J ∈ S, it follows K(q ′ ∪ p) |= key(H) → key(J) and K(q ′ ∪ p) |=
key(J) → key(H) by property (d). It follows that the attack cycle H

q ′∪p�
J

q ′∪p� H is weak.

Case that J
q ′∪p� T (therefore J 	= T). This case is symmetrical to a case that has

already been treated.

Appendix D: Proofs of Section 8.1

D.1 Proof of Lemma 11

We will use two helping lemmas.

Lemma 16 [35, Lemma 4.3] Let q be a self-join-free Boolean conjunctive query,
and r a consistent database. If α1, α2 are valuations over vars(q) such that
α1(q) ⊆ r and α2(q) ⊆ r, then {α1, α2} satisfies every functional dependency
in K(q).

Lemma 17 Let q be a query in sjfBCQ. Let Z → w be a functional depen-
dency that is internal to q. Let �z be a sequence of distinct variables such that
vars(�z) = Z. Let q ′ = q ∪ {Nc(�z, w)} where N is a fresh relation name of mode c.
Then,

1. there exists a first-order reduction from CERTAINTY(q) to CERTAINTY(q ′); and
2. if the attack graph of q contains no strong cycle, then the attack graph of q ′

contains no strong cycle.

Proof of the first item By the second condition in Definition 8, we can assume an
atom F ∈ q such that Z ⊆ vars(F). Let F1, F2, . . . , F� be a sequential proof for

K(q) |= Z → w such that for every i ∈ {1, . . . , �}, for every u ∈ Z ∪ {w}, Fi

q

	� u.
It can be easily seen that for every i ∈ {0, . . . , � − 1}, we have

K({Fj }ij=1) |= Z → key(Fi+1). (4)

Let db be a database that is the input to CERTAINTY(q). We repeat the following
“purification” step: If for two valuations over vars(q), denoted β1 and β2, we have
β1(q), β2(q) ⊆ db and {β1, β2} 	|= Z → w, then we remove both the F -block
containing β1(F) and the F -block containing β2(F). Note that β1(F) and β2(F)

may be key-equal, and hence belong to the same F -block.
Assume that we apply this step on db′ and obtain db′′. We show that some repair

of db′ falsifies q if and only if some repair of db′′ falsifies q. The =⇒ -direction
trivially holds true. For the ⇐= -direction, let r′′ be a repair of db′′ that falsifies q.
Assume, toward a contradiction, that every repair of db′ satisfies q. For every repair

Theory of Computing Systems

r, define Reify(r) as the set of valuations over Z ∪ {w} containing θ if r |= θ(q).
Let

r′ =
{
r′′ ∪ {βj (F)} for somej ∈ {1, 2} if β1(F) and β2(F) are key-equal
r′′ ∪ {β1(F), β2(F)} otherwise

Note that if β1(F) and β2(F) are key-equal, then we can choose either r′ = r′′ ∪
{β1(F)} or r′ = r′′ ∪ {β2(F)}; the actual choice does not matter. Obviously, r′ is a
repair of db′. Since we assumed that every repair of db′ satisfies q, we can assume
a valuation α over vars(q) such that α(q) ⊆ r′. Since α(q) � r′′ (because r′′ 	|= q),
it must be the case that for some j ∈ {1, 2}, α(F) = βj (F). From vars(�z) = Z ⊆
vars(F), it follows that α(�z) = βj (�z). From β1(�z) = β2(�z), it follows α(�z) = β1(�z)
and α(�z) = β2(�z). Since β1(w) 	= β2(w), either α(w) 	= β1(w) or α(w) 	= β2(w)

(or both). Therefore, we can assume b ∈ {1, 2} such that α(w) 	= βb(w). It will be
the case that Reify(r′) = {α[Z∪{w}]}.2 Indeed, since α is an arbitrary valuation over
vars(q) such that α(q) ⊆ r′, it follows that for all valuations α1, α2 over vars(q), if
α1(q), α2(q) ⊆ r′, then α1(�z) = α2(�z) and therefore, by Lemma 16 and using that
K(q) |= Z → w, we have α1(w) = α2(w).

