
Social and Technical Evolution of Software Ecosystems

A Case Study of Rails

Eleni Constantinou
COMPLEXYS Research Institute

University of Mons, Belgium
eleni.constantinou@umons.ac.be

Tom Mens
COMPLEXYS Research Institute

University of Mons, Belgium
tom.mens@umons.ac.be

ABSTRACT
Software ecosystems evolve through an active community of
developers who contribute to projects within the ecosystem.
However, development teams change over time, suggesting
a potential impact on the evolution of the technical parts of
the ecosystem. The impact of such modifications has been
studied by previous works, but only temporary changes have
been investigated, while the long-term effect of permanent
changes has yet to be explored. In this paper, we investigate
the evolution of the ecosystem of Ruby on Rails in GitHub
in terms of such temporary and permanent changes of the
development team. We use three viewpoints of the Rails
ecosystem evolution to discuss our preliminary findings: (1)
the base project; (2) the forks; and (3) the entire ecosystem
containing both base project and forks.

CCS Concepts
•Software and its engineering → Software evolution;
Open source model; Programming teams;

Keywords
Software ecosystems; Social evolution; Technical evolution

1. INTRODUCTION
Open source software ecosystems and their evolution have

been studied by the research community in order to gain a
better understanding of their dynamics [9]. This paper con-
siders Lungu’s definition that defines a software ecosystem
as a collection of software projects that are developed and
evolve together in the same environment [6]. Examples of
software ecosystems include programming archive networks,
mobile app stores, distributions of the Linux operating sys-
tem [7] and project ecosystems in GitHub, which are created
through forking, sharing of developers and links via depen-
dencies [2].

The environment of each software ecosystem consists of
the development team and the source code artefacts, corre-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ECSAW ’16, November 28-December 02, 2016, Copenhagen, Denmark
c© 2016 ACM. ISBN 978-1-4503-4781-5/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2993412.3003384

sponding to the social and technical aspects of the ecosys-
tem, respectively. The evolution of both the social and tech-
nical aspects of software ecosystems has been widely stud-
ied, but current studies focus on temporary changes of the
ecosystem [12, 11]. On the contrary, this paper focuses on
permanent changes in the ecosystem environment and mea-
sures the effect of these changes in the ecosystem evolution.
For example, an analysis measuring temporary changes will
consider a contributor who becomes inactive for only a quar-
ter but contributes in future quarters, while our analysis
only considers contributors who become and stay inactive
throughout the ecosystem’s evolution.

The goal of this paper is to gain an understanding of the
long-term effect of changes in the development team to both
the overall ecosystem’s evolution and the file activity. We
are interested in ecosystems that follow a pull-based devel-
opment process [3], with most development activity going
on in forks and pull requests merging these changes into the
base project. We study these questions on the long-lived
ecosystem of Ruby on Rails in GitHub1.

2. EXPERIMENTAL SETUP
Ruby on Rails is a web-application framework for creating

database-backed web applications according to the Model-
View-Controller (MVC) pattern. We used the 2016-09-05
dump of the GHTorrent dataset [2] to obtain the historical
evolution of the base project and the forks of Rails, and
we queried GitHub to obtain more information about the
files modified in each commit. We applied several filters to
the initial dataset to ensure the validity of our results: (1)
Forks: we only considered the forks whose pull requests were
merged back to the base project in order to eliminate the
effect of simple copies which do not affect the evolution of
the base project; (2) Files: We only considered the source
code files we found in commits to eliminate the effect of
irrelevant files, e.g., temporary files; and (3) Contributors:
We eliminated contributors whose average activity in terms
of quarters was less than 2 to reduce potential noise from
one-time or occasional contributors.

Our empirical study focuses on three research questions:
RQ1 How does the commit activity of the ecosystem (in
base and forks) evolve over time?
RQ2 How do changes in the development team and in file
activity change over time?
RQ3 How do changes in the development team affect the
file activity of the ecosystem?

