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Abstract
The paper presents an approximate solution to axial dynamic impedance cal-
culation for group of square piles. Firstly, dynamic responses of the single pile-
soil system are derived on the basis of Hamilton’s energy principle and variation
analysis. Then, the effects of square cross section on the pile-soil interaction are
examined through the combination of theoretical deduction and numerical sim-
ulation. The vertical soil vibration around a square pile is found to be dependent
on wave propagation directions in the near field (two times less than the side
length of square pile). As the radial distance off pile axis increases, the soil vibra-
tion tends to be independent on propagation directions. Through superposition
principle, the dynamic impedance of square pile group is calculated. This study
could provide a reference to the problems with how the non-circular piles inter-
play with soil on vibration.

KEYWORDS
interaction factor, soil attenuation, square piles, superposition principle, variation analysis, ver-
tical dynamic impedance

1 INTRODUCTION

Pile foundations are often subjected to dynamic loads such as vibrating machines, traffic vehicles, earthquakes, wind, and
etc.1–10 The complex dynamic impedance of a pile shaft is defined by the ratio of the external dynamic load acting on the
pile head to the induced displacement, which is a critical physical quality estimation of its dynamic performances.11,12
The real part of the dynamic impedance reflects the corresponding foundation stiffness under various frequencies and
the imaginary part indicates the energy dissipation in a mechanical system.
Three types of method considering dynamic vertical pile-soil interaction generally are usually retained: Voigt model,13

plane strain model,14–15 and continuum-based model.16–19 The concept of Voigt model simplifies the effects of soil on the
pile as a series of discrete springs and viscous damping. Estimating the pile responses is convenient using Voigt model, but
the mechanical coefficients of spring and damping are often empirical and puzzling since their values are independent
with the soil properties. The plane strain model ignores the vertical variation of soil stress and thus usually overestimates
the dynamic stiffness of piles at the low frequency range. Generally, a continuum model can give a relatively accurate

Int J Numer Anal Methods Geomech. 2021;45:2629–2653. © 2021 John Wiley & Sons Ltd. 2629wileyonlinelibrary.com/journal/nag

https://orcid.org/0000-0002-9240-8411
mailto:1209732335@qq.com
https://wileyonlinelibrary.com/journal/nag
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnag.3280&domain=pdf&date_stamp=2021-09-24


2630 QU et al.

F IGURE 1 Illustration of vertically loaded square piles in a homogenous soil and resting on a rigid base

description for the pile-soil interaction by solving analytically the coupling vibration of pile and soil. Many researchers
have adopted this type of model to capture the dynamic response of the circular or pipe piles.20–26
For the case of pile group, calculating the dynamic impedance of pile group is generally based on the superposition

method, which is originally proposed for the static problem and afterwards applied to dynamic problems by Dobry and
Gazeta,27 Gazetas and Makis,28 Wang et al.,29 Luan et al.30 The recent studies31,32 have proved the efficiency of super-
position method using appropriate interaction factors through finite element simulation. According to the superposition
method, three steps are required: (1) calculating the dynamic impedance of single piles; (2) estimating the dynamic pile-
soil-pile interaction and obtaining the dynamic interaction factor that equal the head displacement ratio between the
loaded (“source”) pile and the non-loaded (“receiver”) pile; (3) employing the superposition principle and establishing
the total matrix equation for the dynamic impedance of pile group. However, the traditional analytical solving process
becomes considerably complicated when the boundary of soil domain is inclined33–35 or a non-circular shape of cross
section is designed for piles. Practically, concrete piles with square cross section are often used especially when they are
prefabricated.36–41 The dynamic interaction between soil and square piles in a group may not conform to the same rule
with that in a circular pile group.
The objective of this study is to examine the effects of square cross section on the vertical dynamic soil-pile interaction.

The pile tip condition is considered as end-bearing for sake of simplification. Variation principle is employed to derive the
governing equations for a single square pile. The displacement field is formulated by the product of pile displacement and
two decay functions of soil.36,42 The required soil parameters to reach a solution are obtained by an iterative algorithm.
According to the results, the effects of square cross section on the complex dynamic impedance and the soil attenuation
factor are explored. Further, numerical simulation is carried out to validate and to correct the results from analytical
solution to soil attenuation factor. Finally, an approximate method is proposed for the vertical dynamic impedance of
square piles in group with the aid of superposition principle.

2 PROBLEM STATEMENT AND THEORETICAL FRAMEWORK

The problem of interest is the harmonically oscillating square piles installed in a soil layer overlying a rigid bearing layer as
illustrated in Figure 1. The pile is routinely considered as a linear elastic shaft with width 2a, height 2b, length L, cross sec-
tion areaA= 4ab, Mass density 𝜌p, and Young’s modulus𝐸p. The soil layer is considered as a homogeneous, isotropic, and
linear viscoelastic body with Young’s modulus 𝐸s, Poisson’s ratio of 𝜐s, shear modulus 𝐺s = 𝐸s∕[2(1 + 𝜐s], density 𝜌s, and
hysteretic damping ratio 𝛽0. Complex elastic modulus 𝐸∗s = 𝐸s(1 + 2i𝛽0), complex shear modulus 𝐺∗

s = 𝐸∗s ∕[2(1 + 𝜐s)],
and the Lame’s constant 𝜆s = 𝐸∗s 𝜐s∕[(1 + 𝜐s)(1 − 2𝜐s)] are introduced for the soil to simplify the formulation. The pile
head is subjected to a harmonic vertical force 𝐹(𝑡) = 𝐹0𝑒

i𝜔𝑡, where 𝐹0 denotes forcing amplitude, 𝜔 represents the excita-
tion frequency, t denotes time and i is the imaginary unit. The pile-soil system is modeled as a continuum and no slippage
or separation at soil-pile interfaces is considered.

2.1 Displacement model for single square pile

Under the vertical excitation, the horizontal displacement ux and uy of a pile-soil system is trivial and is thus neglected in
this study. The vertical displacement uz is expressed as:

𝑢z(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢p(𝑧, 𝑡)𝜙(𝑥)𝜑(𝑦) (1)
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where 𝑢p(𝑧, 𝑡)is the time-domain vertical displacement of a pile shaft, 𝜙(𝑥) and𝜑(𝑦)are dimensionless decay functions that
are introduced to estimate vibration attenuation in the horizontal direction x and y, respectively. Hence, soil attenuation
factor 𝜓(𝑥, 𝑦)at the concerning position with coordinate (x, y) is the product of 𝜙(𝑥)and 𝜑(𝑦). The inherent boundary
conditions for 𝜙(𝑥) and 𝜑(𝑦) can be written as:

𝜙(𝑥) =

{
1, − 𝑎 ≤ 𝑥 ≤ 𝑎

0,𝑥 → ±∞
(2a)

𝜑(𝑦) =

{
1, − 𝑏 ≤ 𝑦 ≤ 𝑏

0,𝑦 → ±∞
(2b)

Assume that the load at pile head is denoted by P. Then the dynamic impedance kd of single pile can be expressed by:

𝑘d =
𝐹

𝑢z
(2c)

For the sake of clarity, detailed deduction for kd is put on Section 3 on the basis of Hamilton’s energy principle and
variation analysis.

