Noname manuscript No.
(will be inserted by the editor)

A multi-dimensional analysis of technical lag
in Debian-based Docker images

Ahmed Zerouali - Tom Mens - Alexandre
Decan - Jesus Gonzalez-Barahona -
Gregorio Robles

Received: date / Accepted: date

Abstract Container-based solutions, such as Docker, have become increas-
ingly relevant in the software industry to facilitate deploying and maintaining
software systems. Little is known, however, about how outdated such contain-
ers are at the moment of their release or when used in production. This article
addresses this question, by measuring and comparing five different dimensions
of technical lag that Docker container images can face: package lag, time lag,
version lag, vulnerability lag, and bug lag. We instantiate the formal technical
lag framework from previous work to operationalise these different dimensions
of lag on Docker Hub images based on the Debian Linux distribution. We
carry out a large-scale empirical study of such technical lag, over a three-year
period, in 140, 498 Debian images. We compare the differences between official
and community images, as well as between images with different Debian dis-
tributions: OldStable, Stable or Testing. The analysis shows that the different
dimensions of technical lag are complementary, providing multiple insights. Of-
ficial Debian images consistently have a lower lag than community images for

A. Zerouali

Vrije Universiteit Brussel, Brussels, Belgium
Université de Mons, Mons, Belgium

E-mail: ahmed.zerouali@vub.be

T. Mens
Université de Mons, Mons, Belgium
E-mail: tom.mens@umons.ac.be

A. Decan
Université de Mons, Mons, Belgium
E-mail: alexandre.decan@umons.ac.be

J. Gonzalez-Barahona
Universidad Rey Juan Carlos, Madrid, Spain
E-mail: jgb@gsyc.es

G. Robles
Universidad Rey Juan Carlos, Madrid, Spain
E-mail: grexQgsyc.urjc.es

2 Ahmed Zerouali et al.

all considered lag dimensions. The amount of lag incurred depends on the type
of Debian distribution and the considered lag dimension. Our research offers
empirical evidence that developers and deployers of Docker images can benefit
from identifying to which extent their containers are outdated according to the
considered dimensions, and mitigate the risks related to such outdatedness.

Keywords: technical lag, container images, Docker, outdated packages,
security vulnerabilities, bugs, Debian, empirical analysis.

1 Introduction

During the last years, new ways of deploying software have become mainstream
to support new software architectures, such as those based on micro-services.
One of the most successful among them is based on containers, and in partic-
ular on Docker (Bernstein, 2014; Turnbull, 2014). Docker containers emerged
as a lightweight solution (Mouat, 2015) capable of provisioning multiple, par-
tially isolated applications on a single host. Each application runs in a separate
container, including all external libraries and applications needed to perform
its job, all of them sharing system libraries, configuration files, and an operat-
ing system in the same host (Merkel, 2014). Containers are run from images
that include file systems and all data needed for their execution. To ease con-
tainer deployment, collections of ready to be deployed container images are
made available on registries. One of the largest of such registries is Docker
Hub, with more than 5.8M images (as of June 2019).

Docker images in registries are usually deployed in production, either di-
rectly or indirectly, via derived images. Derived images are based on other
images, by adding and/or removing files from them. Therefore, images need
to be carefully tested, both before and after deployment. Switching to a new
image version is risky, since new versions may come with backward incom-
patible changes and may give rise to unforeseen co-instability issues (Artho
et al., 2012; Claes et al., 2015; Vouillon and Di Cosmo, 2011). Therefore, there
is a strong tendency to avoid updating to new versions of container images
in a given deployment. On the other hand, those images need to be updated
at some point, because new versions fix bugs, avoid known security vulner-
abilities, and include new or improved functionality. This was confirmed by
different studies and surveys (Anchore.io, 2017; Bettini, 2015) showing that
among Docker practitioners, the absence of security vulnerabilities is more
important than benefiting from new features. This causes a dilemma between
updating deployed images to their latest versions and benefiting from the fixed
vulnerabilities and bugs, or staying with the currently deployed and working
version.

In previous work, Zerouali et al. (2019b) introduced the technical lag frame-
work as a formal model to capture this dilemma of whether or not to update.
This model allows to quantify the differences between two versions of a pack-
age, and to aggregate these differences between collections of packages. In this
article, we apply the formal model to Docker container images, to compute

A multi-dimensional analysis of technical lag in Debian-based Docker images 3

the technical lag between package releases contained in image versions, and
then between the image versions themselves.

We focus on Docker Hub images that are based on the Debian Linuz dis-
tribution. Such images were already studied in Zerouali et al. (2019¢), and this
article extends the previous research in multiple ways. While Zerouali et al.
(2019¢) considered only one snapshot in time of Docker Hub images, this arti-
cle carries out an evolutionary analysis of Docker Hub images at their release
dates, providing insights in how the lag of Docker images evolved across De-
bian releases over a three-year time period. The size of the used dataset of
Docker images is also an order of magnitude larger in this article. We consider
all images available in the most relevant Docker Hub repositories, yielding 19
times more images: 140,498 compared to only 7,380 in (Zerouali et al., 2019c¢).
Moreover, this article applies the technical lag framework of (Zerouali et al.,
2019b) to Docker images for the first time. While (Zerouali et al., 2019b) con-
sidered only three different variants of technical lag, this article evaluates and
compares five different dimensions (i..e, framework instantiations) of technical
lag: package lag, time lag, version lag, vulnerability lag and bug lag.

This naturally leads us to five research questions (RQ; to RQs; one per
considered lag dimension), aiming to understand how the technical lag evolves
over time in Debian-based Docker images. To answer these questions, we em-
pirically analyzed the five considered dimensions of technical lag for these
images. The results of these analyses led us to derive some insights about De-
bian-based Docker images. Among them, we can highlight the following ones.
Official Debian images consistently have a lower lag than community images
for all considered lag dimensions. The amount of lag incurred depends on the
type of distribution and the considered lag dimension. While Debian images
tend to have a very low proportion of outdated packages, they all suffer from
bugs and security vulnerabilities to a certain extent. Debian Testing images
have higher package and version lag than other images, while images relying
on older and more stable Debian distributions have higher vulnerability lag,
which means those “more stable” images are more vulnerable from a security
point of view. Moreover, we find all dimensions of lag to be increasing over
time in OldStable images, while they are more stable in the case of Stable
images. For Testing images, only time and version lag tend to increase over
time.

We expect that the findings of the analysis will be of benefit to Docker de-
velopers, helping them to create better images, while at the same time allowing
deployers to assess the outdatedness of the images they rely on.

The remainder of this article is structured as follows. Section 2 provides
background on Docker images and the technical lag framework. Section 3
discusses related work. Section 4 explains the research method and data ex-
traction process, and presents a preliminary analysis of the selected dataset.
Section 5 instantiates the formal technical lag framework to the case study of
the Docker images. Section 6 carries out a multi-dimensional empirical analysis
of the technical lag incurred by Debian-based images on Docker Hub. Section 7
highlights the novel contributions, discusses our findings, and outlines possible

4 Ahmed Zerouali et al.

directions for future work. Finally, Section 8 discusses the limitations of this
work and Section 9 concludes.

2 Background

This section provides the necessary background on technical lag (Section 2.1)
and Docker images (Section 2.2), which is required for understanding the re-
mainder of this article.

2.1 Technical Lag Framework

The concept of technical lag was initially introduced by Gonzalez-Barahona
et al. (2017) to quantify how outdated a deployed software component is,
reflecting “the increasing lag between upstream development and the deployed
system when no corrective actions are taken”. However, the notion of technical
lag is not only useful for deployers of software components, but also for the
developers of such components. Developers can use technical lag to decide
whether or not to seize the opportunity of updating the external dependencies
of the components they maintain. That way they can assess, on an informed
basis, the risks of relying on outdated dependencies (Cox et al., 2015).

To empirically evaluate the practical impact of technical lag from the per-
spective of open source software developers, we have previously conducted
several quantitative case studies (Decan et al., 2018a; Zerouali et al., 2018).
In particular, we assessed the technical lag induced by outdated package de-
pendencies in the npm registry of reusable JavaScript libraries. To evaluate
the importance of technical lag from the perspective of software deployers,
we carried out a case study on Docker container images based on the Debian
Linuz distribution (Zerouali et al., 2019¢). In that study, we considered three
ways of measuring technical lag, namely, in terms of version updates, security
vulnerabilities and bugs.

To formally capture the different perspectives on technical lag, as well as
the different ways of measuring it, we introduced a technical lag measurement
framework, and validated it on the above case studies (Zerouali et al., 2019b):

We define a technical lag framework F as a tuple (C, L, ideal, A, agg)
where C is a set of component releases; L is a set of possible lag values;
ideal : C — C is a function returning the most preferred component release;
A :CxC — L is a function computing the difference (in terms of lag
induced) between two component releases; agg : P(£) — £ is a function
aggregating the results of a set of lag values.

Given such a framework F, we can formally define the technical lag induced
by using a component release instead of the ideal release for that component.
The technical lag induced by using a less than ideal release can be computed by

A multi-dimensional analysis of technical lag in Debian-based Docker images 5

the difference function A between that release and the ideal one. This lag can
be aggregated over a set of component releases D by applying an aggregation
function agg over all its members.

techlagr : C — L : ¢ — A(c,ideal(c))
agglagr : P(C) — L : D — agg({techlagz(c) | Ve € D})

In practice, how to define the ideal (e.g., the most stable, most recent,
or most secure component), how to measure the difference A between two
releases, and how to aggregate the technical lag over a set of component releases
(e.g., using the maximum or the sum) will depend on the considered scenario
of use.

2.2 On Docker images

Docker Hub is the world’s largest registry and community for container images.
Docker Hub is organized in repositories, each containing versioned Docker im-
ages. Repositories may be public (with unrestricted access) or private. Public
repositories are categorized into official and community repositories. The of-
ficial status of a repository can be seen as a quality label, signaling that the
repository contains secured and well-maintained images, produced by well-
known organizations (e.g., ElasticSearch, MySQL, or Debian). Images in of-
ficial repositories are frequently used as the basis for other Docker images,
because of their perceived good quality. Community repositories can be cre-
ated by any user or organization (Boettiger, 2015).

Since Docker images are used to create runnable containers, they include
complete operating systems. Images that include Linuz-based operating sys-
tems follow the packaging model of the chosen Linuz distribution (e.g., Alpine
or Debian). Docker images may also include a collection of third-party pack-
ages coming from specific package repositories, such as npm or PyPI (the most
used package repositories for JavaScript and Python, respectively). Once a
certain version of an image is built, packages remain frozen in it.

To facilitate search and use in Docker Hub, images are labeled with the
name of the repository and a tag (e.g., debian:stretch). An image can be
tagged more than once, and therefore may have more than one label (e.g.,
debian:stretch and debian:stable). The name of community image repositories
(e.g., grimoirelab/full:0.2.26, bitnami/mysql:latest) usually starts with the name
of the organisation producing the images.

The build configuration of an image is declared using a Dockerfile (Docker
Inc., 2020b) consisting of a list of commands used to produce the image. Each
command results in a new layer with a unique hash signature. Hence, a Dock-
erfile produces a stack of layers, one layer for each command. In addition, a
Dockerfile can be based on another Dockerfile, including all its layers. This

6 Ahmed Zerouali et al.

way, an image can be built on top of another one, leading to a hierarchy of
images. When a new image container is created, a new writable layer will be
added on top of the underlying layers. This layer is called the container layer.
All changes made to the running image, such as writing new files, modifying
existing files, and deleting files, are performed on this writable container layer.

Listing 1 Dockerfile of the image debian:buster-backports

1 FROM debian:buster

2 RUN
<~ echo "deb http://deb.debian.org/debian buster-backports
— main" > /etc/apt/sources.list.d/backports.list

For example, Listing 1 shows the content of the Dockerfile of the image
debian:buster-backports. Since the Dockerfile contains two commands (FROM
and RUN), building the image with this Dockerfile on 17-Nov-2019 produced a
list of two layers: [5ae19949497e, 52c713817fee].

This image can be used by other Dockerfiles as their base image using
the command FROM debian:buster-backports. Fach image produced from
those Dockerfiles will inherit the layers of the base image. For example, List-
ing 2 shows a fragment of the Dockerfile! used to build community image
shogun /shogun-dev:latest. The FROM command on line 1 pulls the image. Line
2 just provides information about the maintainer of the Dockerfile. The RUN
command starting in line 3 provides a series of instructions to build the image.
For example, the instruction apt-get upgrade -y upgrades already installed
packages, and the instruction apt-get install -qq installs a new set of pack-
ages listed after the options (e.g., make, gcc, ete.).

Listing 2 Excerpt of the Dockerfile of shogun/shogun-dev:latest

1 FROM debian:buster-backports
2 MAINTAINER shogun@shogun-toolbox.org
3 RUN apt-get update -qq &&

—> apt-get upgrade -y &&

— apt-get install -qq --force-yes --no-install-recommends
<~ make gcc g++ libc6-dev 1libbz2-dev ccache libarpack2-dev
<_>

The resulting shogun/shogun-dev:latest image on 17-Nov-2019 includes the
layers found in its base image debian:buster-backports, as evidenced by the two

1 https://github.com/shogun-toolbox/shogun/blob/develop/configs/shogun-sdk/
Dockerfile

A multi-dimensional analysis of technical lag in Debian-based Docker images 7

first items in its list of layers:
[5219949497, 52c713817fee,
ed222bc780e3, a0c30a484e89, 4c6e5392d047, ...]

3 Related Work

This section presents a summary of related research, organized into four sub-
sections. Section 3.1 reviews studies about software package outdatedness, Sec-
tion 3.2 reviews studies about software security vulnerabilities, and Section 3.3
presents related work about the Docker technology. Section 3.4 highlights the
novel contributions and the main differences between this study and prior
related work.