1https://github.com/rails/rails

Table 1: Dataset descriptive statistics
Dataset Filtered dataset

Base Forks Ecosystem Base Forks Ecosystem
Count 1 1,896 1,897 1 692 693

Developers 1,827 2,154 3,121 430 681 765
Commits 43,195 25,938 69,133 40,660 22,923 63,583

Table 1 presents descriptive statistics of our initial and
filtered dataset in terms of the studied projects, develop-
ers and commits. The contributor elimination threshold re-
sulted in the exclusion of contributors with five or less com-
mits for the base and forks, and seven or less for the entire
ecosystem. While this approach eliminated a large fraction
of contributors, it only has a limited effect on the number
of commits, confirming that the bulk of commits is done by
frequent contributors.

From this point forward, our results will refer to the fil-
tered dataset. It consists of the Rails base project and
692 forks, while 430 developers only contribute to the base
project and 681 developers contribute to its forks. It should
be noted that the ecosystem’s number of developers equals
765, meaning that developers of the forks contribute to the
base project as well. Finally, the majority of commits is ob-
served for the base project with 40,660 commits, while the
forks’ commits equals 22,923.

GHTorrent reports that Rails was created in April 2008.
From that date forward, we divided the dataset in 34 quar-
ters (i.e., three-month intervals). We excluded from our
analysis the first and last quarter since we do not have past
and future data. For each quarter, we registered the fol-
lowing information: (1) Contributors: We record the set of
active contributors, new developers who joined the develop-
ment team and contributors who permanently abandoned
the development team; (2) Commits: We measure the num-
ber of commits in each quarter to assess the overall develop-
ment effort; (3) Modified files: We register the files that are
actively developed/maintained, the new files that are devel-
oped in the system and the files that become obsolete in each
quarter; (4) Orphaned files: We also register the orphaned
files that were maintained by developers who abandoned the
development team.

Table 2 presents our metrics of team and file changes. In
our study we consider the permanent actions of contributors,
i.e., users who left the project and never contributed again,
and users who joined the project but had never contributed
in a previous quarter. We only consider contributors and
files that remain inactive until the end of the observed dura-
tion of the ecosystem. Therefore, these measurements take
into account only permanent changes in the ecosystem with
regard to the observed time interval in our dataset.

Given a contributor c and a quarter t, where t − 1 is
the previous quarter, and a predicate isContr(c, t) that is
true if and only if c made a source code commit in t, we
formally define Leavers(t), Joiners(t) and Stayers(t).
Given a file f and a predicate isTouched(f, t) that is true
if and only if f was touched through commits in t, we de-
fine the file modifications Obsolete(t), New(t) and Main-
tained(t). We define the ratios TeamTurnover(t) and
FileTurnover(t) as the fraction of the team and files in
a given quarter that is different with respect to the pre-
vious quarter. TeamTurnover(t) takes into account the
new members who joined the development team in quarter

Table 2: Definitions of team and file metrics
Leavers(t) {c | ∀ i ≥ t, isContr(c, t− 1) ∧ ¬isContr(c, i) }
Joiners(t) {c | ∀ i < t, isContr(c, t) ∧ ¬isContr(c, i) }
Stayers(t) {c | isContr(c, t) ∧ isContr(c, t− 1) }

TeamTurnover(t) | Joiners(t) | / | {c | isContr(c, t)} |
TeamAbandonment(t) | Leavers(t) | / | {c | isContr(c, t− 1)} |

Obsolete(t) {f | ∀ i ≥ t, isTouched(f, t− 1) ∧ ¬isTouched(f, i) }
New(t) {f | ∀ i < t, isTouched(f, t) ∧ ¬isTouched(f, i) }

Maintained(t) {f | isTouched(f, t) ∧ isTouched(f, t− 1)}
FileTurnover(t) | New(t) | / | {f | isTouched(f, t)} |

FileAbandonment(t) | Obsolete(t) | / | {f | isTouched(f, t− 1)} |

t and FileTurnover(t) considers the files that were never
touched in previous commits. Accordingly, we define the ra-
tios TeamAbandonment(t) and FileAbandonment(t)
as the fraction of the team and files in a given quarter that
became inactive with respect to the previous quarter, e.g.,
contributors who never commit again and files that never
appear in commits.