2.2 Describing pile-to-pile interaction

The interaction between the loaded pile and receiver pile can be expressed in the form of displacement as following:

𝛼 = 𝜓(𝑥, 𝑦)𝜉 (3)

where𝛼is the interaction factor that quantitively describe the pile-to-pile interaction;𝜓(𝑥, 𝑦)represents the soil attenuation
factor;𝜉 denotes the diffraction factor which accounts for the wave diffraction effects in the presence of receiver piles,13,34
and its value for the case of end-bearing piles in horizontal ground can be calculated through:

𝜉 =
𝑘s

2(𝑘s−𝜌p𝐴𝜔2)

⎡⎢⎢⎢⎢⎣
1 −

2𝐿

√
𝑘s−𝜌p𝐴𝜔2

𝐸p𝐴

sinh(2𝐿

√
𝑘s−𝜌p𝐴𝜔2

𝐸p𝐴
)

⎤⎥⎥⎥⎥⎦
(4)

where 𝑘s represents the dynamic soil resistance acting on pile shaft.

2.3 Solving the dynamic impedance of pile group

Herewe consider the case that the pile cap is right above the ground level and thus no direct stress transfer occurs between
the pile cap and soil. With the aid of superposition method, the governingmatrix equation for theM identical square piles
that are connected through a no-mass rigid cap is written as:

⎡⎢⎢⎢⎢⎢⎣

0 1 1 … 1

−1 𝛽11 𝛽12 … 𝛽1𝑀
−1 𝛽21 1 … 𝛽2𝑀
… … … … …

−1 𝛽𝑀1 𝛽𝑀2 … 𝛽𝑀𝑀

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨⎪⎪⎩

𝑢𝐺
𝐸p𝐴p

𝐿
𝑃1
𝑃2
…

𝑃𝑀

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

𝐹G
0

0

…

0

⎫⎪⎪⎬⎪⎪⎭
(5)

where uG denotes the vertical displacement of the cap; 𝐹i denote the load acting on the head of pile i and 𝐹G is the external
force acting on the cap; the coefficient 𝛽ij can be calculated as following:

𝛽ij=
𝐸p𝐴p

𝑘
j

d
𝐿
𝛼ij (6)
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where 𝑘j
d
denotes the dynamic impedance of pile j; 𝛼ij equals the vertical displacement of the unloaded pile i when the

loaded pile j undergoes a unit displacement. The interaction factor 𝛼ij should equals 𝛼ji for identical circular piles. How-
ever, for square piles, the rationality of that equation 𝛼ij = 𝛼ji remains further study, which will be done in Section 5.
Once Equation (6) is solved, the dynamic impedance for a group of square piles can be expressed by:

𝑘𝐺 = 𝐹𝐺∕𝑢G (7)

3 ANALYTICAL SOLUTIONS TO VIBRATION RESPONSES OF SINGLE SQUARE PILES

3.1 Energy formations and Hamilton’s principle

From the displacement model for individual square piles in Section 2.1, the non-zero stress and strain components in soil
field can be written as:

⎡⎢⎢⎢⎢⎢⎢⎣

𝜀zz
𝛾xz
𝛾yz
𝜎zz
𝜏xz
𝜏yz

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

−𝜕𝑢z∕𝜕𝑧

− (𝜕𝑢z∕𝜕𝑥) ∕2

− (𝜕𝑢z∕𝜕𝑦) ∕2

− (𝜆s + 2𝐺∗
s ) 𝜕𝑢z∕𝜕𝑧

−2𝐺∗
s (𝜕𝑢z∕𝜕𝑥)

−2𝐺∗
s (𝜕𝑢z∕𝜕𝑦)

⎤⎥⎥⎥⎥⎥⎥⎦
(8)

In a soil-pile system undergoing vertical wave excitation, the involved total energy includes the kinetic energy (T), the
potential energy (U) and the work (W) defined by external forces. These energy components are given by the following:

𝑇 =

𝐿

∫
0

1

2
𝜌p𝐴

(
𝜕𝑢p

𝜕𝑡

)2

𝑑𝑧 +∭
Ω0

1

2
𝜌s𝜙

2𝜑2
(
𝜕𝑢p

𝜕𝑡

)2

𝑑Ω (9)

U =

𝐿

∫
0

1

2
𝐸p𝐴

(
𝜕𝑢p

𝜕𝑧

)2

𝑑𝑧 +
1

2 ∭
Ω0

(
𝜎zz𝜀zz + 𝜏xz𝛾xz + 𝜏yz𝛾yz

)
𝑑Ω (10)

𝑊 = 𝐹𝑢p,z=0 (11)

where the first terms in Equation (9) and Equation (10) represent the energy stored in the pile, and the second term
represents the energy in the soil domain Ω0.
According to Hamilton’s principle, the energy functionℜ from initial time t1 to final time t2 of a soil-pile system gets

the minimal value at the equilibrium state, which yields:

𝛿ℜ =

𝑡2

∫
𝑡1

(𝛿𝑇 − 𝛿𝑈+𝛿𝑊)𝑑𝑡 = 0 (12)

where 𝛿 is the variational operator.
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Note that the vertical vibration response of a square pile is symmetric with respect to both x axis and y axis. Therefore,
Equation (12) can be expressed as:

𝛿ℜ =
1

2
𝜌p𝐴

𝑡2∫
𝑡1

𝐿∫
0

𝛿
(
𝜕𝑢p

𝜕𝑡

)2
𝑑𝑧𝑑𝑡 + 2𝜌s

𝑡2∫
𝑡1

𝑎∫
0

+∞∫
𝑏

𝛿

{
𝜙2𝜑2

(
𝜕𝑢p

𝜕𝑡

)2}
𝑑𝑥𝑑𝑦𝑑𝑡

+2𝜌s

𝑡2∫
𝑡1

+∞∫
𝑎

+∞∫
𝑏

𝛿

{
𝜙2𝜑2

(
𝜕𝑢p

𝜕𝑡

)2}
𝑑𝑥𝑑𝑦𝑑𝑡 + 2𝜌s

𝑡2∫
𝑡1

∞∫
𝑎

𝑏∫
0

𝛿

{
𝜙2𝜑2

(
𝜕𝑢p

𝜕𝑡

)2}
𝑑𝑥𝑑𝑦𝑑𝑡

−
1

2
𝐸p𝐴

𝑡2∫
𝑡1

𝐿∫
0

𝛿
(
𝜕𝑢p

𝜕𝑧

)2
𝑑𝑧𝑑𝑡 − 2

𝑡2∫
𝑡1

𝐿∫
0

∞∫
𝑎

∞∫
𝑏

𝛿

[
(𝜆s + 2𝐺∗

s )
(
𝑑𝑢

𝑑𝑧

)2
𝜙2(𝑥)𝜑2(𝑦) + 𝐺∗

s 𝑢
2
(
𝑑𝜙

𝑑𝑥

)2
𝜑2 + 𝐺∗

s 𝑢
2
(
𝑑𝜑

𝑑𝑦

)2
𝜙2(𝑥)