3.1 On outdated software components

Today’s software systems are heavily dependent on components retrieved from
software package registries (e.g., Maven for Java, npm for JavaScript, the De-
bian distribution of Linuz packages, etc.). Such package registries are growing
quickly and facing very frequent package updates (Decan et al., 2019). Many
researchers have studied the impact of relying on outdated software compo-
nents. Kula et al. (2015) empirically analysed thousands of Java libraries dis-
tributed on Maven to study their latency in adopting the latest version of
their dependencies. They found that maintainers are reluctant to adopt the
latest version of a library at the beginning of a project. They also found that
maintainers are more inclined to use the latest available version when they ac-
tually introduce a new dependency in their project. In a follow-up work, they
studied library migration for over 4,600 GitHub software projects and 2,700
library dependencies (Kula et al., 2017). They observed that four out of five
of the projects have their dependencies outdated. A survey with project main-
tainers revealed that a large majority of them were unaware of such outdated
dependencies. Cogo et al. (2019) studied the effect of package downgrades in
npm on technical lag. They observed that one fifth of all downgraded packages
increase the technical lag of client packages. More specifically, downgrades of
major versions introduce more technical lag than downgrades of minor and
patch versions (i.e., they tend to downgrade further than the latest previ-
ous working version). This caused an unnecessary (i.e., avoidable) increase of
technical lag for 13% of the downgrades.

Salza et al. (2020) investigated the ecosystem of mobile apps for Android,
by studying whether, when, how, and why such apps update the third-party
libraries they depend on. They used the technical lag concept to quantify the
difference between the library versions used in the mobile apps and the latest
available version of these libraries. Their main finding was that mobile devel-
opers rarely update library dependencies, and when they do, they mainly tend
to update dependencies related to the graphical user interface. Mezzetti et al.

8 Ahmed Zerouali et al.

(2018) note that the dynamic nature of JavaScript often causes unintended
breaking changes to be detected too late, because its semantic versioning sys-
tem relies on the ability to distinguish between breaking and non-breaking
changes when libraries are updated. Developers tend then not to update their
dependencies, at the risk of not including security critical updates. To miti-
gate this, they present a technique, which they call type regression testing, to
automatically determine when an update affects other JavaScript packages.
Mgller and Torp (2019) presented a model-based variant of this solution that
solves some of its scalability limitations.

Gonzalez-Barahona et al. (2009) investigated the problem of outdated
dependencies in Linux-based software component distributions. Legay et al.
(2020) surveyed 170 Linux users and observed that keeping packages up to
date is an important concern from them, and that some distributions are per-
ceived to be quicker in deploying package updates than others. Abate et al.
(2009, 2012) identified different types of dependencies that may arise between
software components, and proposed solutions for managing such dependencies.
Abate et al. (2014) proposed a framework to detect future problems related
to challenging upgrades and outdated packages, and validated it on Debian.

Many tools are available to monitor, for a given software system, the fresh-
ness of its dependencies (i.e., the libraries the software system requires). For
example, npm provides the npm outdated command to check the registry to see
if any (or, specific) installed packages are currently outdated?. Similar tools
are available for other ecosystems such as Maven (e.g., Versions Maven Plu-
gin?), Node.js (e.g., David*) and RubyGems (e.g., gem outdated®). Most of the
existing solutions, however, only mention the latest available version compared
to the installed one. In other words, such tools aim to detect outdatedness,
but do not quantify nor measure its extent.

All of the aforementioned tools are not specific to Docker, but can be used
to check the freshness of packages installed within Docker containers. There
are also tools that specifically focus on Docker containers. Some of them are
open source, such as Watchtower® and Quroboros” that continuously monitor if
there are new versions of the (base) images that running images are using, and
update those images automatically from Docker Hub if this is the case. Other
tools are commercialised by companies like Anchore.io, Quay.io and Snyk.io, and
check more low-level details of the installed system and third-party libraries,
and offer information about the freshness and vulnerabilities in Docker images.

https://docs.npmjs.com/cli/outdated.html
http://www.mojohaus.org/versions-maven-plugin/
https://david-dm.org/
https://guides.rubygems.org/command-reference/#gem-outdated
https://github.com/containrrr/watchtower

N O O s WwoN

https://github.com/pyouroboros/ouroboros

A multi-dimensional analysis of technical lag in Debian-based Docker images 9

3.2 On security vulnerabilities

Several researchers observed that outdated dependencies are a potential source
of security vulnerabilities. Cox et al. (2015) analyzed 75 Java projects that
manage their dependencies through Maven. They observed that projects using
outdated dependencies were four times more likely to have security issues and
backward incompatibilities than systems that were up-to-date.

Decan et al. (2018b) carried out an empirical analysis of security vulner-
abilities in the mpm ecosystem of JavaScript packages. They analyzed how
and when these vulnerabilities are discovered and fixed, and to which extent
this affects direct or indirect dependent packages. They observed that it often
takes a long time to discover vulnerabilities since their introduction. A non-
negligible proportion of vulnerabilities (15%) are considered to be risky since
they are either fixed after public announcement of the vulnerability, or not
fixed at all. The presence of package dependency constraints plays an impor-
tant role in not fixing vulnerabilities, mainly because the imposed dependency
constraints prevent fixes to be installed.

Zapata et al. (2018) offered a different perspective by analyzing vulnerable
dependency migrations at the function level for 60 JavaScript packages. They
provided evidence that many outdated projects are free of vulnerabilities as
they do not really rely on the functionality affected by the vulnerability. Be-
cause of this, the authors claim that security vulnerability analysis at package
dependency level is likely to be an overestimation.

Zimmermann et al. (2019) provided evidence that the npm ecosystem suf-
fers from single points of failure, i.e., a very small number of maintainer ac-
counts could be used to inject malicious code into the majority of all packages.
This problem is increasing over time, and unmaintained packages threaten
large code bases, as the lack of maintenance causes many packages to depend
on vulnerable code, even years after a vulnerability has become public.

A survey with Docker deployers revealed that the absence of security vul-
nerabilities is a top concern when deciding whether to deploy Docker im-
ages (Bettini, 2015). Another survey showed that in addition to security,
Docker developers and deployers are concerned about other software pack-
age checks such as making sure there are no bugs in major third-party soft-
ware or verifying whether third-party software versions are up-to-date (An-
chore.io, 2017). Yet another survey showed that only 19% of developers claim
to test their Docker images for vulnerabilities during development (Vermeer
and Henry, 2019). This signals a tendency to deliver images without inspecting
them in detail for security weaknesses.

Combe et al. (2016) provided a comprehensive overview of security vulner-
abilities in the Docker container ecosystem. They defined an adversary model
that pointed out several vulnerabilities affecting the usages of Docker. Shu
et al. (2017) performed a large-scale study on the state of security vulnerabil-
ities in official and community Docker Hub repositories. They proposed the
Docker Image Vulnerability Analysis (DIVA) framework to automatically dis-
cover, download, and analyze Docker images for security vulnerabilities. By

10 Ahmed Zerouali et al.

studying a set of 356,218 images they observed that both official and commu-
nity repositories contain an average of 180 vulnerabilities. Many images had
not been updated for hundreds of days, calling for more systematic methods
for analysing the content of Docker containers.

With respect to tool support, Zerouali et al. (2019a) developed ConPan®,
an open source tool that analyses the technical lag, vulnerabilities and bugs in
packages installed in Docker images. Kwon and Lee (2020) proposed DIVDS, a
Docker image vulnerability diagnostic system. The system diagnoses security
vulnerabilities in Docker images when they are uploaded to or downloaded
from the Docker Hub image repository.

3.3 Other studies on Docker

Beyond research on security vulnerabilities, other empirical studies have been
conducted on Docker containers. Cito et al. (2017) characterized the Docker
ecosystem by discovering prevalent quality issues and studying the evolution of
Docker images. Using a dataset of over 70,000 Dockerfiles they contrasted the
general population with samplings containing the top 100 and top 1,000 most
popular projects using Docker. They observed that the most popular projects
change more often than the rest of the Docker population. Furthermore, based
on a representative sample of projects, they observed that one out of three
Docker images could not be built from their Dockerfiles.

Lu et al. (2019) offered another perspective on the quality of Docker images,
by focusing on what they refer to as temporary file smells. In the building
process of Docker images, temporary files are often used. If such temporary
files are imported and subsequently removed in different layers by a careless
developer, it leads to the presence of unneeded files, resulting in larger images.
This restricts the efficiency and quality of image distribution and thus affects
the scalability of services. Through an empirical case study on 3,242 real-
world Dockerfiles on Docker Hub the presence of this temporary file smell was
observed in a wide range of Dockerfiles.

Online services such as Docker Hub and Docker Store host open source
software repositories for a large number of reusable Docker images. Effectively
reusing these images requires a good understanding of them, and semantic
tags facilitate this understanding. To address this problem, Zhou et al. (2019)
proposed SemiTagRec, a semi-supervised learning based tag recommendation
approach for Docker repositories.

Henkel et al. (2020) studied the need for more effective semantics-aware
tooling in the realm of Dockerfiles, in order to reduce the quality gap between
Dockerfiles written by experts and those found in open-source repositories.
They identified and addressed three challenges in learning from, understand-
ing, and supporting developers writing Dockerfiles: (i) nested languages in
Dockerfiles, (ii) rule mining, and (iii) the lack of semantic rule-based analysis.

8 https://github.com/neglectos/ConPan

A multi-dimensional analysis of technical lag in Debian-based Docker images 11

They observed that best practices and rules for Docker have arisen, but devel-
opers are often unaware of these practices and therefore do not tend to follow
them. On average, Dockerfiles on GitHub were found to have nearly five times
more rule violations” than those written by Docker experts.

Socchi and Luu (2019) carried out a deep analysis of Docker Hub’s secu-
rity landscape. They collected and analyzed a large amount of metadata and
vulnerability information about certified 1° official and community images on
Docker Hub. They observed that certified and verified !! repositories do not
lead to a significant improvement of the overall security of Docker images on
Docker Hub. They predicted that the average number of unique vulnerabili-
ties found across all types of repositories is expected to grow with a rate of
approximately 105 vulnerabilities per year between 2019 and 2025 if Docker
Hub continues evolving the same way.

3.4 Novel Contributions

Based on this previous and related work, we decided to focus our study on
applying a theoretical framework of technical lag to quantify outdatedness of
container images, and with it, of container deployments (since those containers
are in many cases deployed directly in production environments). We instan-
tiate technical lag in five different ways, and use it to measure Docker images
with different aims. As a result of this study, we also provide actionable in-
sights to developers, deployers and tool providers of Docker images, that they
can use in their decision processes to produce updated images, or to deploy
them in production.

Our study is not the first one to analyse Docker Hub images, but none of
the previous studies we are aware of focused on studying images for a spe-
cific operating system, exploring in detail their characteristics. We improved
this situation by producing a large, curated dataset of Debian-based Docker
Hub images, and analysing it, finding interesting insights on how the different
Debian distributions and images based on them are updated over time, and
how suitable they are for fulfilling different optimisation criteria for assessing
decisions at deployment time.

We also included data about bug reports and vulnerabilities for Debian
packages, retrieved from the Debian Ultimate Database and the Debian Se-
curity Tracker. Although relying on these databases is not novel by itself, the
combination of data from both of them with the history of Debian packages
used in Docker images is, to our knowledge, new in the literature. It allowed
us to perform detailed analysis on vulnerabilities and bugs in Debian-based
Docker images, adding useful dimensions to our study.

9 An example of rule violation is forgetting the -y flag when using apt-get install
10" Certified images are built with best practices, tested and validated against the Docker
Enterprise Edition and pass security requirements.

11 Verified images are high-quality images from verified publishers. These products are
published and maintained directly by a commercial entity.

12 Ahmed Zerouali et al.

Another relevant contribution is the combination of the main data sources
we used: a newly created dataset of Debian-based Docker Hub images, and
another dataset produced from the whole collection of Debian packages over
time. To our knowledge, this is the first time that data related to deployments
(of container images) and packaged modules (of Debian packages) used by
them are studied together. It allows us to determine with precision how out-
dated images are, given the availability of packages that could have been used
in building them.

We also analyse technical lag for Docker images from two different points
of view: as it was at their last modification date and as it was at the date of the
analysis (more details in Section 4). The first viewpoint is a good measure of
how outdated images were when they were produced, with respect to packages
available at that time. Therefore, that measure informs on how much better
the producers of those images could have performed. The second viewpoint
reflects how far away those images at production time were from an ideal
“most possible up-to-date” image. This is a good measure of the outdatedness
of contained packages if these images were to be used for production at the
moment we performed our study. Therefore, it informs on how appropriate
they are for deployment in production at that time, given a certain set of
criteria (such as minimising the number of vulnerabilities).

4 Method and data extraction

This section introduces the case study of Debian-based Docker images and the
methodology to extract these images, their package releases and their related
bugs and security vulnerabilities. We decided to focus on Docker images based
on a Linux distribution, because applications in them are usually installed
using well-defined packages. We selected the Debian distribution because of its
maturity and widespread use in Docker Hub (DeHamer, 2020). On 6 October
2019, the Debian repository on Docker Hub had more than 284M pulls'?.

The Debian project maintains packages for several simultaneous release
lines, referred to as distributions (Gonzalez-Barahona et al., 2009). The most
important distributions are Testing, Stable and OldStable. Testing packages
are frequently updated since they are continuously inspected for defects. When-
ever the Testing distribution as a whole reaches a certain level of quality and
stability (e.g., lack of critical bugs, successful compilation, etc), it is “frozen”,
and its packages are used to produce a new Stable distribution. Upon release
of a Stable version, the former one becomes OldStable, which in turn becomes
Oldoldstable. While package updates in Testing usually come with new func-
tionality, updates in Stable and OldStable include only the most important
fixes or security updates. Currently, there is no security support for Oldold-
stable and older distributions. Thus, we chose to analyze Debian images on
Docker Hub only for Testing, Stable and OldStable. Table 1 provides general
information about these considered Debian distributions.