3. RESULTS
RQ1 How does the commit activity of the ecosys-

tem (in base and forks) evolve over time? The evo-
lution of Rails in terms of commits is presented in Figure
1. The main development activity takes place in the base
project during the first 12 quarters. From quarter 13 on-
wards, forks start to have increasing commit activity, while
an important decrease in the base project commits arises at
quarter 18. From quarter 18 onwards, the development ef-
fort appears to be equally spread between the base project
and the forks. These results reveal that the Rails project
started to form a fork-based ecosystem after quarter 12, and
the evolution of the base project started to heavily depend
on forks.

5 10 15 20 25 30

Quarters

0

500

1000

1500

2000

2500

3000

3500

4000

4500

C
ou

nt

Base
Forks
Ecosystem

Figure 1: Quarterly evolution of #commits

RQ2 How do changes in the development team
and in file activity change over time? For each quar-
ter t, we measured Stayers(t), Joiners(t) and Leavers(t)
as well as the total team size. Figure 2 shows their evo-
lution for (a) the base project, (b) the forks and (c) the
entire ecosystem. The evolution of the team size shows that
the base project was rapidly growing until quarter 12, and
started to shrink again until quarter 17. After quarter 11
the development of forks started to increase, explaining the
entire ecosystem’s stability with respect to the team size.
Concerning permanent Joiners and Leavers, Figure 2 shows
that the increase in the size of the development team of
Rails can mainly be attributed to an increase in the number
of Stayers, implying that core contributors seldomly leave
the development team. The number of Leavers and Joiners
shows a stable behavior with a small number of contributors

5 10 15 20 25 30

Quarters

20

40

60

80

100

120

140

160

C
ou

nt
Team
Leavers
Stayers
Joiners

5 10 15 20 25 30

Quarters

20

40

60

80

100

120

140

160

C
ou

nt

Team
Leavers
Stayers
Joiners

5 10 15 20 25 30

Quarters

20

40

60

80

100

120

140

160

C
ou

nt

Team
Leavers
Stayers
Joiners

(a) Base Project (b) Forks (c) Ecosystem

Figure 2: Quarterly evolution of team changes

becoming core members and few contributors permanently
leaving the core development team.

Figure 3 shows the number of file changes (Obsolete(t),
Maintained(t) and New(t)) per quarter t in (a) the base
project, (b) the forks and (c) the ecosystem. The base
project shows increased activity from the first quarters, in-
dicating activity prior to moving Rails to GitHub, and a
decrease is observed at quarter 10. An increased number of
files changes in forks is observed from quarter 12 onwards.
The fact that after quarter 18 the number of file changes
in forks is larger than in the base project in most quarters,
indicates that development effort has shifted from the base
project to the forks. The ecosystem’s increasing trend with
respect to the number of files shows that the pull-based de-
velopment model benefits Rail’s evolution. We also observe
an evident trend that the more files are actively developed,
the more files are maintained in consecutive quarters. With
a few exceptions, the number of obsolete and new files stays
relatively low.

RQ3 How do changes in the development team af-
fect the file activity of the ecosystem? Our results
show that during the evolution of Rails, both the develop-
ment team and the file activity are subject to constant and
permanent modifications. In order to investigate the effect
of these changes, we measured the team and file turnover
and abandonment, as defined in Section 2. Table 3 provides
the average and standard deviation of the quarterly ratio of
turnover and abandonment (denoted as average ± standard
deviation). The average team turnover varies between 23
and 29% and the average team abandonment varies between
11 and 16% for the three ecosystem viewpoints. Our results
show that 14% of the team permanently leaves the project
on average and that more than 25% of the members of the
development team are newcomers, indicating moderate re-
newal of the core development team. The team changes are
accompanied by file changes and according to Table 3, on
average 15% of the files are newly created in each quarter,
while 10% of the ecosystem’s files are completely abandoned
in each quarter.