]
𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑡

−2
𝑡2∫
𝑡1

𝐿∫
0

∞∫
𝑎

𝑏∫
0

𝛿

[
(𝜆s + 2𝐺∗

s )
(
𝑑𝑢

𝑑𝑧

)2
𝜙2(𝑥)𝜑2(𝑦) + 𝐺∗

s 𝑢
2
(
𝑑𝜙

𝑑𝑥

)2
𝜑2y + 𝐺∗

s 𝑢
2
(
𝑑𝜑

𝑑𝑦

)2
𝜙2(𝑥)

]
𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑡

−2
𝑡2∫
𝑡1

𝐿∫
0

𝑎∫
0

∞∫
𝑏

𝛿

[
(𝜆s + 2𝐺∗

s )
(
𝑑𝑢

𝑑𝑧

)2
𝜙2(𝑥)𝜑2(𝑦) + 𝐺∗

s 𝑢
2
(
𝑑𝜙

𝑑𝑥

)2
𝜑2y + 𝐺∗

s 𝑢
2
(
𝑑𝜑

𝑑𝑦

)2
𝜙2(𝑥)

]
𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑡 −

𝑡2∫
𝑡1

𝐹𝛿𝑢p |𝑧=0 𝑑𝑡
= 0

(13)

3.2 Governing equations of pile vibration

Collecting the coefficients of 𝛿𝑢pfrom the variational analysis in Equation (13), the following equation can be obtained:

𝜌p𝐴
𝐿∫
0

𝛿𝑢p
𝜕𝑢p

𝜕𝑡

|||𝑡2𝑡1 𝑑𝑧 − 𝜌p𝐴
𝐿∫
0

𝑡2∫
𝑡1

𝜕2𝑢p

𝜕𝑡2
𝛿𝑢p𝑑𝑡𝑑𝑧 − 𝐸p𝐴 ∫ 𝑡2

𝑡1

𝜕𝑢p

𝜕𝑧
𝛿𝑢p

|||𝐿0 𝑑𝑡 + 𝐸p𝐴
𝐿∫
0

∫ 𝑡2
𝑡1
𝛿𝑢p

𝜕2𝑢p

𝜕𝑧2
𝑑𝑧𝑑𝑡

+4𝜌s

[
∞∫
𝑎

∞∫
𝑏

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦 +
∞∫
𝑎

𝑏∫
0

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦 +
𝑎∫
0

∞∫
𝑏

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦

]
𝐿∫
0

∫ 𝑡2
𝑡1

𝜕𝑢p

𝜕𝑡
𝛿𝑢p

|||𝑡2𝑡1 𝑑𝑧𝑑𝑡
−4 (𝜆s + 2𝐺∗

s )

[
∞∫
𝑎

∞∫
𝑏

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦 +
∞∫
𝑎

𝑏∫
0

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦 +
𝑎∫
0

∞∫
𝑏

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦

]
∫ 𝑡2
𝑡1

𝜕𝑢p

𝜕𝑧
𝛿𝑢p

|||𝐿0 𝑑𝑡
−4𝜌𝑠

[
∞∫
𝑎

∞∫
𝑏

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦 +
∞∫
𝑎

𝑏∫
0

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦 +
𝑎∫
0

∞∫
𝑏

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦

]
𝐿∫
0

𝑡2∫
𝑡1

𝜕2𝑢p

𝜕𝑡2
𝛿𝑢p𝑑𝑡𝑑𝑧

+4 (𝜆s + 2𝐺∗
s )

[
∞∫
𝑎

∞∫
𝑏

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦 +
∞∫
𝑎

𝑏∫
0

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦 +
𝑎∫
0

∞∫
𝑏

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦

]
𝐿∫
0

∫ 𝑡2
𝑡1

𝜕2𝑢p

𝜕𝑧2
𝛿𝑢p𝑑𝑧𝑑𝑡

−4𝐺∗
s

[
∞∫
𝑎

∞∫
𝑏

(
𝑑𝜙x

𝑑𝑥

)2
𝜑2y𝑑𝑥𝑑𝑦 +

∞∫
𝑎

𝑏∫
0

(
𝑑𝜙x

𝑑𝑥

)2
𝜑2y𝑑𝑥𝑑𝑦 +

𝑎∫
0

∞∫
𝑏

(
𝑑𝜙x

𝑑𝑥

)2
𝜑2y𝑑𝑥𝑑𝑦

]
𝐿∫
0

∫ 𝑡2
𝑡1
𝑢p𝛿𝑢p𝑑𝑧𝑑𝑡

−4𝐺∗
s

[
∞∫
𝑎

∞∫
𝑏

(
𝑑𝜑y

𝑑𝑦

)2
𝜙2(𝑥)𝑑𝑥𝑑𝑦 +

∞∫
𝑎

𝑏∫
0

(
𝑑𝜑y

𝑑𝑦

)2
𝜙2(𝑥)𝑑𝑥𝑑𝑦 +

𝑎∫
0

∞∫
𝑏

(
𝑑𝜑y

𝑑𝑦

)2
𝜙2(𝑥)𝑑𝑥𝑑𝑦+

]
𝐿∫
0

∫ 𝑡2
𝑡1
𝑢p𝛿𝑢p𝑑𝑧𝑑𝑡

− ∫ 𝑡2
𝑡1
𝐹𝛿𝑢p |𝑧=0 𝑑𝑡

= 0

(14)

Applying Hamilton’s principle, and introducing the harmonic vibration condition, the governing equation of the pile
displacement 𝑢p can be written as:

{
𝐸p𝐴 + 4 (𝜆s + 2𝐺∗

s )