12 https://registry.hub.docker.com/v2/repositories/library/debian/

A multi-dimensional analysis of technical lag in Debian-based Docker images 13

Table 1 General information about the considered Debian distributions.

Distribution Version Distribution Release date
type number name as stable
OldStable Debian 8 Jessie 2013-04-25
Stable Debian 9 Stretch 2017-06-17
Testing Debian 10 Buster 2019-07-06

The process to compute the technical lag for Debian-based images on
Docker Hub is composed of the following steps:
(1) identify Docker images that are based on Debian;
(2) retrieve the list of installed package releases from these images, and match
them with the list of all known Debian packages;
(3) map (a) vulnerability reports and (b) bug reports to these package re-
leases.
As shown in Figure 1, combining all these steps results in a dataset that we
use in Section 6 to measure and analyse the technical lag of Debian images.

Data Preparation

> &V 5Dl
g V=

Container (2) (3a) (3b) Analysis
mages & = =
S—rj — ——rtd
Package Vulnerability Bug
information reports reports

Fig. 1 Process of the Docker container package analysis.

Step 1 — Debian-based Docker images

We extracted the list of all repositories that are available on Docker Hub in
May 2019 using the Docker Registry HTTP API (Docker Inc., 2020a). We
found 150 public official repositories and 1,929,428 community repositories.
We extracted the name and the list of layers of all images provided by each
repository in June 2019. We found 27,760 images in official repositories and
5,842,567 images in community repositories.

Based on the image layering mechanism explained in Section 2.2, we iden-
tified whether an image is built on top of one of the official Debian images
provided by Docker Hub3. Since several image names (or tags) can correspond
to the same image, we removed duplicate images by comparing the hash values
of their layers.

13 https://hub.docker.com/_/debian

14 Ahmed Zerouali et al.

Among all Docker Hub images, we found 9,581 official Debian images, as
well as 924,139 community Debian-based images coming from 400, 193 repos-
itories. Out of the 9,581 official Debian images, 9,330 images used one of the
three Debian distributions considered in Table 1, i.e., either Testing (Debian
10), Stable (Debian 9) or OldStable (Debian 8). The remaining 251 images
used older Debian distributions and were therefore excluded from our dataset.
The observed high number of community Debian-based images is unsurprising
since anyone can upload images on Docker Hub. Many of these are experimen-
tal or personal images, or images that are never expected to be reused by
deployers or by developers of other images. Therefore, we decided to focus on
those images that are most worthwhile for deployers and developers based on
the number of pulls that Docker Hub reports for each community repository.
We started downloading Debian images from community repositories sorted
by decreasing number of pulls. After one full month of continuous downloads,
the dataset was composed of 131,168 images. This corresponds to 14.2% of all
Debian community images, with a number of pulls ranging from 1,954 to tens
of millions. We stopped downloading more images at this point,'# since these
images already represented 81% of the total number of pulls of all Debian im-
ages, and were therefore representative of the usage of Debian-based images
from community repositories. Moreover, by doing so, we ensure to exclude the
long tail of experimental or personal images.

Table 2 Number of Docker images per Debian distribution.

Debian images | Testing Stable OldStable total
official 741 5,504 3,085 9,330
community 3,114 75,534 52,520 | 131,168
Total 3,855 81,038 55,605 | 140,498

Table 2 shows the breakdown of all downloaded official and community
images per considered Debian distribution. While these images were available
on Docker Hub in June 2019, they were not all created and published at the
same time. Figure 2 shows the evolution of the number of images proportion-
ally to the number of extracted images from Docker Hub between 2016 and
2019, grouped by their origin (official or community) and Debian distribution.
We observe that 62.7% of the official images and 59.3% of the community im-
ages were last updated before 2019. Regardless of the origin, we observe an
exponential increase over time for images based on the Testing distribution
(R? = 0.95) and Stable distribution (R?> = 0.85), while the proportion of
OldStable images is linearly increasing over time (R? = 0.93).

14 Downloading all available images would have taken at least 6 extra months, and would
have required considerably more storage capacity.

A multi-dimensional analysis of technical lag in Debian-based Docker images 15

" official community

0.6 0.6

s Oldstable

04 Stable 0.4

5] .

o Testing

202 0.2

3

2 0.0{== : , 0.0 == , :

= Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan
2017 2018 2019 2017 2018 2019

Fig. 2 Evolution of the number of images proportionally to the number of extracted images
from Docker Hub, grouped by Debian distribution (Testing, Stable, OldStable) and image
origin (official or community).

Step 2 — Debian package releases

We pulled each of the considered Docker images and ran dpkg, the official
package management tool of Debian, to get the list of installed package re-
leases (i.e., dpkg -1). We compared each package release against the list of
all package releases available for the considered Debian distributions. This list
was obtained by downloading the daily snapshots of all binary packages for
OldStable, Stable and Testing from the official and security Debian Snapshot
repositories'®. Based on this list, we identified 46,272,487 package releases in
the set of considered images, covering more than 99% of all the package re-
leases we extracted using dpkg. We found a median of 185 installed packages
in official images, and 377 in community images. Figure 3 shows the evolution
of the statistical distribution of the number of packages installed in consid-
ered official and community images. We observe that the number of installed
packages per image does not change over time, and that community images
have a higher number of packages installed compared to official images. This is
expected, since community images are usually built on top of official ones. We
investigated whether the number of installed packages relates to the Debian
distribution in which the image was found, but could not find any significant
difference between these distributions.

Step 3 — Vulnerability and bug reports

The third step focuses on identifying vulnerability and bug reports, and map-
ping these reports to installed package releases identified in step 2. We relied
on the Debian Security Tracker'® to identify security vulnerabilities in De-
bian packages. This security tracker is maintained by the Debian Security

15 snapshot.debian.org/archive/debian/ and snapshot.debian.org/archive/

debian-security/

16 security-tracker.debian.org/tracker/data/json

16 Ahmed Zerouali et al.

official community

median e mean

Q Qr Q Qr Q Q1 Q Q1 Q3 Qr Q Ql
2017 2018 2019 2017 2018 2019

Fig. 3 Quarterly evolution of the population of packages installed in considered Docker
images. (The shaded area corresponds to the interval between the 25th and 75th percentile.)

Team using data from various data sources (e.g., CVE database!” or National
Vulnerability Database “NVD”18). We extracted a list with all 29,111 known
vulnerabilities as of August 2019.

Each vulnerability report contains information about the affected packages,
its status (e.g., open or resolved), affected distributions, fixed versions, etc. A
report also indicates the severity of a vulnerability, ranging from unimportant
to high. We decided to ignore reports whose severity is either unimportant, not
yet assigned or end-of-life since our focus is on relevant security vulnerabilities.
We mapped these reports to the package releases identified in step 2. We
considered a package release to be vulnerable if its package is involved in a
vulnerability report, and the corresponding vulnerability is either not (yet)
resolved, or resolved in a more recent release than the considered one.

The final list of vulnerabilities contains 5,119 reports involving 557 distinct
packages (around 10% of all packages identified in step 2). Figure 4 shows the
proportion of vulnerabilities with respect to their status (open or resolved)
and their severity (low, medium or high). We observe that most vulnerabilities
(73.3%, i.e., 4,435) are resolved, regardless of their severity. Most vulnerabilities
have a medium severity (59.1%), followed by low (21.1%) and high severity
(19.8%).

For bug reports, we relied on the Ultimate Debian Database'®, a contin-
uously updated system that collects a variety of data (e.g., packages, bugs,
upload history) and stores them in a publicly available database (Nussbaum
and Zacchiroli, 2010). We queried this database for all known bug reports
for the packages identified in step 2. Bug reports indicate the severity of a
bug, ranging from wishlist to critical?®. We ignored those that have a wishlist
severity since they do not really correspond to bugs. We considered a package
release to be affected by a bug if its package is involved in a bug report, and

17
18
19
20

cve.mitre.org/cve/

nvd.nist.gov

udd.debian.org/bugs/
https://wuw.debian.org/Bugs/Developer

A multi-dimensional analysis of technical lag in Debian-based Docker images 17

ot
o

10 status

I resolved
301 Em open
20

—
[en]

proportion of
vulnerability reports

[en]

low medium high
vulnerability severity

Fig. 4 Proportion of reported vulnerabilities in Debian packages contained in considered
Docker images, grouped by resolution status and severity.

the corresponding bug is either not (yet) fixed, or fixed in a more recent release
than the considered one.

The final list of bugs contains 45,953 reports involving 3,400 distinct pack-
ages (around 61% of all packages identified in step 2). Figure 5 shows the
proportion of bug reports with respect to their status (open or resolved) and
their urgency (minor, normal, important, serious, grave or critical). We ob-
serve that a large proportion of bugs, regardless of their urgency, is still open
(55.5%). Highest urgency labels serious, grave or critical are only found in
7.5% of all considered bug reports. Most bugs have either a normal (56.8%)
or important urgency (24.6%). The remaining ones have a minor urgency

(11.1%).

50

40 status
B open

30 3 resolved

S
S

proportion of
bug reports

—_
[es]

o

minor normal important serious grave critical
l)llg urgency

Fig. 5 Proportion of reported bugs in Debian packages contained in considered Docker
images, grouped by resolution status and urgency.

5 Technical Lag Instantiations for Debian-based Docker Images

The goal of our empirical analysis is to investigate and compare the technical
lag of Debian-based Docker images, using different ways of measuring such
lag. More specifically, we consider five different dimensions:

18 Ahmed Zerouali et al.

— package lag indicates whether a given package release is outdated;

— time lag quantifies the time difference between package releases;

— version lag quantifies the number of missed versions between package
releases;

— vulnerability lag measures the difference in number of vulnerabilities;

— bug lag measures the difference in number of bugs.

Each of these dimensions correspond to a specific instantiation of the tech-
nical lag framework F = (C, £,ideal, delta, agg) presented in Section 2 and
defined in detail in (Zerouali et al., 2019b). To formalise these instantiations
we need to introduce a number of auxiliary sets and functions.

5.1 Package releases

To start with, we formalise the notion of package releases contained in Debian
distributions. We assume the existence of a set N of all strings, an ordered
set T of all possible points in time, and a set V of all possible version num-
bers for Debian packages. We assume a total order on V, following Debian
specifications?!.

We define P C N x V x T as the set of all package releases available in
Debian. A package release p € P is a triple (Pname, Pvers, Ptime) Where Ppame €
N is the package name, pyers € V is the version number of the package release,
and pyme € T denotes its release date.

For all P, q € P, we have (pname = Qname N\ Pvers = QVers) = Ptime = Qtime-

As shown in Section 4, a package release could be affected by vulnera-
bilities and bugs. We therefore define two functions vuln(p) : P — N and
bugs(p) : P — N, returning respectively the number of reported vulnerabili-
ties and bugs for a given package release p.

5.2 Debian distributions

Each Debian distribution has its own set of available package releases. Let
D = {OldStable, Stable, Testing} be the set of considered Debian distributions
(see Table 1). For each d € D we define P; C P as the restriction of all
package releases to those available in distribution d. By definition, we have
P = Uyep Pa-

The availability of a package release p € P depends on its release date pgime
and the currently considered date. We define packages(d,t) : D x T — P(P)
as a function returning the set of package releases available in distribution d
at time ¢, as follows: packages(d,t) = {p € P4 | ptime < t}.

A package release can be installed using the command-line tool apt (or
one of its variants such as apt-get and aptitude) that, given the name of
a package, installs the highest available version of that package. We found

21 https://www.debian.org/doc/debian-policy/ch-controlfields.html#version

A multi-dimensional analysis of technical lag in Debian-based Docker images 19

that in 99% of the considered cases in our dataset, the highest package release
coincides with the latest package release.

Let apt(n,C) : N x P(P) — P be a function mimicking the behaviour of
apt. Given a package name n and a set C of available package releases, apt(n, C)
returns package release p € C whose version number is the highest available
one for that package. Formally, apt(n,C) = max,,,.{p € C | Pname = n}.

5.3 Debian-based Docker images

Let ZC N x D x T x P(P) be the set of all considered Debian-based Docker
images. Z can be partitioned in two nonempty subsets Zog and Z.o, corre-
sponding to the official and community images, respectively.

An image i € Z is a quadruple (iname, idist, itimes ipkg) Where iname € N
is the name of the image, iqist € D is the Debian distribution used by the
image, 7time € T is the image’s release date, and iy, C P is the set of package
releases installed in the image. We only consider package releases available in
the currently considered distribution igst, i.€., ipkg is restricted to the elements
of packages(idist, itime)-

5.4 Dimensions of technical lag

For each considered image i € Z, we will compare the set iy, of installed pack-
age releases with the set of package releases with the highest version number at
itime- Formally, this corresponds to comparing each installed package release
D € ipkg With the highest available release ¢ = apt(Pname, packages(idist, itime))-

For each such pair (p, q) of package releases, we will measure and quantify
the difference between them according to five dimensions: package lag, time
lag, version lag, vulnerability lag and bug lag. To achieve this, we define a
series of functions A, with o € {pkg, time, vers,vuln, bugs} that compute the
difference between two package releases. For each of these difference functions,
the values should be interpreted as “lower is better”.

L4 Apkg : P X P — {O? 1} : (pv Q) — ‘{p/ € {p} | p;ame = qname/\pizers < qurS}|
This Boolean function can be used to compare a package p with its highest

available release ¢. It returns 0 if p is up-to-date, and 1 if p is outdated
(i-e., if ¢ has a higher version number than p).

® Atime : PXP —=Z: (p,q) — days(Grime — Ptime)

This function computes the time difference, in days, between the release
dates of two package releases p and gq.