Next, we measured the number and ratio of abandoned
files, i.e., files that became obsolete when their contributors
abandoned the ecosystem. Figure 4 shows the orphaned
files per quarter for each ecosystem viewpoint. On average,
each quarter 86.94 files become obsolete in the ecosystem,
corresponding to 10% of the developed files in each quar-
ter, and the number of orphaned files equals 21.65. This
means that on average approximately 25% of the obsolete
files were maintained by contributors that have abandoned
the ecosystem. An open question is whether these files are
not subject to further development or maintenance, or their

Table 3: Average and standard deviation values of
turnover and abandonment ratios

Base Forks Ecosystem

TeamTurnover 0.23 ± 0.12 0.29 ± 0.25 0.25 ± 0.12
TeamAbandonment 0.16 ± 0.09 0.11 ± 0.13 0.14 ± 0.10

FileTurnover 0.15 ± 0.11 0.34 ± 0.34 0.15 ± 0.11
FileAbandonment 0.10 ± 0.08 0.13 ± 0.16 0.10 ± 0.07

5 10 15 20 25 30

Quarters

0

50

100

150

200

250

C
ou

nt

Base
Forks
Ecosystem

Figure 4: Orphaned files per quarter

functionality might contain unresolved bugs.
Our study on the core development team of Rails showed

that the ecosystem started to intensively use the fork and
push mechanisms of GitHub after quarter 12, with both the
development team and files showing a roughly linearly in-
creasing trend. Therefore, fork and push mechanisms seem
to facilitate the effort of the core development team of Rails.
Also, our filtering of occasional contributors showed that the
core team carries out the bulk of the development effort.
From a research perspective, it is important to filter evolu-
tion datasets from such contributors to draw valid conclu-
sions [5]. From the ecosystem perspective, further research
is required to identify if joiners, stayers and leavers of the
core development team are engaged in other ecosystems, and
to investigate which practices can eliminate the effect of oc-
casional contributions and orphaned files in the ecosystem.

4. THREATS TO VALIDITY
While contributors tend to use multiple accounts across

different repositories (e.g., version control system, bug tracker
and mailing list), it is much less common to use multiple ac-
counts for committing source code within the same GitHub
repository. Thus, the effect of multiple identities is mini-
mal in our study and it does not pose a substantial threat
to validity. Since our study focuses on only one ecosystem,
larger studies must be performed to understand the effect of
permanent changes in the evolution of different ecosystems.
Finally, our measurement of contributors’ effort in terms of
commits poses a threat to the validity of our work due to
the use of commit squashing [5]. Ruby developers are rec-

5 10 15 20 25 30

Quarters

200

400

600

800

1000

1200

1400

C
ou

nt
Files

Obsolete Files

Maintained Files

New Files

5 10 15 20 25 30

Quarters

200

400

600

800

1000

1200

1400

C
ou

nt

Files

Obsolete Files

Maintained Files

New Files

5 10 15 20 25 30

Quarters

200

400

600

800

1000

1200

1400

C
ou

nt

Files

Obsolete Files

Maintained Files

New Files

(a) Base Project (b) Forks (c) Ecosystem

Figure 3: File modifications

ommended to squash their branch before any pull requests.
To mitigate this threat, our future work will also take into
account the size and frequency of the commits.