[
∞∫
𝑎

∞∫
𝑏

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦 +
∞∫
𝑎

𝑏∫
0

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦 +
𝑎∫
0

∞∫
𝑏

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦

]}
𝜕2𝑢p

𝜕𝑧2

+

{
𝜔2𝜌p𝐴 + 4𝜌s𝜔

2

[
∞∫
𝑎

∞∫
𝑏

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦 +
∞∫
𝑎

𝑏∫
0

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦 +
𝑎∫
0

∞∫
𝑏

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦

]}
𝑢p

−4𝐺∗
s

[
∞∫
𝑎

∞∫
𝑏

(
𝑑𝜙x

𝑑𝑥

)2
𝜑2y𝑑𝑥𝑑𝑦 +

∞∫
𝑎

𝑏∫
0

(
𝑑𝜙x

𝑑𝑥

)2
𝜑2y𝑑𝑥𝑑𝑦 +

𝑎∫
0

∞∫
𝑏

(
𝑑𝜙x

𝑑𝑥

)2
𝜑2y𝑑𝑥𝑑𝑦 +

∞∫
𝑎

∞∫
𝑏

(
𝑑𝜑y

𝑑𝑦

)2
𝜙2(𝑥)𝑑𝑥𝑑𝑦 +

∞∫
𝑎

𝑏∫
0

(
𝑑𝜑y

𝑑𝑦

)2
𝜙2(𝑥)𝑑𝑥𝑑𝑦 +

𝑎∫
0

∞∫
𝑏

(
𝑑𝜑y

𝑑𝑦

)2
𝜙2(𝑥)𝑑𝑥𝑑𝑦

]
𝑢p

= 0

(15)

with boundary conditions:
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𝜌p𝐴
𝐿∫
0

𝜕𝑢p

𝜕𝑡

|||𝑡2𝑡1 𝑑𝑧 + 4𝜌s

[
∞∫
𝑎

∞∫
𝑏

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦 +
∞∫
𝑎

𝑏∫
0

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦 +
𝑎∫
0

∞∫
𝑏

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦

]
𝐿∫
0

𝜕𝑢p

𝜕𝑡

|||𝑡2𝑡1 𝑑𝑧 − 𝐸p𝐴
𝜕𝑢p

𝜕z
||𝐿0

−4 (𝜆s + 2𝐺∗
s )

[
∞∫
𝑎

∞∫
𝑏

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦 +
∞∫
𝑎

𝑏∫
0

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦 +
𝑎∫
0

∞∫
𝑏

𝜙2(𝑥)𝜑2(𝑦)𝑑𝑥𝑑𝑦

]
𝜕𝑢p

𝜕𝑧
||𝐿0 − 𝐹0 |𝑧=0 = 0

(16)

and

𝑢p |𝑧=𝐿 = 0 (17)

Equation (15) can be changed as:

[
𝐸p𝐴 + (𝜆s + 2𝐺∗

s ) 𝜉
] 𝑑2𝑢p
𝑑𝑧2

+ 𝜌p𝐴𝜔
2𝑢p −

(
𝑘 − 𝜔2𝜌s𝜉

)
𝑢p = 0 (18)

where

𝑘 = 4𝐺∗
s

[(
𝑝x2𝑞y2 + 𝑝x2𝑞y1 + 𝑝x1𝑞y2

)
+

(
𝑝y2𝑞x2 + 𝑝y2𝑞x1 + 𝑝y1𝑞x2

)]
(19a)

𝜉 = 4
(
𝑞x2𝑞y2 + 𝑞x2𝑞y1 + 𝑞x1𝑞y2

)
(19b)

𝑝x1 =

𝑎

∫
0

(
𝑑𝜙

𝑑𝑥

)2

𝑑𝑥 (19c)

𝑝x2 =

∞

∫
𝑎

(
𝑑𝜙

𝑑𝑥

)2

𝑑𝑥 (19d)

𝑝y1 =

𝑏

∫
0

(
𝑑𝜑

𝑑𝑦

)2

𝑑𝑦 (19e)

𝑝y2 =

∞

∫
𝑏

(
𝑑𝜑

𝑑𝑦

)2

𝑑𝑦 (19f)

𝑞x1 =

𝑎

∫
0

𝜙2𝑑𝑥 (19g)

𝑞x2 =

∞

∫
𝑎

𝜙2𝑑𝑥 (19h)

𝑞y1 =

𝑏

∫
0

𝜑2𝑑𝑦 (19n)

𝑞y2 =

∞

∫
𝑏

𝜑2𝑑𝑦 (19m)

In Equation (18), the first term on the left represents the axial compression from the pile and soil; the second term on
the left reflects the axial inertia of vibration pile shaft; and the third term represents the dynamic soil resistance acting on
the pile perimeter. The general solution for 𝑢p can be given by:
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𝑢p = 𝑐1𝑒
𝜒𝑧 + 𝑐2𝑒

−𝜒𝑧 (20)

where

𝜒 =

√√√√𝑘 −
(
𝜌p𝐴 + 𝜌s𝜉

)
𝜔2

(𝜆s + 2𝐺∗
s ) 𝜉 + 𝐸p𝐴

(21)

and c1, c2 are the integration constants which are determined by the boundary conditions in Equation (16) and Equation
(17). Considering the variation definition, the first and second terms on the left side of Equation (16) equal zero. Conse-
quently, the boundary conditions of Equation (16) and Equation (17) can be simplified as:{

𝐸p𝐴
𝜕𝑢p

𝜕𝑧
+ (𝜆s + 2𝐺∗

s ) 𝑞x𝑞y
𝜕𝑢p

𝜕𝑧
− 𝐹0

}|𝑧=0 = 0 (22)

𝑢p =
𝐹0√[

𝐸p𝐴 + (𝜆s + 2𝐺∗
s ) 𝜉

] [
𝑘 −

(
𝜌p𝐴 + 𝜌s𝜉

)
𝜔2

] 𝑒−𝜒(𝐿−𝑧) − 𝑒𝜒(𝐿−𝑧)

𝑒𝜒𝐿 + 𝑒−𝜒𝐿
(23)

Hence the dynamic impedance of pile at head can be written as:

𝑘d =
𝐹0
𝑢p

=
√[

𝐸p𝐴 + (𝜆s + 2𝐺∗
s ) 𝜉

] [
𝑘 −

(
𝜌p𝐴 + 𝜌s𝜉

)
𝜔2

]𝑒2𝜒𝐿 + 1

1 − 𝑒2𝜒𝐿
(24)

3.3 Governing equations of soil vibration

In Section 3.1, the vertical displacement of soil on vibration is expressed in the form of the product of pile displacement and
the corresponding soil attenuation factor. The latter factor is determined by the decay functions𝜙(𝑥) and𝜑(𝑦). Considering
Hamilton’s principle and collecting the coefficients of 𝛿𝜙(𝑥), the governing equation of 𝜙(𝑥)can be obtained as follows:

𝑑2𝜙x
𝑑𝑥2

−

(
𝛾x
𝛾p

)2

𝜙 = 0 (25)

where 𝛾x is introduced as a parameter to characterize the decay function of soil displacement, which can be written as:(
𝛾x
𝛾p

)2

=

(
𝜆s + 2𝐺∗

s

𝐺∗
s

)
𝑛

𝑚
+
𝑝y1 + 𝑝y2

𝑞y1 + 𝑞y2
−
𝜌s𝜔

2

𝐺∗
s

(26)

in which

𝑚 =

𝐿

∫
0

𝑢p
2𝑑𝑧 =

𝐹20[
𝐸p𝐴 + (𝜆s + 2𝐺∗

s ) 𝜉
] [
𝑘 −

(
𝜌p𝐴 + 𝜌s𝜉

)
𝜔2

]
(𝑒2𝜒𝐿 + 𝑒−2𝜒𝐿)