20 Ahmed Zerouali et al.

¢ Avors : P X P x P(P) 5 N:
(p7 q, C) — |{T ecC | (pname = Thame = Qname) A (pvers < Tyers < QVers)H

If p and q are two distinct releases of the same package in a given collection
C, this function returns the number of package releases that can be found
between them (by comparing their version number). If p and ¢ are releases
of different packages, the function returns 0.

If C is clear from the context, we write Ayers(p, ¢) as a shortcut for

AVCTS(pv qac)
o Apuin : P X P —=7Z:(p,q) — vuln(p) — vuln(q)

This function computes the difference in number of security vulnerabilities
between two package releases.

o Apyg : P X P —Z:(p,q) — bugs(p) — bugs(q)

This function computes the difference in number of bugs between two pack-
age releases.

5.5 Technical lag framework instances

Using the above auxiliary functions, we instantiate the technical lag frame-
work F = (C, L,ideal, A, agg) of Section 2.1 according to the five considered
dimensions. Each Docker image requires its own framework instantiation since
different images do not share a same set of available components C.
Therefore, for each a € {pkg, time, vers, vuln, bugs}, we define a function
Faol(i) : T — F that, given an image ¢, returns an instance of the technical lag
framework for that image. Concretely, F, () = (C, L, ideal, A, agg) where:

e C = packages(idist, itime) 18 the set of all package releases available at time
Ttime 1N the corresponding distribution 4gjst-

e L =7, ie., we only use integers as possible lag values. While the exact
interpretation of £ varies depending on «, its values are always understood
as “lower is better”.

e ideal(p) = apt(Pname,C), i.e., the ideal release of a package is selected by
apt among the ones that are available for the current distribution ig;s; at
Z-time-

e A(p,q) = Au(p,q) as defined in Section 5.4.

e agg(X) = max(X) if a = time;
agg(X) = Y'X otherwise.

Finally, for each o € {pkg, time, vers, vuln,bug}, we define a-lag : T — Z,
a function that, given a Docker image i, instantiates a technical lag framework
instance F, (i) and returns the aggregated lag of all package releases currently
installed in the given image with respect to the highest available package

A multi-dimensional analysis of technical lag in Debian-based Docker images 21

releases, as follows:

a-lag(i) = agg({A(p,ideal(p)) | p € ipke})

These five a-lag functions, whose interpretation is summarized in Table 3,
will be used in Section 6 to empirically analyse the technical lag of Debian-
based Docker images.

Table 3 Summary of the five technical lag instantiations for a given Docker image 1.

framework A agg
instantiation lag at package release level lag at image level
pkg-lag () 1 if outdated, 0 otherwise # outdated packages
time-lag(4) release time difference maximum difference
vers-lag(7) # missed versions sum of versions
vuln-lag(?) difference in # vulnerabilities sum of vulnerabilities
bug-lag(i) difference in # bugs sum of bugs
5.6 Example

Let us illustrate the definitions of the previous subsections using a fictitious
example. We assume a Debian-based Docker image i = (example, Stable,
2019-05-08, ipkg). Table 4 shows all package releases of ipke. The two last
columns of this table correspond to the number of reported vulnerabilities
and bugs, respectively.

Table 4 Package releases in ipyg.

Pname Pvers Ptime ‘ VUIn(p) bUgs(p)
curl 7.52.1-5 2017-04-30 19 38
base-files 9.94-deb9u3 2017-12-10 0 6
acl 2.2.52-3 2017-02-25 0 0

The technical lag framework instances quantify, along five dimensions, the
outdatedness of package releases in ipk, and, by extension, in image i. Let F, (%)
be the technical lag framework instances for a € {pkg, time, vers, vuln, bugs},
as defined in Section 5.5. All these instances share a same single ideal func-
tion that, for each package release p € ipkg, selects a package release from the
set packages(Stable, 2019-05-08) of available ones. Such ideal releases are se-
lected following the behaviour of apt, the default package manager of Debian.
They correspond to the highest available version in the currently considered
distribution (Stable in this example) to quantify the lag of installed packages.

Table 5 shows the highest available releases for the three considered pack-
ages (i.e., it shows the subset of packages(Stable, 2019-05-08) selected by ideal).
We observe that the versions of two of the three considered package releases in

22 Ahmed Zerouali et al.

Table 5 Subset of packages(Stable, 2019-05-08), restricted to the highest available releases
for the three considered packages of ipyg-

Pname Pvers Ptime ‘ VUIn(p) bUgS(p)
curl 7.52.1-54+deb9u9 2019-02-07 1 41
base-files 9.9+deb9u9 2019-04-28 0 7
acl 2.2.52-3 2017-02-25 0 0

ipkg are not the highest ones among package releases available at itjme, namely
curl@7.52.1-54+deb9u9 and base-files@9.94deb9u9. On the other hand, package
release acl@2.2.52-3 is already installed in image ¢ and is therefore up-to-date
and will not induce any lag.

For each package release, we can compute its package, time, version, vul-
nerability and bug lag, by means of difference functions Apkg, Atime, Avers,
Ayuin and Ayp,g respectively, as explained in Section 5.4. The technical lag
values are obtained by comparing each p € ipkg to its ideal release ideal(p).

Table 6 Package, time, version, vulnerability and bug lag for package releases in ipg.

package name | Apy Atime Avers Avuin Abug

curl 1 648 9 18 -3
base-files 1 504 6 0 -1
acl 0 0 0 0 0

Table 6 reports on these lags for the three considered packages. For exam-
ple, we observe that the installed package release of base-files in ¢ is outdated
since Apkg(p) = 1. It is 6 versions behind its ideal. It has a time lag of 504
days. It has the same number of vulnerabilities as the ideal (Ayyn(p) = 0),
but suffers from 1 bug less (Apug(p) = —1). As expected, the lag values for acl
are zero, as this package release is up-to-date in 1.

Since these values represent the technical lag at the level of individual
package releases, they need to be aggregated to compute the lag for the entire
image i. Using the aggregations summarised in Table 3 we find that this im-
age has pkg-lag(i) = 2 outdated packages, time-lag(i) = 648 days, its packages
missed vers-lag(i) = 9 + 6 = 15 versions, and suffers from vuln-lag(i) = 18
more vulnerabilities. On the other hand, they are affected by 4 bugs less

(buglag(i) = (~3) + (~1) = —4).

6 Multi-Dimensional Analysis of Technical Lag for Debian images

In this section, we empirically analyze and compare the technical lag incurred
by 9, 330 official and 131, 168 community images on Docker Hub that are based
on the Debian distribution. We do this for five dimensions of technical lag:
package lag, time lag, version lag, vulnerability lag and bug lag. These di-
mensions correspond to the instantiations of the technical lag framework that

A multi-dimensional analysis of technical lag in Debian-based Docker images 23

were defined in Section 5.5. The five research questions that we address are
therefore:

e RQq: How does package lag evolve in Debian-based Docker images? The
answer to this question will show how outdated Docker images are, con-
sidering how many of their included packages could have been updated to
newer versions.

e R(Q)s: How does time lag evolve in Debian-based Docker images? The an-
swer to this question adds detail to the previous one, quantifying how old
(compared to available versions) are packages installed in Debian images.

e RQ3: How does version lag evolve in Debian-based Docker images? This
question complements the previous questions with another dimension, fo-
cusing on the number of releases in the interim and giving insights on how
different the installed and available package versions are.

e RQ4: How does the number of vulnerabilities and the vulnerability lag
evolve in Debian-based Docker images? Since security vulnerabilities are
of special interest to people deploying containers in production, this ques-
tion focuses on evaluating how up-to-date containers are from this security
point of view.

e RQs5: How does the number of bugs and the bug lag evolve in Debian-
based Docker images? With this question, we provide a metric that is
useful for deployers interested in having as many bugs fixed as possible in
their production systems.

The remainder of this section provides empirical evidence for each research
question. All code and data required to reproduce the analysis in this article
are available in a replication package (Zerouali, 2020).

As part of the empirical analysis, we carried out comparisons of statistical
distributions using the Mann- Whitney U test, a non-parametric test where
the null hypothesis Hy checks if two distributions are identical without assum-
ing them to follow a normal distribution, the alternative hypothesis H; being
that one distribution is stochastically greater than the other. For all statistical
tests in the paper considered together, we wish to achieve a global confidence
level of 99%, corresponding to a value of o = 0.01. To achieve this overall
confidence, the p-value of each individual test is compared against a lower «
value, following a Bonferroni correction?2. To report the effect size of the sta-
tistical tests, we use Cliff ’s Delta d, a non-parametric measure that quantifies
the difference between two populations beyond the interpretation of p-values.
Using the thresholds provided in Romano et al. (2006), we interpret the effect
size to be negligible if |d| € [0,0.147[, small if |d| € [0.147,0.33], medium if
|d] € [0.33,0.474[and large if |d| € [0.474,1].

22 If n different tests are carried out over the same dataset, for each individual test one
can only reject Hy if p < 22 In our case n = 28, i.e., p < 0.00036.

n

24 Ahmed Zerouali et al.

RQ: How does package lag evolve in Debian-based Docker images?

This research question investigates how many package releases were outdated
in Debian-based Docker images at the time of building the images, and how
this evolved over time. Figure 6 shows the quarterly evolution of the distribu-
tion of pkg-lag(i) for images i available in official and community repositories.
We observe that the number of outdated package releases does not tend to
change much over time: when new images are released they do not seem to
include more or less outdated package releases than older images.

Considering the whole observation period, we found that at least half of all
official images have no package lag, while community images have a median
lag of 7 outdated packages. Using the Mann-Whitney U test, we observe a
statistically significant difference with large effect size (|d| = 0.50), i.e., com-
munity images have more package lag than official images. This is reasonable
since official images serve as the starting point for the community images,
and therefore are expected to be well maintained. For deployers, this means
that using the latest official Debian images when they are first released and
using packages directly from the Debian repository is quite similar in terms of
outdated packages.

official community

0 — median e mean

Q3 QI Q3 Q1 Q Q1 Q3 QI Q3 Q1 Q Q1
2017 2018 2019 2017 2018 2019

Fig. 6 Evolution of the distribution of pkg-lag(i) for images ¢ € Zog U Zecom (official and
community).

We also investigated whether the package lag depends on the image’s dis-
tribution. Table 7 summarises the statistical results of the comparison between
images with different Debian distributions. Using Mann-Whitney U tests we
reject Hy, and conclude that OldStable images have more outdated packages
than Stable images, while Testing images have more outdated packages than
Stable images. In both cases, the effect size is medium. Even though for Old-
Stable versus Testing images Hy is rejected as well, the effect size is negligible
so we cannot draw any conclusions.

Figure 7 shows the quarterly evolution of pkg-lag grouped by Debian dis-
tribution. We observe that the package lag of Debian OldStable images is
increasing over time. Given that the lag of official images is generally very
low (see Figure 6), this increasing package lag for OldStable is mainly due to

A multi-dimensional analysis of technical lag in Debian-based Docker images 25

Table 7 Statistically significant Mann-Whitney U tests and their corresponding effect sizes
when comparing pkg-lag for images in different Debian distributions.

population A ‘ direction ‘ population B | effect size |d|
OldStable > Stable medium 0.37
OldStable < Testing negligible 0.09
Stable < Testing medium 0.44
Oldstable Stable Testing
120 median
P 100 mean
E 80
<60
=
20
0

Q3 Q1 Q3 QI Q3 Q1 Q3 QL Q3 Q1 Q3 QI Q3 QI Q3 QI Q3 Q1
2017 2018 2019 2017 2018 2019 2017 2018 2019

Fig. 7 Evolution of the distribution of pkg-lag(i) for images ¢ € Z, grouped by iq;st (Old-
Stable, Stable or Testing).

commaunity images®3. We expected such result since deployers of OldStable im-
ages are less concerned about up-to-date packages in their images, and hence
do not take measures to obtain the latest available packages when images are
built.

Figure 7 also reveals a higher number of outdated packages for Testing
images than for Stable images. This can be expected since packages in Testing
images are, by their very nature, updated regularly with changes, new features
and bug fixes. This updating process brings frequent package updates into the
Testing repository making it difficult for Docker images to keep using the latest
available package releases. In contrast, packages in Stable and OldStable dis-
tributions tend to be updated only with security patches. In addition, it is well
known that Debian Testing should not be used for production deployments,
which means that its images are in many cases used for experiments, or for
environments where usual production requirements are not applicable. This
further corroborates that producers of community images based on Testing
are less likely to care about updating them regularly.

In Figure 6, a spike can be observed for community images during 2017-Q1.
Figure 7 reveals that this spike is caused by OldStable images. Since this spike
is not observed for official images, we think that it is caused by packages that
are not provided by the official Debian images but added by community devel-
opers. We investigated the reason for this spike, and found that is was caused
by two local events. The first occurred in November 2016, two months after

23 Extra analysis and results, distinguishing the evolution trends both for official and
community images, can be found in our reproduction package.

26 Ahmed Zerouali et al.

the release of Debian OldStable 8.6%* and its corresponding Docker image?®,
and one month before the last update of the latter. The second event occurred
in March 2017, two months after the release of Debian OldStable 8.7?° and
its corresponding Docker image?”, and one month before the last update of
the latter. The three-months period between the Debian release and the last
update of its Docker image led to the outdatedness of many used packages
since many of them were being updated in the Debian repositories during this
period, explaining the spike in package lag observed in Figure 6. These events
illustrate how our method captures cases when packages in Docker images are
not updated quickly after having new available releases, leading to outdated
images.