We now claim that for all i ∈ {0, 1, . . . , �}, there exists a pair (r′i , αi) such that

1. r′i is a repair of db′;
2. αi is a valuation over vars(q) such that αi(q) ⊆ r′i ;
3. αi({Fj }ij=1) = βb({Fj }ij=1) and αi(�z) = βb(�z) (and therefore αi(�z) = α(�z));
4. αi(w) = α(w); and
5. Reify(r′i) = {α[Z ∪ {w}]}.
The third condition entails {αi, βb} |= K({Fj }ij=1) for all i ∈ {0, 1, . . . , �}. From
(4), it follows {αi, βb} |= Z → key(Fi+1). Then, from αi(�z) = βb(�z), it follows that
αi and βb agree on all variables of key(Fi+1).

The proof of the above claim runs by induction on increasing i. For the basis of
the induction, i = 0, the desired result holds by choosing r′0 = r′ and α0 = α.

For the induction step, i → i + 1, the induction hypothesis is that the desired
pair (r′i , αi) exists. Since αi and βb agree on all variables of key(Fi+1), we have that
αi(Fi+1) and βb(Fi+1) are key-equal. From βb(q) ⊆ db′, it follows that βb(Fi+1) ∈
db′. Let r′i+1 = (

r′i \ {αi(Fi+1)}
) ∪ {βb(Fi+1)}, which is obviously a repair of db′.

Since Fi+1

q

	� u for all u ∈ Z ∪ {w}, Reify(r′i+1) ⊆ Reify(r′i) by [21, Lemma B.1].
Since we assumed that every repair of db′ satisfies q, we have that Reify(r′i+1) 	= ∅,
and therefore Reify(r′i+1) = {α[Z ∪ {w}]}. Hence, there exists a valuation αi+1

over vars(q) such that αi+1(q) ⊆ r′i+1 and αi+1[Z ∪ {w}] = α[Z ∪ {w}], that is,
αi+1(�z) = α(�z) and αi+1(w) = α(w). Since α(�z) = βb(�z), we have αi+1(�z) =
βb(�z). We have thus shown that the pair (r′i+1, αi+1) satisfies items 1, 2, 4, and 5 in
the above five-item list; we also have shown the second conjunct of item 3. In the next
paragraph, we show that αi+1({Fj }i+1

j=1) = βb({Fj }i+1
j=1), i.e., the first conjunct of

item 3.

2Here, α[Z ∪ {w}] is the restriction of α to Z ∪ {w}.

Theory of Computing Systems

By the induction hypothesis, αi({Fj }ij=1) = βb({Fj }ij=1) and αi(q) ⊆ r′i , which
implies βb({Fj }ij=1) ⊆ r′i . Since r′i and r′i+1 include the same set of Fj -facts for

every j ∈ {1, . . . , i}, we have βb({Fj }ij=1) ⊆ r′i+1. Since βb(Fi+1) ∈ r′i+1 by

construction, we obtain βb({Fj }i+1
j=1) ⊆ r′i+1. Since also αi+1({Fj }i+1

j=1) ⊆ r′i+1

(because αi+1(q) ⊆ r′i+1), it is correct to conclude that {βb, α
i+1} |= K({Fj }i+1

j=1) by

Lemma 16. We are now ready to show that αi+1(Fj) = βb(Fj) for all j ∈ {1, . . . , i+
1}. To this end, pick any k ∈ {1, . . . , i + 1}. We have K({Fj }k−1

j=1) |= Z → key(Fk)

by (4). Since {Fj }k−1
j=1 is a subset of {Fj }i+1

j=1, we have {βb, α
i+1} |= K({Fj }k−1

j=1),

and therefore {βb, α
i+1} |= Z → key(Fk). Then, from αi+1(�z) = βb(�z) (the second

conjunct of item 3), it follows that αi+1 and βb agree on all variables of key(Fk).
Since αi+1(Fk), βb(Fk) ∈ r′i+1, it must be the case that αi+1(Fk) = βb(Fk). This
concludes the induction step.

For the pair (r′�, α�), we have that α�({Fj }�j=1) = βb({Fj }�j=1), and therefore,

since w occurs in some Fj , α�(w) = βb(w). Since also α�(w) = α(w), we obtain
α(w) = βb(w), a contradiction. We conclude by contradiction that some repair of
db′ falsifies q. Thus, the purification step described in the paragraph immediate
following (4) does not change the answer to CERTAINTY(q).