5. RELATED WORK
Software ecosystem evolution has been widely studied by

the research community. The Ruby ecosystem has been
studied by Kabbedijk and Jansen [4], who identified differ-
ent types of contributors: networkers, lone wolfs, and one
day flies. Syed et al. [10] used social network analysis com-
bined with a survey to identify clusters of contributors, and
revealed that Ruby’s ecosystem consists mostly of indepen-
dent developers. Vasilescu et al. [12] present a large dataset
of social diversity attributes of GitHub contributors con-
tributing to 23,493 GitHub projects. In [11], the authors
studied gender and tenure diversity and how they relate
to team productivity and turnover, and their findings show
that increased gender and tenure diversity are associated
with greater productivity. Also, they found that turnover
is positively associated with tenure diversity. Unlike these
studies, we focus on permanent turnover and abandonment
of both users and files to investigate the long-term effects on
the ecosystem evolution, in terms of base and forks. German
et al. [1] studied the R ecosystem evolution and found that a
healthy community and well-maintained packages are essen-
tial to the successful evolution of the ecosystem. Rigby et al.
[8] quantified the extent of abandoned source files and used
methods from financial risk analysis to assess the suscepti-
bility of the project to developer turnover. They found that
when tight relationships between the author and the source
code exist, then it is more difficult to replace the authors by
newcomers since they are less productive and more prone
to making errors. However, their study investigates isolated
projects, while our work focuses on software ecosystems.

6. CONCLUSIONS
This article presented a case study of the evolution of the

Ruby on Rails ecosystem in GitHub. We studied the ef-
fect of permanent changes in the development team and the
source code files of the ecosystem. We used the viewpoints of
the base project, forks and the entire ecosystem to present
our empirical findings. Our results show that the ecosys-
tem’s evolution is accompanied by modifications in both
the development team and the maintained files, while the
impact of contributors abandoning the ecosystem is rather
limited. Future work will focus on investigating more and
larger ecosystems to confirm our observations for the Rails
ecosystem and generalize our results to other ecosystems.

Acknowledgments. This research was carried out in the
context of ARC research project AUWB-12/17-UMONS-3.

7. REFERENCES
[1] D. M. German, B. Adams, and A. E. Hassan. The

evolution of the R software ecosystem. In European
Conf. Software Maintenance and Reengineering, pages
243–252, 2013.

[2] G. Gousios. The GHTorrent dataset and tool suite. In
Working Conf. Mining Software Repositories, pages
233–236, 2013.

[3] G. Gousios, M.-A. Storey, and A. Bacchelli. Work
practices and challenges in pull-based development:
The contributor’s perspective. In Int’l Conf. Software
Engineering, pages 285–296, 2016.

[4] J. Kabbedijk and S. Jansen. Steering insight: An
exploration of the Ruby software ecosystem. In Int’l
Conf. Software Business, pages 44–55, 2011.

[5] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. M. German, and D. Damian. An in-depth study of
the promises and perils of mining GitHub. Empirical
Software Engineering, 21(5):2035–2071, 2016.

[6] M. Lungu. Towards reverse engineering software
ecosystems. In Int’l Conf. Software Maintenance,
pages 428–431, 2008.

[7] T. Mens and P. Grosjean. The ecology of software
ecosystems. Computer, 48(10):85–87, 2015.

[8] P. C. Rigby, Y. C. Zhu, S. M. Donadelli, and
A. Mockus. Quantifying and mitigating
turnover-induced knowledge loss: Case studies of
Chrome and a project at Avaya. In Int’l Conf.
Software Engineering, pages 1006–1016, 2016.

[9] A. Serebrenik and T. Mens. Challenges in software
ecosystems research. In European Conf. Software
Architecture Workshops, pages 40:1–40:6, 2015.

[10] S. Syed and S. Jansen. On clusters in open source
ecosystems. In Int’l Workshop on Software
Ecosystems, volume 987, pages 19–32, 2013.

[11] B. Vasilescu, D. Posnett, B. Ray, M. G. van den
Brand, A. Serebrenik, P. Devanbu, and V. Filkov.
Gender and tenure diversity in GitHub teams. In
ACM Conf. Human Factors in Computing Systems,
pages 3789–3798, 2015.

[12] B. Vasilescu, A. Serebrenik, and V. Filkov. A data set
for social diversity studies of GitHub teams. In
Working Conf. Mining Software Repositories, pages
514–517, 2015.