We also observed a smaller peak in Figure 6 during 2018-Q1, for both
official and community images. This peak is visible as well for OldStable and
Stable images in Figure 7. The peak is again caused by the newly updated
packages in the latest downstream Debian releases (i.e., Debian OldStable 8.10
and Debian Stable 9.3 in December 2017?® and Debian Stable 9.4 in March
2018%9). The peak is smaller than what we observe in 2017-Q1 because the
Debian official Docker Hub repository increased its release frequency of images
since June 2017, the release date of the new Stable release Stretch. This change
was reported in a blog by de Visser (2017), explaining that Debian images are
updated every month, and that in a few days many official repositories pushed
new updated images at the same time. In many cases this occurred the day
after the base image debian:latest was updated, corroborating the low package
lag that we found for official images.

We also computed the proportion of outdated packages in the considered
images and we found very similar evolution patterns as for pkg-lag. Over the
whole observation period, the median proportion of outdated packages in of-
ficial and community images was very low: 0% and 2.4%, respectively. This
means that Debian images come with the highest and latest available pack-
age releases when they are first created. The proportion of outdated packages
can become more important over time when images are not updated any-
more or when they do not contain any automatic update command (e.g.,
apt upgrade -y) in their Dockerfiles.

24 https://www.debian.org/News/2016/20160917

25 https://github.com/docker-library/official-images/commit/
a0884£0cd8758a0a30cf187£265ef217e3915979f

26 https://www.debian.org/News/2017/20170114

27 https://github.com/docker-library/official-images/commit/
fbbcd34e82dceabe75f5a5€a465d49912d996261

28 https://www.debian.org/News/2017/index.en.html

29 https://www.debian.org/News/2018/20180310

A multi-dimensional analysis of technical lag in Debian-based Docker images 27

Summary: While the majority of official Debian-based images do not
include outdated packages because they are updated frequently, community
images have a median package lag of 7 outdated packages per image. This
represents a very low proportion (< 3%) of outdated packages per image.
Testing images have higher package lag compared to other images, because
Testing packages are frequently updated in the Debian repository. OldStable
images have an increasing package lag over time because their deployers are
not concerned about having up-to-date packages. In general, using official
Debian images when they are first released as base images is quite similar
to directly using packages from the Debian repository, in terms of package
outdatedness.

RQ2: How does time lag evolve in Debian-based Docker images?

This research question investigates the time lag of Debian-based Docker im-
ages and how this evolves over time. Figure 8 shows the quarterly evolution of
the distribution of time-lag(¢) for images ¢ in official and community reposito-
ries. We observe that time lag tends to fluctuate over time for both origins, so
there is no clear relation between an image’s creation date and its time lag.

official community

1500 —— median e mean

1000

time-lag(7)

500

0

Q3 Q@B q Q3 ql Q3 Q@B Q1 Q3 Q1
2017 2018 2019 2017 2018 2019

Fig. 8 Evolution of the distribution of time-lag(z) for images ¢ € Zog U Zcom (official or
community).

We also observe that community images can have a high median value
(even exceeding 1,000 days in Q1 of 2018), while official images tend to have
a low median time lag that never exceeds 192 days and is even much lower
most of the time. When we compute the median time lag over the whole
observation period, we find that at least 50% of all official images have no time
lag, while the median time lag for community images is well over a year (466
days, to be precise). Using the Mann-Whitney U test, we found a statistically
significant difference between images from different origins with large effect
size (|d| = 0.50). This implies that community images have a larger time lag
than official images. This corroborates our observations in R(); about the
difference between outdated packages in official and community images.

28 Ahmed Zerouali et al.

Oldstable Stable Testing

1500 median

mean

1000

500

time-lag(7)

0
Q3 QL Q3 Q1 Q3 QI Q3 QL Q3 Q1 Q3 QI Q3 Q1 Q3 Q1 Q3 Q1
2017 2018 2019 2017 2018 2019 2017 2018 2019

Fig. 9 Evolution of the distribution of time-lag(¢) for images ¢ € Zog U Zcom, grouped by
iqist (OldStable, Stable or Testing).

Figure 9 shows the quarterly evolution of time-lag grouped by Debian dis-
tribution. We observe that time lag is increasing over time for OldStable and
Testing distributions. We investigated more about this phenomenon in our
data and we found that this increase is caused by community images only;
official images do not have an increasing time lag, regardless of their Debian
distribution. While this observation is expected in the case of OldStable, be-
cause package versions are old and have had more time to accumulate time
lag, the case of Testing, where packages are recent, is different. It means that
people building community images based on Testing are not updating their
image packages as they are having frequent updates in the Debian repository,
and as new official images are available. This is consistent with the expla-
nation that Testing deployers are less concerned about up-to-date packages
because Testing is seldom used in production, and should be more popular in
cases where production requirements (e.g., less build problems, packages being
up-to-date, well tested updates) are not applicable.

The previous finding that deployers can rely on official images when they
are first released almost as much as in updating directly from the Debian
repositories also holds, since most of these images have a very small time lag.

We performed Mann-Whitney U tests to compare the time lag of images
in function of their Debian distribution. Table 8 reports on the effect sizes of
the statistically significant tests. We conclude that OldStable images have a
higher time lag than Stable images, with large effect size. Similarly, OldStable
images have a higher time lag than Testing images, with medium effect size.
We also found evidence of a lower time lag for Stable images than for Testing
images, but the effect size was negligible, so we cannot draw any conclusions
about this.

Table 8 Statistically significant Mann-Whitney U tests and their corresponding effect sizes
when comparing time-lag for images in different Debian distributions.

population A | direction | population B | effect size |d|
OldStable > Stable large 0.50
OldStable > Testing medium 0.47

Stable < Testing negligible 0.10

A multi-dimensional analysis of technical lag in Debian-based Docker images 29

In Figure 8 and Figure 9 we can observe spikes of increased time lag during
2018-Q1. This is a consequence of the availability of new, not yet adopted
releases for packages whose previous version was released many years before.
For example, sensible-utils, a package that was present in 44.6% of all images
at that time, released a new version on 2017-12-22. Since the latest previous
version of that package was released on 2013-06-17, it induced a time lag of at
least four years and a half (1,649 days).

Summary: While official Debian-based images are mostly up-to-date in
terms of time lag, the median time lag of community images is well over a
year, and highest for OldStable images. Moreover, for OldStable and Testing
images this time lag tends to increase over time. Since official images are
quite close, in terms of time lag, to updating from the Debian repository,
there is little reason for builders of Debian-based images to maintain their
own directly from the Debian repositories, instead of relying on the official
Docker Hub Debian images.

RQ3: How does version lag evolve in Debian-based Docker images?

The time lag, presented in RQ2, provided a good first estimation of how out-
dated a Docker image is. However, this measurement is not sufficiently precise
to evaluate the underlying source of the lag. For example, different Debian
package releases contained in the same image could have exactly the same
time lag, while one of them has received a large number of frequent updates,
whereas the other one has received only very few updates. As another example,
at the image level, some images may contain many installed packages, while
others have only a few ones. As explained in Section 5, version lag allows to
capture this, by counting the number of missed versions at package release
level, and by computing an aggregated sum at image level (see Table 3).

Figure 10 shows the quarterly evolution of the distribution of vers-lag(i)
for images ¢ in official and community repositories. We observe that official
images have a lower version lag than community images. Considering the whole
observation period, we found that at least 50% of all official images do not
have any missed versions, while community images have a median version lag
of 7 missed versions. Using the Mann- Whitney U test, we found a statistically
significant difference between official and community images with large effect
size (|d| = 0.51), i.e., community images have a higher version lag than official
images.

We observe in Figure 10 for community images a large peak in 2017-Q1
and a smaller one in 2018-Q1 for the same reasons as previously identified for
package lag in RQ;. Indeed, as a corollary of the technical lag definitions in
Section 5, it holds that pkg-lag(i) = = = vers-lag(i) > z. In fact, we found
that 66.7% of the images have their package lag equal to their version lag. This
means that roughly two thirds of the images that have outdated packages are
outdated by a single version only, which means they are really close to being
up-to-date.

30 Ahmed Zerouali et al.

official community
60 :
— lll(‘dl'(lll """" mean

50
=40 -
=30
2,
5 20

10
0

Q3 Q Q3 Q1 Q Q1 Q3 Q1 Q3 Q1 Q Q1
2017 2018 2019 2017 2018 2019

Fig. 10 Evolution of the distribution of vers-lag(i) of considered images i € Zog U Zcom
(official or community).

We also studied the evolution of version lag of Docker images, grouped by
Debian distribution. Figure 11 reveals an increasing version lag over time for
OldStable and Testing images, similar to what we observed for package lag,
and for the same reasons, we also observe that version lag is higher for Testing
images, followed by OldStable images, and finally Stable images. Table 9 sum-
marises the statistical results of the Mann-Whitney U tests. We could reject
Hj for all comparisons, and conclude that Testing images have higher version
lag than Stable images with large effect size, whereas Testing images have
a higher version lag than OldStable images with small effect size. OldStable
images have a higher version lag than Stable images with medium effect size.

Oldstable Stable Testing
250 median

— 200 mean

0

& 150

0

5 100

>

=

0 -
Q3 QL Q3 QI Q3 QI Q3 QI Q3 QI Q3 QI Q3 QI Q3 QI Q3 Q1
2017 2018 2019 2017 2018 2019 2017 2018 2019

Fig. 11 Evolution of the distribution of vers-lag(i) for images ¢ € Z, grouped by igist
(OldStable, Stable or Testing).

Table 9 Statistically significant Mann-Whitney U tests and their corresponding effect sizes
when comparing vers-lag for images in different Debian distributions.

population A | direction | population B | effect size |d|
OldStable > Stable medium 0.37
OldStable < Testing small 0.20

Stable < Testing large 0.48

A multi-dimensional analysis of technical lag in Debian-based Docker images 31

The above observations for version lag differ from the observed findings for
time lag in RQ2. More specifically, OldStable images have a lower version lag
than Testing images, while they had a higher time lag; and Testing images
have a higher version lag than Stable images, while such an effect was negligible
for time lag. This observed difference between time lag and version lag can
be explained with two arguments. First, package releases for OldStable tend
to be older than for Stable, thus they will have higher version lag. Second,
package releases for Testing are being updated on a daily basis, and many
new packages versions are created in a short period of time. As a result, the
version lag of outdated package releases (multiple successive versions) tends to
increase while the time lag increases at a lower rate (short time span between
successive versions). This explains why Testing images have a lower time lag
but a higher version lag than OldStable images, illustrating the value of having
different measures of technical lag.

Summary: While the majority of official Debian-based images are up-to-
date in terms of version lag, the median version lag of community images is
7 missed versions. Testing images have a higher version lag than Stable and
OldStable images because they contain packages that are being updated on
a daily basis. OldStable and Testing images have an increasing version lag
over time, for the same reasons as identified for package and time lag.

RQ4: How does the number of vulnerabilities and the vulnerability
lag evolve in Debian-based Docker images?

While time lag and version lag reflect to which extent an image or a package
release is outdated, they do not reveal anything about the security risks that
such outdatedness may incur. Related work (see Section 3.2) has revealed
that outdated software packages or containers often have an increased number
of security vulnerabilities. Reducing such security vulnerabilities in software
containers is important, since those vulnerabilities could be exploited to abuse
the system.

RQ4 aims to study the relation between outdatedness and vulnerabilities
in Debian-based Docker images, by computing their vulnerability lag using the
definitions in Section 5 (i.e., the difference in number of vulnerabilities between
the current and the ideal package release, and its aggregated sum at image
level). To identify the vulnerabilities that are affecting the source packages
installed in Docker images, we rely on a dataset of security vulnerabilities
available in the Debian Security Tracker on 30 August 2019.

Number of vulnerabilities. Before actually analysing the vulnerability lag,
we report on the number of vulnerabilities over time. Table 10 reports the
characteristics for the distributions of the number of vulnerabilities in Debian-
based images. We observe that all images suffer from vulnerabilities. While
official images have a median of 315 vulnerabilities, community images have

32 Ahmed Zerouali et al.

a higher median value of 567 vulnerabilities. This is expected, since the pre-
liminary analysis revealed that community images tend to have more installed
packages than official ones (see Figure 3). As such, they are more subject to
security vulnerabilities. A Mann-Whitney U test confirmed, with medium ef-
fect size (|d| = 0.41), that the population of the number of vulnerabilities for
official images was lower than for community images.

Table 10 Characteristics of the distributions of number of vulnerabilities, grouped by De-
bian distribution and image origin.

official community
mean median max | mean median max
OldStable 482.4 519 1,424 743.3 796 1,858
Stable 345.4 308 1,480 485 501 2,157
Testing 133.1 144 658 211.6 174 1,055
all 373.8 315 1,480 581.9 567 2,157

Figure 12 shows the quarterly evolution of the distribution of the number
of vulnerabilities for images in official and community repositories. We observe
that older images have more known vulnerabilities than recent images, since
the median and mean values are decreasing over time. Since older packages
have been used for longer, and thus had more time to have their vulnerabilities
found and reported, it is not surprising that older images composed of such
older packages have more vulnerabilities. We also observe an inverse peak for
official images during 2017-Q2. Investigating this phenomenon, we found that
this decrease in the number of vulnerabilities coincides with the release of the
new Stable release Stretch in June 2017. Since new images were created with
packages from this new Stable version, and since these packages have fewer
known vulnerabilities, we have a lower median number of vulnerabilities for
all images during that period.

For the inverse peak for community images during 2016-Q3, we believe
that it is caused by the lower number of installed packages that Docker com-
munity images had at this period (see Figure 3). Indeed, lower number of in-
stalled packages will lead to lower number of vulnerabilities and bugs present
in Docker images.

Using a Mann-Whitney U test we compared images belonging to differ-
ent Debian distributions. Table 11 summarises the results. We observe that
OldStable images tend to have a higher number of vulnerabilities than other
images, and Testing images tend to have less vulnerabilities.