We repeat the “purification” step until it can no longer be applied. Let the final
database be d̂b. By the above reasoning, we have that every repair of d̂b satisfies
q if and only if every repair of db satisfies q. Let s be the smallest set of N-facts
containing N(β(�z), β(w)) for every valuation β over vars(q) such that β(q) ⊆ db.
We show that s is consistent. To this end, let β1, β2 be valuations over vars(q) such
that β1(q), β2(q) ⊆ db and β1(�z) = β2(�z). If β1(w) 	= β2(w), then a purification
step can remove the block containing β1(F), contradicting our assumption that no
purification step is applicable on d̂b. We conclude by contradiction that β1(w) =
β2(w).

Since N has mode c and s is consistent, we have that d̂b ∪ s is a legal database. It
can now be easily seen that every repair of db satisfies q if and only if every repair
of d̂b ∪ s satisfies q ′ = q ∪ {Nc(�z, w)}.

It remains to be argued that the reduction is in FO, i.e., that the result of
the repeated “purification” step can be obtained by a single first-order query. Let
vars(q) = {x1, . . . , xn}. Let q∗(x1, . . . , xn) := ∧

G∈q G be the quantifier-free part of
the first-order formula expressing the Boolean query q. For every i ∈ {1, . . . , n}, let
x′
i be a fresh variable. Let �u be a sequence of distinct variables such that vars(�u) =

vars(F). The following query finds all F -facts whose blocks can be removed:

{

�u | ∃∗
(

q∗(x1, . . . , xn) ∧ q∗(x′
1, . . . , x

′
n) ∧

(
∧

z∈Z

z = z′
)

∧ w 	= w′
)}

,

where the existential quantification ranges over all variables not in �u. The F -facts
that are to be preserved are not key-equal to a fact in the preceding query and can
obviously be computed in FO. This concludes the proof of the first item.

Theory of Computing Systems

Proof of the Second ItemAssume that the attack graph of q contains no strong cycle.
We will show that the attack graph of q ′ contains no strong cycle either. By the second
item in Definition 8, we can assume an atom G ∈ q such that Z ⊆ vars(G). Note
that the atom Nc(�z, w) has no outgoing attacks because its mode is c. It is sufficient

to show that for every F, H ∈ q, if there exists a witness for F
q ′
� H , then there

exists a witness for F
q ′
� H that does not contain Nc(�z, w). To this end, assume that

a witness for F
q ′
� H contains

· · · F ′ u′
� Nc(�z, w)

u′′
� F ′′ · · · , (5)

where u′ and u′′ are distinct variables. We can assume without loss of generality that

this is the only occurrence of Nc(�z, w) in the witness. In this case, we have F
q� u′.

If u′, u′′ ∈ Z, then we can replace Nc(�z, w) with G. So the only nontrivial case
is where either u′ = w or u′′ = w (but not both). Then, it must be the case that
K(q ′ \ {F }) 	|= key(F) → w, and therefore also

K(q \ {F }) 	|= key(F) → w. (6)

Since Z → w is internal to q, there exists a sequential proof for K(q) |= Z → w

such that no atom in the proof attacks a variable in Z ∪ {w}. Let J1, J2, . . . , J�

be a shortest such proof. Because F
q� u′ and u′ ∈ Z ∪ {w}, it must be that

F 	∈ {J1, . . . , J�}. We can assume that w occurs at a non-primary-key position in
J�. Because of (6), we can assume the existence of a variable v ∈ key(J�) such that
K(q \ {F }) 	|= key(F) → v. If v 	∈ Z, then there exists k < � such that v occurs
at a non-primary-key position in Jk . Again, we can assume a variable v′ ∈ key(Jk)

such that K(q \ {F }) 	|= key(F) → v′. By repeating the same reasoning, there exists
a sequence

zi0
� Ji0

zi1
� Ji1

zi2
� · · ·

zim

� Jim

w

�

where 1 ≤ i0 < i1 < · · · < im = � such that

– zi0 ∈ Z;
– for all j ∈ {0, . . . , m}, K(q \ {F }) 	|= key(F) → zij ; and
– for all j ∈ {1, . . . , m}, zij ∈ vars(Jij−1)∩ vars(Jij). In particular, zij ∈ key(Jij).

We can assume G ∈ q such that Z ⊆ vars(G). Let u ∈ {u′, u′′} such that u 	= w.