[
sinh(2𝐿𝜒)

𝜒
− 2𝐿

]
(27)

𝑛 =

𝐿

∫
0

(
𝑑𝑢

𝑑𝑧

)2

𝑑𝑧 =
𝜒2𝐹20[

𝐸p𝐴 + (𝜆s + 2𝐺∗
s ) 𝜉

] [
𝑘 −

(
𝜌p𝐴 + 𝜌s𝜉

)
𝜔2

]
(𝑒2𝜒𝐿 + 𝑒−2𝜒𝐿)

[
sinh(2𝐿𝜒)

𝜒
+ 2𝐿

]
(28)

Also, considering Hamilton’s principle and collecting the coefficients of 𝛿𝜑(𝑦), the governing equation of 𝜑(𝑦)can be
obtained as follows:

𝑑2𝜑

𝑑𝑦2
−

(
𝛾y

𝛾p

)2

𝜑 = 0 (29)
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where (
𝛾y

𝛾p

)2

=

(
𝜆s + 2𝐺∗

s

𝐺∗
s

)
𝑛

𝑚
+
𝑝x1 + 𝑝x2
𝑞x1 + 𝑞x2

−
𝜌s𝜔

2

𝐺∗
s

(30)

Given the boundary conditions in Equations (2a) and (2b), the solutions of 𝜙(𝑥),𝜑(𝑦)are written as:

𝜙(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑒

(
𝛾x

𝑟p
(𝑥+𝑎)

)
, 𝑥 ≤ −𝑎

1,−𝑎 < 𝑥 ≤ 𝑎

𝑒

(
−
𝛾x

𝑟p
(𝑥−𝑎)

)
, 𝑥 > 𝑎

(31a)

𝜑(𝑦) =

⎧⎪⎪⎨⎪⎪⎩
𝑒

(
𝛾y

𝑟p
(𝑦+𝑏)

)
, 𝑦 ≤ −𝑏

1,−𝑏 < 𝑦 ≤ 𝑏

𝑒

(
−
𝛾y

𝑟p
(𝑦−𝑏)

)
, 𝑦 > 𝑏

(31b)

Substituting Equations (31a) and (31b) into Equations (19a-m) yields the following:

𝑘 = 𝐺s

(
𝛾x
𝛾y

+
2𝛾x
𝑟p

𝑏 +
𝛾y

𝛾x
+
2𝛾y

𝑟p
𝑎

)
(32a)

𝜉 = 4

(
𝑟p

2𝛾x

𝑟p

2𝛾y
+

𝑟p

2𝛾x
𝑏 +

𝑟p

2𝛾y
𝑎

)
(32b)

𝑝x1 = 0 (32c)

𝑝x2 =
𝛾x
2𝑟p

(32d)

𝑝y1 = 0 (32e)

𝑝y2 =
𝛾y

2𝑟p
(32f)

𝑞x1 = 𝑎 (32g)

𝑞x2 =
𝑟p

2𝛾x
(32h)

𝑞y1 = 𝑏 (32n)

𝑞y2 =
𝑟p

2𝛾y
(32m)

Specially, when the cross-section of a pile is square and thus a = b, Equations (19a, b), Equations (32a), 32(b) can be
simplified as:

𝛾x = 𝛾y = 𝛾p

√(
𝜆s + 2𝐺∗

s

𝐺∗
s

)
𝑛

𝑚
+

𝛾2x
2𝑎2𝛾x + 𝑎2

−
𝜌s𝜔2

𝐺∗
s

(33)
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F IGURE 2 Flow chart of the iterative algorithm of MIP

𝜉 =
𝑟2p

𝛾2x
+
4𝑎2

𝛾x
(34)

𝑘 = 2𝐺∗
s (1 + 2𝛾x) (35)

3.4 Modulus modification and solution algorithm

Neglecting the horizontal displacement of soil domain brings an artificial restraint and make the pile-soil system slightly
stiffer. The study by Seo et al.37 shows that the influence of this restraint could be reduced by treating the coefficient 𝜆s
in the matrix of Equation (8) as zero and replacing the coefficient 𝐺∗

s with 0.6𝐺∗
s (1 + 1.25𝜐𝑠

2). This replacement approx-
imately accounts for the influence of the horizontal displacement of the soil medium by modifying the coefficient in
stress-strain relationship in the vertical direction. Similar modulus modification for circular piles was made in Anoyatis
and Mylonakis17 and Gupta and Basu.23
There are only two dependent unknown parameters 𝛾x ,𝛾y to obtain the dynamic pile impedance and soil attenuation

factor. However, their explicit expressions are entangled with serval nonlinear formulas of soil parameters k, ξ, and decay
functions 𝜙(𝑥),𝜑(𝑦). Here a conventical method of initial parameters (MIP, referred43–45) is used to find the proper values
of the necessary parameters 𝛾x ,𝛾y with the aid of iterative technique. Figure 2 shows the flowchart for the iterative process
of MIP. The empirical initial values of 𝛾x ,𝛾y are around 1.0. AMATLAB script is developed to obtain the solutions. The sat-
isfactory results for the given cases in this study can convergewithin less than 100 steps of iteration, and the computational
time is less than 10 s in a desktop with Intel core i7-9700 @3.00 GHz and 16 GB RAM.
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F IGURE 3 Comparison of dynamic pile impedance between square and circular piles (L/a = 40, Ep/Es = 1000, 𝛽0 = 0.02, 𝜐s = 0.4, 𝜌p/ 𝜌s
= 1.136)

4 RESULTS ANALYSIS BASED ON ANALYTICAL SOLUTIONS FOR SINGLE SQUARE
PILES

4.1 Comparison with circular piles

Gupta and Basu23 proposed an energy-based solution for the dynamic responses of a circular pile, which was proved to
be of considerable accuracy compared with the ridiculous solution by Zheng et al.18 Here we analyze the effects of cross-
section using that published formula and the presented solution in this study.

4.1.1 Dynamic impedance at pile head

Figure 3 shows the comparison of a square pile and circular piles – circumscribed and inscribed – in the forms of complex
dynamic impedance at pile tops. Note that the diameter (2r) of the two used circular piles is equal to the side length
(2a) and diagonal length of the square cross section, respectively. The circular frequency𝜔is nondimensionalized by the
formula𝑎0 = 𝜔𝑎∕𝑉s, in which a0 is a dimensionless frequency and Vs is the shear wave velocity of soil. It is observed that
frequency-dependent variation trends of both real and imaginary parts of the two circular piles, though the values of cut-
off frequency are different. In addition, the real part of the square pile is less visible than that of its inscribed circular pile
and quantitatively close to those of circumscribed circular pile. The stiffness decrease and energy loss increase around the
cut-off frequency is less significant for square piles than the circular piles, whichmake the variation of dynamic impedance
with frequency is smoother in the square pile.