We also found that all images suffer from vulnerabilities, even more popular
official images like gce, node and pypi, etc. Table 12 shows the repositories of
the top 5 vulnerable official and community images with their number of
vulnerabilities, number of installed packages and age (in months). For both
image origins, only the top vulnerable image in a repository is presented.
For example, the node repository has many images with a high number of
vulnerabilities. However, since these images provide the same functionality, we
report only one: the most vulnerable image. A common characteristic among

A multi-dimensional analysis of technical lag in Debian-based Docker images 33

official community

1400

median e mean

Q3 Q1 Q3 Q1 Q3 Ql Q3 Ql Q3 Ql Q3 Ql
2017 2018 2019 2017 2018 2019

Fig. 12 Evolution of the distribution of number of vulnerabilities of considered images
1 € Zog UZcom (official or community).

Table 11 Statistically significant Mann-Whitney U tests and their corresponding effect
sizes when comparing the number of vulnerabilities in images for different Debian distribu-
tions.

population A | direction | population B | effect size |d|
OldStable > Stable large 0.50
OldStable > Testing large 0.84
Stable > Testing large 0.68

these top vulnerable images is that they have not been updated for more than
two years, and their number of installed packages is higher than the median
over all images. Thus, it is not surprising to see a high number of vulnerabilities
for these images.

Table 12 Source repositories of the top 5 vulnerable official and community images.

age

official repositories # vuln. # pkg. (in months)

gce 1,480 404 27

erlang 1,424 377 37

node 1,423 375 37

PYDPY 1,399 354 38

rails 1,333 386 33
community repositories

surround/ws-master 2,157 1,257 28

rocker /ropensci 2,060 790 25

smartpension/sp-base 1,981 710 26

aldryn/base-project 1,858 563 31

micheee/maven-jdk-nodejs-bower-grunt 1,791 530 37

Vulnerability lag. Having shown that Docker Hub images suffer from vul-
nerabilities, we now focus on their vulnerability lag to quantify how vulnerable
image package releases are compared to their latest available releases. This is
important, because when package versions with less vulnerabilities are avail-
able, the decision to upgrade is a priori easy to take. This means that having
images with a positive vulnerability lag is due to either to the unawareness of

34 Ahmed Zerouali et al.

these vulnerabilities, or to some other practical reason (no interest in mini-
mizing vulnerabilities, incompabilities, balance with other requirements, time
pressure, etc.). Considering the whole observation period, we found that at
least 50% of all official images have no vulnerability lag, while community im-
ages have a median lag of 10 vulnerabilities. The observation that community
images tend to have higher vulnerability lag than official ones is confirmed by
a Mann-Whitney U test with large effect size (|d| = 0.5). Figure 13 shows the
quarterly evolution of the distribution of vuln-lag(i) of images i € Zog U Zcom
grouped by image origin (official or community). We do not observe any in-
creasing or decreasing trend.

official community

median e mean

vuln-lag(z)

Q@ Q. Q3 qQ Q3 qQ Q3 Q Q3 Q1 Q3]
2017 2018 2019 2017 2018 2019

Fig. 13 Evolution of the distribution of vuln-lag(i) of considered images i € Zog U Zcom
(official or community).

Similarly, Figure 14 shows the quarterly evolution of the distribution of the
vuln-lag (i) for all images i € Z grouped by Debian distribution igis;. Over the
entire observation period, the median vuln-lag was 2, 4 and 21 vulnerabilities
for Testing, Stable and OldStable, respectively. Table 13 reports the results of
the statistical comparisons. OldStable images tend to have a higher vulnera-
bility lag than Stable and Testing images (medium effect size). The difference
between Stable and Testing images was negligible.

Comparing vulnerability lag with the previous lag dimensions, we observe
that its evolution over time in the case of OldStable and Stable images is simi-
lar to the evolution of version lag in the same subset of images. This is related
to the nature of OldStable and Stable distributions; in most of the cases new
package updates in these distributions are about important bug and vulnera-
bility fixes (as explained in Section 4). Therefore having a higher version lag
in images with these distributions implies having a higher vulnerability lag. It
is also noticeable how images based on Stable and Testing have a similar, very
low, vulnerability lag. This suggests that vulnerabilities are taken seriously
both in Stable and Testing images, causing new images to be produced with
enough frequency to keep this lag low. The fact that Stable is managed this
way is no surprise, but the case of Testing is different: other lag dimensions
discussed up till now were remarkably higher for Testing. This says a lot about
the perceived importance of vulnerabilities, even for non-stable releases such
as Testing.

A multi-dimensional analysis of technical lag in Debian-based Docker images 35

Oldstable Stable Testing
300 median
= 250 mean
o0 200
(T
T 150

0

Q3 QL Q3 Q1 Q3 QI Q3 QI Q3 QI Q3 QI Q3 QL Q3 QI Q3 Ql
2017 2018 2019 2017 2018 2019 2017 2018 2019

Fig. 14 Evolution of the distribution of vuln-lag(é) for images i € Z, grouped by igist
(OldStable, Stable or Testing).

Table 13 Statistically significant Mann-Whitney U tests and their corresponding effect
sizes when comparing vuln-lag for images in different Debian distributions.

population A ‘ direction ‘ population B ‘ effect size |d|
OldStable > Stable medium 0.32
OldStable > Testing medium 0.42
Stable > Testing negligible 0.09

Summary: Both official and community Debian-based images suffer from
a high number of vulnerabilities (median of 556). However, the majority of
official images do not suffer from vulnerability lag, whereas community im-
ages have a median vulnerability lag of 10 vulnerabilities. OldStable images
have more vulnerabilities and a higher vulnerability lag than other images,
and this lag is increasing over time as a consequence of their increasing
version lag.

RQ5: How does the number of bugs and the bug lag evolve in Debian-
based Docker images?

Just like security vulnerabilities, software bugs can be very problematic in
software containers. Bugs make a software system behave in unexpected ways,
resulting in faults, wrong functionality or reduced performance. Research ques-
tion RQ5 therefore aims to study the presence of known bugs, still open in the
installed versions of packages, in Docker images, and to which extent such bugs
could be reduced if images would make use of the highest available releases of
the installed packages. Similar to RQ4, to identify the bugs that are affecting
the source packages installed in Docker images, we relied on a dataset of bug
reports available in the Ultimate Debian Database on 30 August 2019.

Number of bugs. Before actually analysing the bug lag, we study the number
of bugs over time. Table 14 reports the characteristics for the distribution of
the number of bugs in Debian-based images. We observe that all images suffer
from a high number of bugs. While official images have a median of 5,127
bugs, community images tend to have more with a median value of 6,700, the

36 Ahmed Zerouali et al.

large majority of them being inherited from the official images on which they
are based. A Mann-Whitney U test reveals with medium effect size (|d| = 0.47)
that community images have more bugs than official images. This difference
can be explained by the higher number of packages contained in community
images.

Table 14 Characteristics of the distributions of number of bugs, grouped by Debian dis-
tribution and image origin.

official community
mean median max mean median max
OldStable | 5,140.4 5,126 7,857 | 6,490.7 6,916 11,523
Stable 5,216.9 5,173 8,819 | 6,300.3 6,111 14,269
Testing 4,372.1 4,894 7,323 | 6,269.2 6,342 10,653
all 5,124.5 5,127 8,819 | 6,375.8 6,700 14,269

To verify if the number of bugs depends on the Debian distribution, we
grouped and compared images by distribution. Table 15 summarises the sta-
tistical results. While Hy was rejected in all cases, the effect size was small
to negligible. This small difference is in favour of images with older Debian
distributions.

Table 15 Statistically significant Mann-Whitney U tests and their corresponding effect
sizes when comparing the number of bugs in images for different Debian distributions.

population A ‘ direction ‘ population B ‘ effect size |d|
OldStable > Stable negligible 0.10
OldStable > Testing small 0.15
Stable > Testing negligible 0.10

Because the number of bugs per image is high, we hypothesise that most
of these bugs are of lesser importance to the Debian community, and tend
to stay open for a long time. This is in line with the fact that 55.5% of the
bugs affecting Docker images are still open without fixes (see Section 4). Since
Debian provides six different categories of bug urgency, and few bugs are
classified in four of them (see Figure 5), we grouped all bugs into two combined
categories of bug urgency: Low (67% of all bugs) including all minor and
normal bugs, and High (33% of all bugs) including all important, serious,
grave and critical bugs. Comparing both categories in Docker images, we
observed that the median number of reported bugs of Low urgency (4,815) is
about three times higher than the median number of reported bugs of High
urgency (1,672), thus validating our hypothesis.

Figure 15 shows the quarterly evolution of the distribution of the number
of bugs for images in official and community repositories. Unlike the increas-
ing trend we witnessed for the number of vulnerabilities, the number of bugs
affecting the images appears to be quite stable over time. This is mainly be-
cause of two reasons: (1) the high number of open bugs, and (2) new package

A multi-dimensional analysis of technical lag in Debian-based Docker images 37

versions come with some bug fixes but later new bugs are found in them. As
was the case for the number of vulnerabilities and for the same reasons, we also
observe an inverse peak in number of bugs for official images during 2017-Q2.

official community

)0

number of bugs

o

median e mean

Q3 QI Q3 QI Q3 qQ Q3 Q1 Q3 Q1 Q3 Qi
2017 2018 2019 2017 2018 2019

Fig. 15 Evolution of the distribution of number of bugs of considered images i € ZogUZcom
(official or community).

Comparing Figure 15 with Figure 12, we observe a much higher number of
bugs than number of vulnerabilities in Docker images. Table 14 confirms these
observations by showing higher values for the distributions of the number of
bugs in Docker images. Moreover, we found that there are two package versions
(from mawk and atér packages) that are installed in nearly all of the images
despite having a number of both high and low urgency bugs. This was not
observed in the case of vulnerabilities. This difference shows how vulnerabilities
are dealt with compared to “regular” bugs, which seem to be tolerated to some
extent. Table 16 provides more information about the most prevalent buggy
package versions.

Table 16 Statistics about the top 10 buggy source package versions that are affecting most
of the images, with their proportion of affected images and the number of high and low
urgency bugs they have.

package version # images | # high bugs | # low bugs
mawk 1.3.3-17 99.9% 6 21
attr 1:2.4.47-2 99.3% 3 13
libxau 1:1.0.8-1 80.2% 0 1
jbigkit 2.1-3.1 71.5% 1 0
acl 2.2.52-3 59.7% 1 6
bzip2 1.0.6-8.1 58.3% 1 16
gzip 1.6-5 58.2% 4 19
zlib 1:1.2.8.dfsg-5 58.0% 1 5
1z4 0.0~r131-2 57.9% 2 2
pam 1.1.8-3.6 57.8% 14 62

Bug lag. Having shown that Debian images suffer from many bugs, we focus
on their bug lag to quantify how buggy image package releases are compared
to their highest available releases. Considering the whole observation period

38 Ahmed Zerouali et al.

and without distinguishing Debian images by their origin or distribution, we
found that at least 50% of all images do not have a bug lag. This corroborates
our previous finding showing that the number of bugs in images is stable over
time. Based on a Mann-Whitney U test, we observe that community images
have higher bug lag than official images with small effect size (|d| = 0.26).

Figure 16 shows the quarterly evolution of the distribution of the bug-lag(¢)
for images i € Zog U Zeom, grouped by image origin (official or community).
We observe that for old images, the bug lag is very low. This corresponds to
what we observed in the previous analysis (i.e., the number of reported bugs
is increasing over time, and most of the bugs remain open).

official community

median e mean

30
20
10

0
~10 /

Q3 Ql Q3 Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3 Ql
2017 2018 2019 2017 2018 2019

bug-lag(7)

Fig. 16 Evolution of the distribution of bug-lag(i) for images i € Zog U Zcom (official or
community).

Figure 17 shows the quarterly evolution of the distribution of bug-lag(i)
for images i € Zog U Zcom, grouped by their Debian distribution. OldStable
images and Testing images appear to have a higher bug lag than Stable images.
The statistical results reported in Table 17 confirm these observations, with
a medium effect size for the comparisons that involve Stable images, but a
negligible effect size between OldStable and Testing. The median bug-lag is
13 bugs for Testing, 0 for Stable and 5 for OldStable. The difference between
Stable and Testing images can be explained by the fact that new updates in
Testing come with fixed bugs. Package releases in this distribution are being
checked and inspected daily. When bugs are found, they are fixed in new
updates and this creates the bug lag between package releases.

Table 17 Statistically significant Mann-Whitney U tests and their corresponding effect
sizes when comparing bug-lag for images in different Debian distributions.

Stable < Testing medium 0.37

population A ‘ comparison ‘ population B ‘ effect size |d|
OldStable > Stable medium 0.38
OldStable < Testing negligible 0.07

A multi-dimensional analysis of technical lag in Debian-based Docker images 39

Oldstable Stable Testing

median

150
120
90
60
30

mean

bug-lag(i)

0 s

Q3 QI Q3 Q1 Q3 QI Q3 Q1 Q3 QI Q3 QI Q3 Q1 Q3 Q1 Q3 Q1
2017 2018 2019 2017 2018 2019 2017 2018 2019

Fig. 17 Evolution of the distribution of bug-lag(:) for ¢ € Z, grouped by ig4ist (OldStable,
Stable or Testing).

Summary: All Debian-based images suffer from a high number of bugs
(median of 6,483), with the number of bugs by image staying relatively sta-
ble over time. This means that the number of bugs being closed in packages
in those images is similar to the number of new bugs reported in those pack-
ages. On the other hand, more than half of the bugs in deployed packages
do not have a fix, even though community images tend to have a higher
bug lag than official images. Testing images have a higher bug lag than
Stable images because they tend to come with bug fixes. OldStable and
Testing images have an increasing bug lag over time as a consequence of
their increasing version lag.