Thus, {u, w} = {u′, u′′}. It can now be easily seen that a witness for F
q ′
� H

can be obtained by replacing Nc(�z, w) in (5) with the following sequence or its
reverse:

u

� G

zi0
� Ji0

zi1
� Ji1

zi2
� · · ·

zim

� Jim

w

�

This concludes the proof of Lemma 17.

The proof of Lemma 11 is now straightforward.

Theory of Computing Systems

Proof of Lemma 11 Repeated application of Lemma 17.

D.2 Proof of Lemma 12

We will use the following helping lemma.

Lemma 18 Let q be a query in sjfBCQ such that q is saturated and the attack graph
of q contains no strong cycle. Let S be an initial strong component in the attack
graph of q with |S| ≥ 2. For every atom F ∈ S, there exists an atom H ∈ S such
that F M−→ H .

Proof Assume F ∈ S. Since F belongs to an initial strong component with at least

two atoms, there exists G ∈ S such that F
q� G and the attack is weak. Therefore,

K(q) |= key(F) → key(G). It follows that K(q \ {F }) |= vars(F) → key(G). Let
σ = H1, H2, . . . , H� be a sequential proof for K(q \ {F }) |= vars(F) → key(G),
where F /∈ {H1, . . . , H�}. We can assume without loss of generality that H� = G.

Let j be the smallest index in {1, . . . , �} such that Hj ∈ S. Since H� ∈ S,
such an index always exists. Then, σ = H1, H2, . . . , Hj−1 is a sequential proof for
K(q \ {F }) |= vars(F) → key(Hj) (observe that this proof may be empty). By our
choice of j , for every i ∈ {1, . . . , j − 1}, we have Hi /∈ S, and hence Hi can-
not attack F or Hj (since S is an initial strong component). It follows that no atom
in σ attacks a variable in vars(F) ∪ key(Hj). Since q is saturated, this implies that

K(qcons) |= vars(F) → key(Hj), and so F
M−→ Hj .

The proof of Lemma 12 can now be given.

Proof of Lemma 12 Starting from some atom F0 ∈ S, by applying repeatedly
Lemma 18, we can create an infinite sequence F0

M−→ F1
M−→ F2

M−→ · · · such that
for every i ≥ 1, Fi ∈ S and Fi 	= Fi+1. Since the atoms in S are finitely many, there
will exist some i, j such that i < j and Fi = Fj+1. It follows that the M-graph of q

contains a cycle all of whose atoms belong to S.

E Proofs of Section 9

We will use the following helping lemma.

Lemma 19 Let q be a query in sjfBCQ that has the key-join property. Then, for all

F, G ∈ q, if F
q� G, then there exists a sequence F0, F1, . . . , F� such that F0 = F ,

F� = G, and for all i ∈ {1, 2, . . . , �}, key(Fi) ⊆ vars(Fi−1).

Proof Assume F
q� G. We can assume a shortest sequence

F0

x1
� F1

x2
� F2 · · ·

x�−1

� F�−1

x�

� F� (7)

Theory of Computing Systems

that is a witness for F
q� G. Clearly, for all i ∈ {0, 1, . . . , � − 1}, vars(Fi) ∩

vars(Fi+1) 	= ∅. Then, since q has the key-join property, for all i ∈ {0, 1, . . . , �−1},
either

1. vars(Fi) ∩ vars(Fi+1) ∈ {key(Fi), key(Fi+1)}, or
2. vars(Fi) ∩ vars(Fi+1) ⊇ key(Fi) ∪ key(Fi+1).

We show by induction on increasing i that for all i ∈ {1, . . . , �},
key(Fi) ⊆ vars(Fi−1).

Induction Basis i = 1 From x1 /∈ F0
+,q , it follows x1 	∈ key(F0). It follows that

vars(F0)∩vars(F1) 	= key(F0). Consequently, vars(F0)∩vars(F1) includes key(F1).