4.1.2 Soil attenuation factor

The wave propagation in soil is also a critical physical quantity in the problem of pile-soil dynamic interaction. Figure 4
shows the variation of soil attenuation factor (calculated by 𝑢s∕𝑢p, a complex number that generally ranges from -1 to
1) with respect to the frequency for square and circular piles. Note that the side length direction (θ = 90◦) and diagonal
direction (θ = 45◦) are selected to analyze the soil attenuation factor for square cross section. It can be seen that the soil
attenuation factors strongly fluctuate with increasing frequency. Generally, the larger the distance from the concerned soil
position to pile axis is, the more intensive the fluctuation of soil attenuation with frequency. Figure 4A shows that, at s =
2a, the real part of soil attenuation factor in a square pile is usually larger than those of corresponding inscribed circular
pile at relatively low dimensionless frequency range (0 < a0 < 0.5). As a0 increases to a value around 4, that trend tends
to be opposite. The frequencies dividing the monotone interval of the imaginary part of soil attenuation curve differ from



QU et al. 2639

F IGURE 4 Comparison of soil attenuation factors between square and circular piles, Ep/Es = 1000, ρs/ρp = 0.88, L/rp = 25, μ = 0.4
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F IGURE 5 Variation of dynamic axial impedance at pile head with various side length

that of the real part. Figure 4B and C shows that the first amplitudes on frequency curves of the soil attenuation factors
for the inscribed circular pile are generally smaller than that for the square pile, along both the side length direction and
diagonal direction. As the frequency increases, the amplitudes of soil attenuation factors for the inscribed circular pile tend
to fluctuate between the side length direction and diagonal direction for the square pile. Besides that, the cross-section
effects are evidenced by the significant differences observed between the different directions, say θ = 90◦ and θ = 45◦.
Figure 4A–C also reveals that the waves in soil attenuate faster along the diagonal direction in a square pile.

4.2 Parameter analysis

In this section, case studies are carried out to analyze the roles of main geometrical and mechanical parameters on the
dynamic impedance and soil attenuation. Otherwise specified, the following mechanical parameters of pile and soil are
used: ρs = 2500 kg/m3 and ρs = 2200 kg/m3, Es = 25 MPa, Ep = 25 GPa; a = 0.8 m, L = 20 m,υs = 0.4, 𝛽0=0.02.

4.2.1 Influences of side length and soil modulus on the dynamic impedance at a pile top

Figures 5 and 6 show the influences of side length and soil modulus on the dynamic vertical impedance at the head of a
pile, respectively. Note that the dynamic impedance has been normalized with respect to corresponding static stiffness,
namely real(kd)/ real(kd(0)). FromFigure 5, it can be seen that the real part of dynamic vertical impedance increases when
side length increases, whereas the increasing rate tends to decrease. On the other hand, the variation curves of the real
part of dynamic impedance tend to be mild with increasing frequency. The right diagram of Figure 5 clearly shows that
the imaginary parts of dynamic impedance are quite small and approximately keep zero before the cut-off frequencies.
As the frequency becomes larger than the cut-off frequencies, the imaginary parts that represent the damping induced
energy loss gradually increases with frequency. Furthermore, the piles of larger side length generally produce weaker
imaginary parts, which accounts for the aforementioned milder variation with frequency. Also note that the value of cut-
off frequency increases with increasing side length, which agrees with the results that the cut-off frequency is opposite to
the slender ratio L/r for circular piles by Anoyatis and Mylonakis.17
Figure 6 shows that the cut-off frequencies of both the real and imaginary parts of dynamic impedance are apparently

affected by the modulus variation. The left diagram in Figure 6 reveals that the real parts evidently decrease as the soil
modulus increases. A similar trend is also reported for the end-bearing circular piles by Gupta and Basu.23 That phe-
nomenon is caused by a significant growth of the imaginary components, as shown in the right diagram in Figure 6; this
indicates that the inertial energy loss would increase when the soil becomes stiffer and the soil damping ratio holds.
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F IGURE 6 Variation of dynamic axial impedance at pile head with various soil modulus

4.2.2 Influences of side length and soil modulus on soil attenuation factor

A common frequency range 0 < a0 < 0.5 is adopted for the following analysis. Figure 7A depicts the influences of the pile
length on the soil attenuation factors along the directions θ= 45◦ and θ= 90◦ around a square cross section at s= 2a. It is
observed that the real parts of soil attenuation factor increase with the frequency and has amaximumbefore a0 = 0.3, then
start to decline with a relatively stable rate. The longer the pile shaft is, the frequency at the maximum soil attenuation
factor becomes smaller, which is dominated by the variation of imaginary parts shown in the right diagram in Figure 7A.
Besides that, the differences of soil attenuation factor along the directions θ= 45◦ and θ= 90◦ tend to evidently decrease

as the real parts approach the maximum value. Also note that an increasing pile length would make the frequency-
dependent fluctuation of soil attenuation factors become mild. Consequently, the cross-section effects would be impaired
or suppressed in the square pile of greater slender ratio. Similar results can be found in Figure 7B and C.
Figure 8 shows the influences of the soil modulus on the soil attenuation factors along the directions θ = 45◦ and θ =

90◦ around a square cross section. It is prominent that the real parts of soil attenuation factor would decrease, and the
peak tends to be a plateau as soil modulus increases. The influences of soil modulus on the soil attenuation are smaller
than that responsible for propagation directions. Consequently, the curves in Figure 8 appears to develop into two groups:
θ = 45◦ and θ = 90◦. The differences between the two interest directions vary with the fluctuation that is affected by the
frequency and the distance from the pile axis. Figure 8 also reveals that soil modulus has a small influence on the real
parts when the excitation frequency exceeds the cut-off frequency. Such trend can be attributed to the little variation of the
imaginary parts of the soil attenuation factor as soil modulus varies, which is shown in the right diagrams in Figure 8A–C.

5 VALIDATION AND CORRECTION OF THE DYNAMIC PILE-SOIL-PILE
INTERACTION THROUGHNUMERICAL ANALYSIS

5.1 Method description

Section 4 has proved that the proposed analytical method can obtain the satisfactory dynamic responses for the pile
shaft. However, the accuracy of responses for surrounding soil has not been confirmed. In this section, three-
dimensional finite element (FE) simulation through Abaqus software is done to reveal the wave propagation involving
dynamic pile-to-pile interaction in the form of amplitude and phase.31,34,46 The material assumption and geometrical set-
tings are same with that in Section 2. A harmonic excitation of 1 kN is applied on the pile top in the form of distributed
load and the frequency range is set from 0.5 Hz to 10 Hz. The pile properties are: mass density ρp 2500 kg/m3; Young’s
modulus Ep 25 GPa, Poisson’s ratio 0.01, side length 2a = 0.8 m, shaft length H = 40 m; soil properties are: mass density
ρs 2200 kg/m3, Young’s modulus Es = 25 MPa, Poisson’s ratio 0.3. Figure 9 shows the finite element discretization for
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F IGURE 7 Variation of soil attenuation factor for various pile lengths (a = 0.8 m, Es = 100 MPa, Ep = 25 GPa, ρs = 2200 kg/m3, ρp =
2500 kg/m3)

calculating pile-to-pile interaction along different wave propagation directions. Infinite element technique is employed at
the lateral boundary to minimize the effects of reflected waves while the bottom boundary is fixed to simulate rigid base.
A Rayleigh damping of κ = 2% is attributed to soil to account for material damping effects. The values of two coefficients
α and β in Rayleigh damping are calculated with the first two natural frequencies ω1 and ω2 of pile-soil system by α =
2κω1ω2/(ω1+ ω2) and β = 2κ/(ω1+ ω2). Associated inherent vibration modes (as shown in Figure 10) and frequencies ω1,
ω2 can be obtained through the linear perturbation step in Abaqus.