7 Discussion

One of the core promises of Docker is that images are stable environments
that can be downloaded and run even years after their creation. This is very
good for ensuring the behavior of the deployed image, by offering a stable
environment that will work as intended. While deployment decisions in the
real world often require a delicate balance between sticking to a working ver-
sion and upgrading to a more up-to-date version, container images ensure that
specific versions can be easily deployed. From that perspective, old and out-
dated package versions that are frozen in container images are not a problem,
but rather an advantage of the model of containerization. On the other hand,
if Docker images do not include up-to-date package versions, they will miss
the latest functionality, security updates and bug fixes, which is a problem in
most production environments. Therefore, real systems are always balancing
between staying with “the version that works” or updating to newer versions.
People deciding when to deploy a new version of a container image in pro-
duction always have to face this delicate balance, by deciding whether they
should stick to the old image or switch to a more recent one. Our technical
lag framework helps deployers in this difficult compromise.

This section discusses some implications of the results of our analysis of
the technical lag of Debian-based Docker images: implications for the different

40 Ahmed Zerouali et al.

views of developers and deployers; insights specific to Debian and Debian-
based Docker images; evidence of how the different lag dimensions help to
characterise for different usage scenarios to which extent images are up-to-
date; and some avenues for future research.

7.1 Deployer versus developer perspective

When measuring time lag and version lag for a Docker image, we considered
the package versions at image creation date. In other words, we measured
the lag of each included package as if it was deployed at build time. This
corresponds to the difference between the time and version of the packages in
the image with respect to the latest available packages at that time. This kind
of information is mainly useful for developers building that image.

When measuring the bug lag and vulnerability lag for a Docker image, we
counted the bugs and vulnerabilities in each included package according to
the information at the time of running the analysis. It is very well possible
that a package, which had no known bugs at the time of building an image,
presented some bugs when we ran our analysis. Indeed, as time passes, new
bugs may have been found for that image. Following this line of reasoning,
the information we provide for bug lag and vulnerability lag is useful when
considering the image “as if being deployed now”: we use all the information
we have now about bugs and vulnerabilities in the packages included in an
image compared to more recent versions of those packages.

Actionable results: At the moment of building a Docker image, developers
need to decide which package versions to incorporate. To do so, they can use
and balance the proposed measures of time lag, version lag, bug lag and vul-
nerability lag to decide on a more informed basis whether to use an outdated
package version or to replace it by a more recent version in their images.
Existing tools that check for package freshness in Docker containers should
strive to include the quantitative information provided by the technical lag
measurement framework.

In addition to this, Docker container deployers can use bug lag and vulner-
ability lag to evaluate how good a Docker image “ages”, offering them a
perspective on how well developers built the image. Such information should
be integrated into tools that help in deciding whether to deploy a given
image, or to find alternatives containing less known bugs and vulnerabilities.

7.2 Lessons learned for Debian-based Docker images

In the response to RQ); we found a small proportion of outdated packages in
Debian images. This means that developers tend to keep their images up-to-
date when they build and release them. As a consequence, deployers can benefit
from up-to-date collections of packages just by regularly updating the images
they deploy to the latest available one. They get a clear benefit by switching to

A multi-dimensional analysis of technical lag in Debian-based Docker images 41

new images, with little effort from their side: they do not need to take special
actions on the image, except for the usual testing before deployment.

In the specific case of the working distribution Debian Testing, there is
more effort involved in updating images, since Testing images have a higher
number of outdated packages with very frequent updates. As a consequence,
keeping images up to date would require updating them very frequently.

Lessons learned: The effort needed to update Debian packages installed in
images concerns only a small proportion of packages.

Official Debian images are very similar, in terms of outdatedness, to installing
directly from Debian repositories, at the time images were built. This is
especially true in the case of Stable and OldStable images.

Actionable results: Deployers should use recent official Debian images
for deployment, or for basing their own images, instead of building them
directly from the Debian repositories, as long as they are following Stable or
OldStable. This will cause little difference in terms of package outdatedness.
Deployers who want to use Testing images should expect newer versions of
these images to come with more frequent package updates than Stable and
OldStable images.

The reason why packages tend to be regularly updated in images can be
traced to a common practice in official Debian repositories: releasing new
images with permissive tags referring to the latest images (e.g., latest, stretch)
whenever new package versions are available and pinning the old ones with
strict tags (e.g., stretch-20200224). Then, community images can be based on
top of official images using the latest image tags (e.g., FROM debian:latest) and
to update the installed packages, community images just need to be rebuilt
whenever a new version of their base image is released, without modifying the
Dockerfile.

However, images do not necessarily need to be derived from a base image
containing up-to-date packages: image developers can include in the Dockerfile
a command for updating packages (apt upgrade -y) as part of the building
process in order to benefit from more recent releases.?® To verify if this is a
common practice, we inspected the Dockerfiles of all Debian community images
in our dataset and found that only a small proportion (6.2%) makes use of the
(apt upgrade) command. This is another reason explaining why official images
are more up-to-date than the community ones.

Actionable result: To benefit from recent package releases, container de-
ployers should rely on permissive tags of official images, and rebuild the
images each time a new version of the base image is released. As an alter-
native, if they want to upgrade only some specific packages, they should use
(apt upgrade) commands in the Dockerfiles.

The observations we made for R(Q); 23 suggest that developers of Debian
images are careful about the state of the packages they contain. To confirm

30 An example of this was provided with the Dockerfile for the community image shogun-
dev:latest presented in Section 2.2.

42 Ahmed Zerouali et al.

this finding, we considered a snapshot of all Debian packages as of August
2019, for all considered Debian distributions. For each of them, we tracked
when their latest available release was created. Figure 18 shows the evolution
of the number of latest package releases at a given time ¢ proportionally to the
number of all latest package releases available on 30 August 2019. Most latest
package releases were produced a long time ago. Nearly 92% of the Stable and
93% of the OldStable latest package releases were created before 2017-06-18,
the release date of Stable distribution Stretch. Therefore, in any image built
after that date, most of the packages are likely up to date, just because there
was no new release even if the release contained in the image is very old.
Moreover, since new package releases in Stable and OldStable only serve to
add security patches, there is little risk of breaking changes.

For Testing images, things are different: new releases enter the distribution
more frequently, and they can introduce breaking changes, since these changes
may include new functionality or modifications of existing functionality.

Oldstable Stable Testing

proportion of
package releases

0.00
o > o DN o o

Fig. 18 Evolution of the number of latest package releases at time ¢ proportionally to
the number of all latest package releases available on 30 August 2019, grouped by Debian
distribution. The value 0.5 for Stable in 2017, for example, means that 50% of the latest
releases of all packages in Stable were created before 2017.

Actionable results: Developers of Debian-based Docker images can take
advantage of Debian’s slow release cycle (several months to release new pack-
age versions) to reduce their technical lag with small, punctual effort.
Image deployers wanting to benefit from up-to-date packages with respect
to their corresponding distribution should rely on recent images based on
Stable and OldStable.

Deployers of Testing images should be aware that new releases enter the
distribution more frequently, with the risk of including breaking changes.

In RQ4 we studied the number of vulnerabilities, finding that all Debian
images contain at least some packages with a high number of vulnerabilities.
This phenomenon is not caused by the developers building those images, since
the observed version lag in images is low (cf. RQ3): even images with only up-
to-date packages at their build time may still suffer from many vulnerabilities.

A multi-dimensional analysis of technical lag in Debian-based Docker images 43

Deployers concerned about security can mitigate the situation by deploying
recent images, which have less known vulnerabilities.

Debian-based Docker images have an average number of 568 vulnerabili-
ties, well above the average number of vulnerabilities for all Docker Hub images
(180 vulnerabilities reported by Shu et al. (2017)). The number of vulnerabil-
ities depends on the number of packages contained in the image. For example,
it would be unfair to compare the absolute number of vulnerabilities between
images with 100 and 1,000 packages. Nevertheless, the vulnerability of an im-
age is determined mainly by the total number of vulnerabilities present in it,
since any of them can potentially be exploited, regardless of the number of
packages included in the image.

We observe that Debian images have a positive vulnerability lag in all
situations. This vulnerability lag is usually low at the time of image creation,
and tends to increase as the packages included in the image become more
outdated. Hence, better updating procedures could be beneficial to avoid extra
security vulnerabilities.

We observed a lower vulnerability lag for Testing images, even if such
images come with a higher version lag. This implies that most of the package
updates in Debian Testing are about fixing non-security bugs. RQs5 confirmed
this finding, since we observed a higher bug lag for Testing images.

Lessons learned: All images suffer from vulnerabilities, even the lightest
official images (e.g., debian:slim). Deployers cannot avoid vulnerabilities even
if they deploy the most recent images.

Testing images have lower vulnerability lag than other images. This is be-
cause Testing package releases are still under development and are not ex-
posed yet to Stable users; hence they have less reported vulnerabilities.

Actionable results: Container deployers should reduce their number of
vulnerabilities by relying on the package-level quantitative information pro-
vided by the technical lag measurement framework to decide which included
packages need to be upgraded to more recent releases.

For Stable and OldStable images we occasionally observed a negative bug
lag. This suggest that for such images, the ideal choice is not necessarily the
highest available release if the goal is to minimize the number of known bugs.
We also observed that all Debian images suffer from many bugs of low urgency.
This is due to the fact that the number of reported bugs increases over time,
and many of the bugs of lesser importance are never addressed, leading to
their accumulation over time.

Lesson learned: All images suffer from bugs. Deployers cannot avoid all
bugs even if they rely on the most recent package releases.

44 Ahmed Zerouali et al.

Actionable results: Even if bugs cannot be avoided entirely, deployers
could benefit from the quantitative information about bug lag, by narrow-
ing down to only the specific kind of bugs that are relevant for them (e.g.,
“critical bugs for i386”). Based on such information they could for example
choose an image that strikes the best balance between a low bug lag and an
acceptable version lag.

7.3 Interest of having different dimensions of technical lag

In order to assess the practical value of the technical lag notion, we performed
20-minute semi-structured interviews with five open source software practi-
tioners at FOSDEM 2019 (Zerouali, 2019). Each interview was structured
into four parts: 1) the participant’s profile; 2) software projects in which the
participant has been involved; 3) questions related to the software dependency
updating process followed by the participant; and 4) the potential value of the
technical lag concept. A transcription of all interviews can be found in the
replication package (Zerouali, 2020).

All interviewees were highly educated (having a Master’s degree or higher)
and experienced software engineers (with an average of 10 years of experience).
Three of the participants were involved in the development of popular open
source projects, one participant worked on an internal tool for a big IT com-
pany, and another one worked as a development coach. We learned that the
interviewees deal with updating software dependencies in different ways. All
participants agreed that project dependency management is an important and
critical task. As one interviewee noted: “The dependency management is the
hottest spot in our project”. With respect to the potential value of the technical
lag concept, one of the interviewees noted that the technical lag “is definitely
something we are missing. For the larger enterprise customers, the more we
can say to them: ‘this is why you should keep being up to date versus 10 years
old version’, the more is better”. When asked about the preferred way of mea-
suring technical lag, all interviewees suggested that multiple complementary
measurements would probably be needed. Suggested ways of measuring lag in-
cluded counting the number of versions, the number of commits, the amount of
breaking changes, but also by analysing changelogs, and measuring the num-
ber of newly added functionalities. In addition to this, most of the interviewees
agreed about the importance to include security vulnerabilities as one of the
ways to measure technical lag. One of the participants specifically noted “I
think intuitively, one should look for how many versions is the dependency
missing, but I think it is a mizx between all units, features, breaking changes
and fixed vulnerabilities. Number of commits is also important because it shows
how much effort people are putting into the project”.

Moreover, in previous surveys in the Docker landscape (Anchore.io, 2017;
Bettini, 2015), Docker practitioners clearly pointed out that they care about
multiple aspects (including the presence of vulnerabilities, bugs and outdated
packages) before deploying application containers. This corroborates our find-

A multi-dimensional analysis of technical lag in Debian-based Docker images 45

ings that multiple ways of measuring lag are needed to see the full picture.
For example, while an outdated package with just one missed version update
could be seen as a minor issue, it would be considered differently if the most
recent version incorporates several fixes to known vulnerabilities. We observed
this situation for many Debian images. For instance, the surround/ws-master
repository on Docker Hub contained many images with a version lag of less
than 120 versions, but at the same time their vulnerability lag was more than
525 vulnerabilities.

Actionable results: Technical lag can be measured in different ways, of-
fering complementary information. Depending on their context and goals,
container developers and deployers should use different lag measurements.
Tool creators should include the various ways of measuring technical lag to
empower their container scan and security management tools; this will help
container developers and deployers in choosing what images to use and when
to update them.

7.4 Future work

This study analysed the technical lag of Debian-based Docker images based on
the difference between installed package releases and an ideal release for each of
them. This ideal release was selected following the behaviour of apt, the default
package manager of Debian, and corresponds to the highest available package
release in the corresponding Debian distribution. Using this notion of ideal is
quite common, following the rationale that “if Debian decided to substitute
the old release with this new one, it is likely that this is more desirable”.
However, such releases may not always be the right choice since they might
not be ideal for some deployments. Recent releases could be considered as
less ideal than older ones because they are not yet heavily tested, because
they may introduce backward incompatibilities or because they are affected
by more vulnerabilities or bugs. It would therefore be of interest to explore
other ideal functions for measuring image lag. The technical lag framework can
be easily tailored to use other criteria for selecting an ideal release.

Several automated scan and security management services have emerged
to enable Docker image deployers to assess the vulnerability of their deployed
images. Examples of such services are Snyk.io, Anchore.io and Quay.io. Based
on our multi-dimensional lag analysis we posit that such services should include
other notions of lag as well, since this would empower container developers and
deployers to gain better insights into the health of their Docker images.