Induction Step i → i + 1 The induction hypothesis is that key(Fi) ⊆ vars(Fi−1).
Assume, towards a contradiction, vars(Fi) ∩ vars(Fi+1) = key(Fi). It follows
xi+1 ∈ vars(Fi−1). Then the witness (7) can be shortened by replacing the subse-

quence Fi−1

xi

� Fi

xi+1

� Fi+1 with Fi−1

xi+1

� Fi+1, contradicting our assumption

that no witness for F
q� G is shorter than (7). We conclude by contradiction that

vars(Fi) ∩ vars(Fi+1) 	= key(Fi). Consequently, vars(Fi) ∩ vars(Fi+1) includes
key(Fi+1).

The proof of Theorem 4 can now be given.

Proof of Theorem 4 Assume that q has the key-join property We show that the attack

graph of q contains no strong attacks. To this end, assume F
q� G. The sequence

F0, F1, . . . , F�−1 in the statement of Lemma 19 is a sequential proof for K(q) |=
key(F0) → key(F�), and therefore the attack F

q� G is weak. The result then follows
from Theorem 3.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Boston (1995). http://
webdam.inria.fr/Alice/

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases. In: ACM
PODS, pp. 68–79. https://doi.org/10.1145/303976.303983 (1999)

3. Arenas, M., Bertossi, L.E., Chomicki, J., He, X., Raghavan, V., Spinrad, J.P.: Scalar aggregation in
inconsistent databases. Theor. Comput. Sci. 296(3), 405–434 (2003). https://doi.org/10.1016/S0304-
3975(02)00737-5

4. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified
boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979). https://doi.org/10.1016/0020-0190(79)
90002-4

5. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An introduction to description logic. Cambridge Uni-
versity Press, Cambridge (2017). http://www.cambridge.org/de/academic/subjects/computer-science/
knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#
17zVGeWD2TZUeu6s.97

6. Barceló, P., Fontaine, G.: On the data complexity of consistent query answering over graph databases.
J. Comput. Syst. Sci. 88, 164–194 (2017). https://doi.org/10.1016/j.jcss.2017.03.015

7. Bertossi, L.E.: Database repairing and consistent query answering. Synthesis lectures on data
management. Morgan & Claypool Publishers, San Rafael (2011)

http://webdam.inria.fr/Alice/
http://webdam.inria.fr/Alice/
https://doi.org/10.1145/303976.303983
https://doi.org/10.1016/S0304-3975(02)00737-5
https://doi.org/10.1016/S0304-3975(02)00737-5
https://doi.org/0.1016/0020-0190(79)90002-4
https://doi.org/0.1016/0020-0190(79)90002-4
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
https://doi.org/10.1016/j.jcss.2017.03.015

Theory of Computing Systems

8. Bertossi, L.E.: Database repairs and consistent query answering: Origins and further developments.
In: Suciu, D., Skritek, S., Koch, C. (eds.) Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands, June 30
- July 5, 2019, pp. 48–58. ACM (2019). https://doi.org/10.1145/3294052.3322190

9. Bienvenu, M., Bourgaux, C.: Inconsistency-tolerant querying of description logic knowledge bases.
In: Pan, J.Z., Calvanese, D., Eiter, T., Horrocks, I., Kifer, M., Lin, F., Zhao, Y. (eds.) Reasoning Web:
Logical foundation of knowledge graph construction and query answering - 12th International Sum-
mer School 2016, Aberdeen, UK, September 5-9, 2016, Tutorial lectures, Lecture notes in computer
science, vol. 9885, pp. 156–202. Springer (2016). https://doi.org/10.1007/978-3-319-49493-7 5

10. Bulatov, A.A.: Complexity of conservative constraint satisfaction problems. ACM Trans. Comput.
Log. 12(4), 24:1–24:66 (2011). https://doi.org/10.1145/1970398.1970400

11. Dixit, A.A., Kolaitis, P.G.: A SAT-based system for consistent query answering. In: Janota, M., Lynce,
I. (eds.) Theory and Applications of Satisfiability Testing - SAT 2019 - 22nd International Confer-
ence, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings, Lecture Notes in Computer Science,
vol. 11628, pp. 117–135. Springer (2019). https://doi.org/10.1007/978-3-030-24258-9 8

12. Egri, L., Larose, B., Tesson, P.: Symmetric Datalog and constraint satisfaction problems in Logspace.
In: LICS, pp. 193–202. https://doi.org/10.1109/LICS.2007.47 (2007)

13. Fontaine, G.: Why is it hard to obtain a dichotomy for consistent query answering? ACM Trans.
Comput. Log. 16(1), 7:1–7:24 (2015). https://doi.org/10.1145/2699912