5.2 Vibration attenuation of surrounding soil

The vibration of surrounding soil attenuates as the radial distance from pile center increases. Figure 11A shows the time
history of displacement at pile top, 4a, 10a and 20a from pile center. It is observed that the vibration attenuation process
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F IGURE 8 Variation of soil attenuation factor for various pile lengths (L = 20 m, a = 0.8 m, Ep = 25 GPa, Es = 25 MPa, ρs = 2200 kg/m3,
ρp = 2500 kg/m3)

companies with not only the amplitude decrease but also the phase lag of displacement histories. Figure 11B plots the
displacement contours when the pile head comes to its lowest position around t = 0.6s. The vibration of pile behaves as a
one-dimensional shaft and the vibration of its surrounding soil currently seems to be of axial symmetry.
Furthermore, the soil attenuation factor is calculated as the ratio of soil displacement by pile displacement at ground

elevation and is expressed in the form of amplitude and phase in Figure 12. It is interesting to observe that no obvious
difference for the vibration attenuation of surrounding soil along the side length direction (90˚) and diagonal direction
(45˚).
Figure 13 shows the evolution of vertical displacement contour of pile-soil system at ground elevation. For each diagram

in Figure 13, the right part plots the detailed displacement contours near the pile boundary. At the beginning of vibration
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F IGURE 9 Three-dimensional finite element models: (A) model for computing the pile-pile interaction factor at 4a along 90◦direction
off the loaded pile axis; (B) model for computing the pile-pile interaction factor at 4a along 45◦direction off the loaded pile axis

shown in Figure 13A, the displacement contours approximately close to shape of squares instead of circles, which demon-
strates the effects of boundary on the soil attenuation. Very soon at t = 0.0809 s or around 0.011 T, the wave fronts in
soil tend to become curved shape in the diagonal direction. At t = 0.0129 s when the wave fronts still do not arrive the
radial distance of 4a from pile center shown in Figure 13C, it seems that the outer contours have evolved into groups of
concentric circles even though the near-field soil attenuation is still dominated by the square shape contours. It reflects
that the travelling waves along various directions have differential phase velocities due to the non-circular boundary. As
the waves continue to propagate in Figure 13D and Figure 13E, the ratio of propagation distance to the pile dimensions
gradually increases. Simultaneously, the influence of pile geometry on the soil vibration tend to be weak and thus the
cylindrical waves tend to dominate the far-field soil vibration.47 The evolution of displacement contours reflects that the
square boundary plays a significant role on the surrounding soil attenuation in a range less than 4a off the pile axis.
Figures 14–16 show the comparisons of numerically produced soil attenuation factor with three analytical solutions: one

is the classical method based on plane strain assumption by Gazetas and Makis28; one is the continuum-based method
proposed by Basu et al.23; and the last is the continuummethod proposed in Section 3 for square piles. Note that equivalent
radius is calculated to employ the formula from circular piles by: 𝑟e =

√
4𝑎𝑏∕𝜋. The results in Figure 14 show that the

continuum method for square piles significantly overestimates both the amplitude and phase lag compared with Finite
element (FE) numerical method. Generally, the methods for circular piles by Basu et al.,23 Gazetas andMakis28 can give a
relatively good prediction for the soil attenuation around a square pile, especially for the frequencies larger than 1 Hz. In
addition, it is also found that the amplitude from Gazetas and Makis28 has greater deviation than that from Basu et al.,23
which is because that the vertical wave propagation and material damping in soil is neglected in Gazetas and Makis’
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F IGURE 10 The first two vertical vibration modes of soil-pile system for computing Rayleigh damping coefficients. The unit for the
displacement (U) is mm

F IGURE 11 Time histories and displacement contour of pile-soil system on harmonic vibration: (A) Time histories of the vertical
displacement at pile top and the interest soil positions at ground that have various radial distances from pile center; (B) displacement contour
of pile-soil system when the pile displacement gets its positive peak. The unit for the displacement (U) is mm
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F IGURE 1 2 Soil attenuation factor along different directions (90˚ and 45˚)

method. As the radial distance from pile center increases to 10a and 20a, the continuum method for square piles gives
worse estimation for soil attenuation factor as observed in Figures 15 and 16. At the same time, the continuum method
for circular piles from Basu et al.23 remains to produce satisfactory soil attenuation factor, which also demonstrates that
the square pile boundary exerts a weak influence on the far-field vibration of surrounding soil. Actually, it was also found
that the soil attenuation characteristics around a non-circular (barrette) pile was similar to that around a circular pile in
finite element analysis for the static problem.37
Why the continuum method for square piles yields so prominent error? Based on the displacement model for

single square piles in Section 2.1, the mathematical soil attenuation functions at the area of y > 0 (shown in Figure 17A)
can be written as following expressions:

𝜓(𝑥, 𝑦) = 𝜙(𝑥)𝜑(𝑦) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
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(31)

From Equation (31), the soil attenuation in D1 and D6 is independent with y coordinate, thus the displacement contour
inD1 andD6 should be lines parallel to y axis. Similarly, the soil attenuation inD3 andD4 is independent with x coordinate,
thus the displacement contour in D3 and D4 should be lines parallel to x axis. When the pile has a square cross section,
𝜓(𝑥, 𝑦)should be symmetric with respect to y = x in D2 and be symmetric with respect to y = -x in D5. Consequently,
based on the displacement model in Section 2.1, the soil displacement contours around a square pile can be illustrated as
Figure 17B. The contours in Figure 17B are somewhat like that in Figure 13A, which reflects that the displacementmodel in
Section 2.1 can explain the pile-soil interaction in the near field. However, as the radial distance from pile center increases,
that displacementmodel causes growing error for the vibration response of far-field soil (s> 4a). In Figure 17C, amodified
displacement model is proposed to distinguish the variation of soil attenuation pattern in the near-field and far-field.