14. Fuxman, A., Miller, R.J.: First-order query rewriting for inconsistent databases. In: ICDT, pp. 337–
351 (2005). https://doi.org/10.1007/978-3-540-30570-5 23

15. Fuxman, A., Miller, R.J.: First-order query rewriting for inconsistent databases. J. Comput. Syst. Sci.
73(4), 610–635 (2007). https://doi.org/10.1016/j.jcss.2006.10.013

16. Grädel, E., Kolaitis, P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M.Y., Venema, Y., Weinstein, S.:
Finite model theory and its applications. Texts in theoretical computer science. An EATCS series
springer. https://doi.org/10.1007/3-540-68804-8 (2007)

17. Greco, S., Pijcke, F., Wijsen, J.: Certain query answering in partially consistent databases. PVLDB
7(5), 353–364 (2014). http://www.vldb.org/pvldb/vol7/p353-greco.pdf

18. Grohe, M., Schwentick, T.: Locality of order-invariant first-order formulas. ACM Trans. Comput.
Log. 1(1), 112–130 (2000). https://doi.org/10.1145/343369.343386

19. Kolaitis, P.G., Pema, E., Tan, W.: Efficient querying of inconsistent databases with binary integer
programming. PVLDB 6(6), 397–408 (2013). http://www.vldb.org/pvldb/vol6/p397-tan.pdf

20. Koutris, P., Wijsen, J.: The data complexity of consistent query answering for self-join-
free conjunctive queries under primary key constraints. In: PODS, pp. 17–29 (2015).
https://doi.org/10.1145/2745754.2745769

21. Koutris, P., Wijsen, J.: Consistent query answering for self-join-free conjunctive queries under primary
key constraints. ACM Trans. Database Syst. 42(2), 9:1–9:45 (2017). https://doi.org/10.1145/3068334

22. Koutris, P., Wijsen, J.: Consistent query answering for primary keys and conjunctive queries with
negated atoms. In: PODS, pp. 209–224 (2018). https://doi.org/10.1145/3196959.3196982

23. Koutris, P., Wijsen, J.: Consistent query answering for primary keys in logspace. In: Barceló, P.,
Calautti, M. (eds.) 22nd International Conference on Database Theory, ICDT 2019, March 26-
28, 2019, Lisbon, Portugal, LIPIcs, vol. 127, pp. 23:1–23:19 (2019). https://doi.org/10.4230/LIPIcs.
ICDT.2019.23. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik

24. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant query answering
in ontology-based data access. J. Web Sem. 33, 3–29 (2015). https://doi.org/10.1016/j.websem.2015.
04.002

25. Libkin, L.: Elements of finite model theory. Texts in theoretical computer science. An EATCS series
springer. https://doi.org/10.1007/978-3-662-07003-1 (2004)

26. Lincoln, A., Williams, V.V., Williams, R.R.: Tight hardness for shortest cycles and paths in sparse
graphs. In: ACM-SIAM SODA, pp. 1236–1252 (2018). https://doi.org/10.1137/1.9781611975031.80

27. Lutz, C., Wolter, F.: On the relationship between consistent query answering and constraint satisfac-
tion problems. In: ICDT, pp. 363–379 (2015). https://doi.org/10.4230/LIPIcs.ICDT.2015.363

28. Marileo, M.C., Bertossi, L.E.: The consistency extractor system: Answer set programs for consistent
query answering in databases. Data Knowl. Eng. 69(6), 545–572 (2010). https://doi.org/10.1016/j.
datak.2010.01.005

29. Maslowski, D., Wijsen, J.: A dichotomy in the complexity of counting database repairs. J. Comput.
Syst. Sci. 79(6), 958–983 (2013). https://doi.org/10.1016/j.jcss.2013.01.011