5.3 Dynamic interaction between piles

Figure 18 shows the dynamic interaction factors of square piles in forms of amplitude and phase from the numerical anal-
ysis. It’s interesting to observe that the amplitude of passive piles at 90◦direction is slightly larger than that at 45◦direction
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F IGURE 13 Vertical displacement contour maps of pile-soil system at ground for various time ticks. The unit for the displacement (U)
is mm

at low frequency range (say less than 3 Hz). That difference tends to decrease as the excitation frequency grows. Moreover,
the direction dependent difference continuously falls as the radial distance s off loaded pile increases from 4a to 20a. In
other words, the difference of interaction factors along 90˚ and 45˚ is generally not significant, specifically for a relatively
scattered arrangement of pile group on a harmonic excitation with frequency greater than 3 Hz. In contrast, the phases of
striking waves from different directions do not indicate obvious deviation, which demonstrates that the vibration waves
approximately arrive to the passive piles located various direction at the same time.
For the sake of convivence, the variation of pile-to-pile interaction factor along different paths is neglected in hereafter

analytical study. Consequently, the soil attenuation factor 𝜓could be approximated by the existing method for the soil
vibration around a circular pile,23 which has been proved to be efficient in Section 5.2. Based on the governing equation
for a square pile in Section 2.2 (Equation (18)), the dynamic soil resistance 𝑘s that acting on a square pile shaft has the
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F IGURE 14 Comparisons of numerically produced soil attenuation factor with analytical solutions: radial distance 4a

F IGURE 15 Comparisons of numerically produced soil attenuation factor with analytical solutions: radial distance 10a

F IGURE 16 Comparisons of numerically produced soil attenuation factor with analytical solutions: radial distance 20a
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F IGURE 17 Illustration of displacement contours for square piles. (A) Partitions of soil field when y > 0; (B) Displacement contour
illustration on the continuum theory; (C) Modified displacement contour illustration based on the FE numerical results

F IGURE 18 Pile to pile interaction factors of square piles along different directions

following expression:

𝑘s = 𝑘 − 𝜔2𝜌s𝜉 (32)

where k can be calculated through Equation (19). Diffraction factor 𝜉 can be obtained by introducing Equation (32) into
Equation (4). Then, the formula in Section 2.2 (Equation (3)) is used to calculate the interaction factors 𝛼between square
piles. That solution to interaction factors based on the approximate soil attenuation factor is called “approximatemethod”.
Instead, if the interaction factors are calculated based on the displacement decay functions from continuum model in
Section 2.1 (or 4.1.2), it is called “continuum method”.
Figures 19–21 show the amplitude and phase of interaction factors from different methods. The results in Figure 19

show that the presented approximate method slightly underestimates the amplitude but does not cause obvious phase
deviation at s = 4a. That mild underestimation is due to the one-dimensional assumption for the passive piles, which
had been elaborated by Luan et al.48 As the radial distance increases, the difference between the approximate method
and FE numerical method gradually decreases as shown in Figures 20 and 21. For a comparison, the interaction factors
using the soil attenuation factor based on the continuum method for square piles are also calculated. It is observed that
prominent error occurs through the continuum method for both the amplitude and phase, especially when s = 10a and
20a. Considering that the effects of square boundary on the dynamic interaction factor is not significant, the proposed
approximate method could give a satisfactory estimation for the pile-pile interaction factor.
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F IGURE 19 Comparisons of numerically produced interaction factor with analytical solutions: radial distance 10a

F IGURE 20 Comparisons of numerically produced interaction factor with analytical solutions: radial distance 10a

6 DYNAMIC IMPEDANCE FOR GROUP OF SQUARE PILES

To now, both the dynamic impedance of a single square pile and the pile-to-pile interaction factor have been determined.
Therefore, the dynamic impedance for group of square piles can be computed using the superposition principle through
Equations (6) and (7). Figure 22 compares the normalized dynamic impedance for 2×2 group of square piles with that

F IGURE 2 1 Comparisons of numerically produced interaction factor with analytical solutions: radial distance 20a
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F IGURE 22 Comparison between normalized dynamic impedance for 2×2 group of square piles and circular piles. L/a = 40, Ep/Es =
1000, 𝛽0 = 0.02, 𝜐s = 0.3, 𝜌p/ 𝜌s = 1.136

for group of circular piles. The two types of groups have identical cross section area and share the same pile spacing. The
results show that both the dynamic stiffness and dynamic damping in a group of square piles have smaller fluctuation
against frequency. Specifically, at pile spacing s = 10a, the real component of dynamic impedance of square pile group is
greater than that of circular pile group when the normalized frequency a0 is less than 0.55. That positive deviation varies
with frequency and is approximate to 20% at a0 = 0.40. As a0 continues to grow and exceeds 0.55, the real component of
dynamic impedance of square pile group becomes smaller than that of circular pile group before a0 = 0.85. That negative
deviation approximately varies from0–10% and gets itsmaximumaround a0 = 0.75. At pile spacing s= 20a, the fluctuation
of real part of dynamic impedance is much weaker than that at s = 10a. At the same time, the imaginary part fluctuates
more intensively due to the greater radiation damping in soil field. The impedance deviation for two types of pile groups is
most obvious at around a0 = 0.15 and a0 = 0.37 and corresponding differences are around 12% and 8%, respectively. Those
results in Figure 22 reflects that the difference of dynamic impedance between the two types of pile group could decreases
with increasing pile spacing and frequency.

7 CONCLUSIONS AND DISCUSSION

Boundary effects of pile cross section on the vibration behavior of pile-soil system are examined in this paper. The dynamic
impedance of single square pile is solved by the energy-based variation principle. Complex coupling process at the pile-soil
interface is avoided by introducing two individual decay functions. The effects of square boundary on the soil attenuation
factor and pile-to-pile interaction factor are investigated through the combined method of numerical simulation and the-
oretical deduction. Based on the principle of superposition, the vertical dynamic impedance for group of square piles is
obtained. For practical interest, the loading frequency is limited to a low range of 0 < a0 < 1 in the theoretical analysis.
The following conclusions can be drawn:

1. The frequency variation of the dynamic impedance of a square pile is smoother in comparison with the circular pile.
Also, a square pile generally has a less prominent stiffness decrease around the cut-off frequency than equivalent cir-
cular pile. The real parts of dynamic pile head impedance of a square pile increase with an increasing side length
and decreases with increasing soil modulus. That variation is largely influenced by the imaginary parts of dynamic
impedance.

2. The soil attenuation factor close to a square pile is affected by the wave propagation direction. Generally, diagonal
direction attenuates slower than the side length direction and the difference is dependent on both the frequency and
the distance from the pile axis. As the radial distance of interest soil positions off pile center increases, the effects
of square boundary rapidly become weaker and circular pattern dominates the displacement contours of far-field
soil.
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3. Dynamic impedance for group of square piles generally has weaker fluctuation with frequency. The impedance devia-
tion between those two types of pile group could decreases as pile spacing enlarges and frequency increases.
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