https://doi.org/10.1145/3294052.3322190
https://doi.org/10.1007/978-3-319-49493-7_5
https://doi.org/10.1145/1970398.1970400
https://doi.org/10.1007/978-3-030-24258-9_8
https://doi.org/10.1109/LICS.2007.47
https://doi.org/10.1145/2699912
https://doi.org/10.1007/978-3-540-30570-5_23
https://doi.org/10.1016/j.jcss.2006.10.013
https://doi.org/10.1007/3-540-68804-8
http://www.vldb.org/pvldb/vol7/p353-greco.pdf
https://doi.org/10.1145/343369.343386
http://www.vldb.org/pvldb/vol6/p397-tan.pdf
https://doi.org/10.1145/2745754.2745769
https://doi.org/10.1145/3068334
https://doi.org/10.1145/3196959.3196982
https://doi.org/10.4230/LIPIcs.ICDT.2019.23
https://doi.org/10.4230/LIPIcs.ICDT.2019.23
https://doi.org/10.1016/j.websem.2015.04.002
https://doi.org/10.1016/j.websem.2015.04.002
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.4230/LIPIcs.ICDT.2015.363
https://doi.org/10.1016/j.datak.2010.01.005
https://doi.org/10.1016/j.datak.2010.01.005
https://doi.org/10.1016/j.jcss.2013.01.011

Theory of Computing Systems

30. Maslowski, D., Wijsen, J.: Counting database repairs that satisfy conjunctive queries with self-joins.
In: ICDT, pp. 155–164 (2014). https://doi.org/10.5441/002/icdt.2014.18

31. Pijcke, F.: Theoretical and practical methods for consistent query answering in the relational data
model. Ph.D. thesis, University of Mons (2018)

32. Przymus, P., Boniewicz, A., Burzanska, M., Stencel, K.: Recursive query facilities in relational
databases: a survey. In: FGIT, pp. 89–99 (2010). https://doi.org/10.1007/978-3-642-17622-7 10

33. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24 (2008).
https://doi.org/10.1145/1391289.1391291

34. Wijsen, J.: On the First-order expressibility of computing certain answers to conjunctive queries over
uncertain databases. In: PODS, pp. 179–190 (2010). https://doi.org/10.1145/1807085.1807111

35. Wijsen, J.: Certain conjunctive query answering in first-order logic. ACM Trans. Database Syst. 37(2),
9:1–9:35 (2012). https://doi.org/10.1145/2188349.2188351

36. Wijsen, J.: A survey of the data complexity of consistent query answering under key constraints. In:
FoIKS, pp. 62–78 (2014). https://doi.org/10.1007/978-3-319-04939-7 2

37. Wijsen, J.: Foundations of query answering on inconsistent databases. SIGMOD Rec. 48(3), 6–16
(2019). https://doi.org/10.1145/3377391.3377393

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.5441/002/icdt.2014.18
https://doi.org/10.1007/978-3-642-17622-7_10
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1145/1807085.1807111
https://doi.org/10.1145/2188349.2188351
https://doi.org/10.1007/978-3-319-04939-7_2
https://doi.org/10.1145/3377391.3377393

	Consistent Query Answering for Primary Keys in Datalog
	Abstract
	Motivation
	Organization

	Related Work
	Preliminaries
	Atoms and Key-equal Facts
	Databases, Blocks, and Repairs
	Boolean Conjunctive Queries
	Atoms of Mode c
	Functional Dependencies
	Consistent Query Answering
	The Genre of a Fact
	Attack Graph
	Reductions
	Notions from Graph Theory
	Datalog with Stratified Negation
	Symmetric Stratified Datalog

	The Main Theorem and an Informal Guide of its Proof
	Garbage Sets
	M-Graphs and -3mu-Graphs
	Garbage Sets for M-Cycles
	Characterizing Garbage Sets for M-Cycles
	Computing n-Embeddings of M-Cycles, n2
	Computing Garbage Sets for M-Cycles
	Elimination of M-Cycles

	Proof of the Main Theorem
	Saturated Queries
	Proof of Theorem 3

	Joins on Primary Keys
	Conclusion
	Appendix A A: Overview of Different Graphs and Notations
	Appendix: B: Proofs of Section 5
	B.1 Proofs of Lemmas 1 and 2
	B.2 Proof of Lemma 3
	Appendix: C: Appendix to Section 7
	C.1 Proofs of Lemmas 5 and 6
	C.2 Proof of Lemma 8
	C.3 Illustration of the Datalog Program in the Proof of Lemma 9
	C.4 Proof of Lemma 10
	Appendix: D: Proofs of Section 8.1
	D.1 Proof of Lemma 11
	D.2 Proof of Lemma 12
	Appendix E Proofs of Section 9
	References