While measuring technical lag is useful to get an overview of the freshness
of an image and its installed packages, it is not sufficient to know what is
missing. It is equally important to assess the effort required to reduce the
incurred technical lag. Updating an image could be very time consuming and
disruptive (e.g., because of the need to test the changes, to update scripts and
configuration files, and to deal with backward incompatibilities). Tools that
estimate the effort required to update an image or its packages would be very

46 Ahmed Zerouali et al.

valuable for practitioners, especially in combination with tools that measure
technical lag, such as ConPan, a tool to inspect Docker images and report
about the technical lag of their installed packages (Zerouali et al., 2019a).

8 Threats to Validity

Given the empirical nature of our work, the presented results are exposed to
many potential threats. We discuss these threats and classify them following
the recommendations in Wohlin et al. (2000).

Construct validity concerns the relation between the theory behind the exper-
iment and the observed findings. The main threat of this kind comes from im-
precisions in the data sources we used to identify vulnerabilities and bugs. Our
analyses assumed that the data collected from the Ultimate Debian Database
and from the Debian Security Tracker reliably represent a sound and com-
plete list of bugs and vulnerabilities for Debian packages. However, they only
contain bugs and vulnerabilities that (1) are known, (2) have been reported
and (3) disclosed. As a result, the reported analysis underestimates the actual
situation of packages in terms of bugs and vulnerabilities.

A second threat to construct validity concerns the way we identified pack-
ages being affected by vulnerabilities and bugs. The Debian Security Tracker
and, to a lesser extent, the Ultimate Debian Database report on the source
packages being affected, and not on the binary packages. This required us to
map the installed binary Debian packages to their source packages. This map-
ping is not bijective, since several binary packages can be mapped to the same
source package (e.g., binary packages libreoffice-writer and libreoffice-calc are
both mapped to source package libreoffice). As a result, there is no automatic
way to identify what binary package is actually affected by a bug or a vul-
nerability reported for its source package. We considered all of them to be
affected in such cases, leading to a conservative overestimation of the number
of bugs or vulnerabilities. To mitigate this threat, we systematically removed
duplicate vulnerabilities and bugs after having collected them for all binary
packages in an image.

Another threat to construct validity stems from how we identified installed
packages in Debian-based images. We relied on the list of packages available in
official and security Debian snapshot repositories to identify available package
releases, and we considered a package release in this list as “installed” in an
image if it was marked as such by dpkg, the official Debian package installer.
Consequently, we did not identify package releases that: (1) are compiled from
source code; (2) come from other repositories specified in /etc/apt/sources.d;
or (3) are handled by package managers that do not interface with dpkg,
such as flatpak or npm. Unfortunately, it is not possible to exhaustively take
into account such packages given the large number of possible ways to install
them in Debian. This implies that we underestimated the number of installed
packages or failed to identify some package updates. We are convinced that
this threat does not greatly affect our findings since we expect most users to

A multi-dimensional analysis of technical lag in Debian-based Docker images 47

use dpkg to install packages, either directly or through one of the package
managers that relies on dpkg, such as apt, the default package manager in
Debian (The Debian GNU/Linux FAQ, 2019).

Internal validity concerns choices and factors internal to the study that could
influence the observed results. The main threat comes from the way we instan-
tiated the technical lag framework and its underlying functions. The definition
of the ideal function was based on the behaviour of apt, the default package
manager in Debian. It corresponds to the behaviour a user would obtain by
updating the system without making any particular choice. The different delta
functions were carefully chosen to precisely capture the aspects we aim to mea-
sure. The chosen aggregation functions agg are a bit more subjective since,
regardless of the particular choice, the underlying idea is always to identify or
compute an appropriate witness value given a collection of values. We aggre-
gated lag using sum and maximum because we expect these to be the most
relevant and representative for each of the considered lag dimensions at image
level. To mitigate this threat, we repeated some of the analyses with other ag-
gregation functions and, although this led to variations in the reported values,
the observations and conclusions we made in this paper still hold.

Another threat to internal validity is our decision to analyze all images
available in a repository, rather than selecting a single representative image.
We did so, because it allowed us to gain a better understanding of the evolution
of technical lag. While many repositories only contain a single image (the
latest) that is regularly updated, other (especially in official repositories) may
contain a larger number of images. We found that official repositories have a
median number of 39 images, while community images have a median number
of 2 images. This might have led to an “underexposure” of the specificities of
single-image repositories in our comparisons, especially between official and
community images.

Conclusion validity concerns the degree to which the conclusions we derived
from our data analysis are reasonable. Since our conclusions are mostly based
on empirical observations, our work is unlikely to be affected by such threats.

Ezxternal validity concerns whether the results and conclusions can be general-
ized outside the scope of this study. The observations we make and the conclu-
sions we draw for community images are based on a subset of all community
images, selected from the most popular repositories, in terms of number of
pulls. By doing so, we ensure not to have missed any popular Debian-based
images from community repositories, and to have obtained a subset of com-
munity images that is representative for most users.

Although the proposed approach can be applied to non-Debian-based im-
ages, we cannot claim that our findings generalise to these variants. First,
Debian images might have more installed packages than other images (e.g.,
those based on the lightweight Linux distribution Alpine). Second, not all dis-
tributions share Debian’s careful and conservative policy of deploying pack-
age updates. Different policies can lead to significantly different observations
depending on the considered technical lag dimension. For instance, because

48 Ahmed Zerouali et al.

ArchLinuz or Fedora have a more generous package update policy, we expect
to find more outdated packages (i.e., a higher package lag) in their images.
Conversely, we expect to find a lower vulnerability and bug lag, since updates
that fix security vulnerabilities and bugs are more likely to be quickly available
in such images.

Similarly, our findings cannot be generalised to containerisation systems
beyond Docker, because its specificities, such as its layering mechanism, might
have played a role in the observed findings.

9 Conclusion

This paper focused on the phenomenon of outdated Docker images, reflecting
the dilemma of developers and deployers between updating the packages of
their Docker images and sticking to the currently deployed and working ver-
sions. We presented an empirical analysis of the evolution of public Docker
Hub images based on Debian Linux distributions.

To study how outdated such Docker images are when they are first released,
we instantiated the formal technical lag framework along five different dimen-
sions: package lag, time lag, version lag, bug lag and vulnerability lag. We
studied 140,498 popular Docker Hub images, corresponding to public Docker
images based on a Debian distribution, coming from both official and com-
munity repositories. We identified installed system packages and tracked their
bugs and security vulnerabilities from official trusted data sources.

We observed that most of the packages in Debian-based Docker images are
up-to-date. However, we also found that all images contain package releases
having security vulnerabilities and bugs. By aggregating at image level the five
dimensions of technical lag of package releases, we carried out a longitudinal
multi-dimensional analysis of the technical lag of Debian images, enabling us
to extract multiple actionable insights for image developers and deployers.

For each dimension we found that community images have higher lag than
official images. Depending on the lag dimension, images belonging to specific
Debian distributions were found to have higher lag than for other distributions.
For example, version lag was highest for images relying on Debian Testing,
while vulnerability lag was highest for OldStable images. We also found that
in some cases, the lag is increasing over time, for example for package and
version lag in Debian Testing images. Since we found a positive vulnerability
lag in Docker images, image developers and deployers whose major concern
is security need to rely on better updating procedures. In contrast, image
deployers that care more about their packages freshness need to rely on the
Stable distribution of Debian, since images relying on other distributions have
a higher version lag.

Docker image management and monitoring tools could benefit from in-
corporating the different aspects of image outdatedness reflected by the five
dimensions of technical lag to better support image developers and deployers
in their decisions to create, use or update their images.

A multi-dimensional analysis of technical lag in Debian-based Docker images 49

Acknowledgements

This research is carried out in the context of the Excellence of Science project
30446992 SECO-Assist financed by FWO-Vlaanderen and F.R.S.-FNRS. We
acknowledge the support of the Government of Spain through project “Bug-
Birth” (RT12018-101963-B-100).

References

Pietro Abate, Roberto Di Cosmo, Jaap Boender, and Stefano Zacchiroli.
Strong dependencies between software components. In International Sym-
posium on Empirical Software Engineering and Measurement, pages 89-99.
IEEE Computer Society, 2009. doi: 10.1109/ESEM.2009.5316017.

Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. De-
pendency solving: a separate concern in component evolution manage-
ment. Journal of Systems and Software, 85(10):2228-2240, 2012. doi:
10.1016/j.jss.2012.02.018.

Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. Learn-
ing from the future of component repositories. Science of Computer Pro-
gramming, 90:93-115, 2014. doi: 10.1016/j.scico.2013.06.007.

Anchore.jo. Snapshot of the container ecosystem. https://anchore.com/wp-
content/uploads/2017/04/Anchore-Container-Survey-5.pdf, April 2017. ac-
cessed: 01/12/2019.

Cyrille Artho, Kuniyasu Suzaki, Roberto Di Cosmo, Ralf Treinen, and Ste-
fano Zacchiroli. Why do software packages conflict? In Working Conf. Min-
ing Software Repositories, pages 141-150, 2012. doi: 10.1109/MSR.2012.
6224274.

David Bernstein. Containers and cloud: From LXC to Docker to Kubernetes.
IEEFE Cloud Computing, 1(3):81-84, 2014. doi: 10.1109/MCC.2014.51.

Anthony Bettini. Vulnerability exploitation in docker container environments.
FlawCheck, Black Hat Europe, 2015.

Carl Boettiger. An introduction to Docker for reproducible research. ACM
SIGOPS Operating Systems Review, 49(1):71-79, 2015. doi: 10.1145/
2723872.2723882.

Jiirgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zum-
beri, and Harald C Gall. An empirical analysis of the Docker container
ecosystem on GitHub. In International Conference on Mining Software
Repositories, pages 323-333. IEEE Press, 2017. doi: 10.1109/MSR.2017.67.

Maélick Claes, Tom Mens, Roberto Di Cosmo, and Jérome Vouillon. A histor-
ical analysis of Debian package incompatibilities. In Working Conf. Mining
Software Repositories, pages 212-223, 2015. doi: 10.1109/MSR.2015.27.

F. R. Cogo, G. A. Oliva, and A. E. Hassan. An empirical study of depen-
dency downgrades in the npm ecosystem. IEEFE Transactions on Software
Engineering, 2019. doi: 10.1109/TSE.2019.2952130.

50 Ahmed Zerouali et al.

Theo Combe, Antony Martin, and Roberto Di Pietro. To Docker or not to
Docker: A security perspective. IEEE Cloud Computing, 3(5):54-62, 2016.
doi: 10.1109/MCC.2016.100.

Joél Cox, Eric Bouwers, Marko van Eekelen, and Joost Visser. Measuring
dependency freshness in software systems. In International Conference on
Software Engineering, pages 109-118. IEEE Press, 2015. doi: 10.1109/ICSE.
2015.140.

Max de Visser. A look at how often docker images are updated.
https://anchore.com/look-often-docker-images-updated/, September 2017.
Accessed: 20 August 2020.

Alexandre Decan, Tom Mens, and Eleni Constantinou. On the evolution of
technical lag in the npm package dependency network. In Int’l Conf. Soft-
ware Maintenance and Fvolution, pages 404-414. IEEE, September 2018a.
doi: 10.1109/ICSME.2018.00050.

Alexandre Decan, Tom Mens, and Eleni Constantinou. On the impact
of security vulnerabilities in the npm package dependency network. In
International Conference on Mining Software Repositories, 2018b. doi:
10.1145/3196398.3196401.

Alexandre Decan, Tom Mens, and Philippe Grosjean. An empirical comparison
of dependency network evolution in seven software packaging ecosystems.
Empirical Software Engineering, 24(1):381-416, Feb 2019. ISSN 1573-7616.
doi: 10.1007/s10664-017-9589-y.

Brian DeHamer. Docker hub top 10.
https://www.ctl.io/developers/blog/post /docker-hub-top-10/, 2020.
Accessed: 20 August 2020.

Docker Inc. Docker Registry HTTP API V2.

https://docs.docker.com /registry/spec/api/, 2020a. Accessed: 20 Au-
gust 2020.

Docker Inc. Dockerfile reference. https://docs.docker.com/engine/reference /builder/,
2020b. Accessed: 20 August 2020.

Jesus M Gonzalez-Barahona, Gregorio Robles, Martin Michlmayr, Juan José
Amor, and Daniel M German. Macro-level software evolution: a case study
of a large software compilation. Empirical Software Engineering, 14(3):262—
285, 2009. doi: 10.1007/s10664-008-9100-x.

Jesus M Gonzalez-Barahona, Paul Sherwood, Gregorio Robles, and Daniel
Izquierdo. Technical lag in software compilations: Measuring how outdated
a software deployment is. In IFIP International Conference on Open Source
Systems, pages 182-192. Springer, 2017. doi: 10.1007/978-3-319-57735-7_17.

Jordan Henkel, Christian Bird, Shuvendu K Lahiri, and Thomas Reps. Learn-
ing from, understanding, and supporting DevOps artifacts for Docker. In-
ternational Conference on Software Engineering, 2020.

R. G. Kula, D. M. German, T. Ishio, and K. Inoue. Trusting a library: A study
of the latency to adopt the latest Maven release. In Int’l Conf. on Software
Analysis, Evolution, and Reengineering, pages 520-524, March 2015. doi:
10.1109/SANER.2015.7081869.

A multi-dimensional analysis of technical lag in Debian-based Docker images 51

Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and
Katsuro Inoue. Do developers update their library dependencies? FEm-
pirical Software Engineering, 23(1):384-417, 2017. ISSN 1573-7616. doi:
10.1007/s10664-017-9521-5.

Soonhong Kwon and Jong-Hyouk Lee. Divds: Docker image vulnerability di-
agnostic system. IEEE Access, 2020. doi: 10.1109/ACCESS.2020.2976874.

Damien Legay, Alexandre Decan, and Tom Mens. On package freshness in
Linux distributions. In Int’l Conf. Software Maintenance and Evolution —
NIER Track, 2020.

Zhigang Lu, Jiwei Xu, Yuewen Wu, Tao Wang, and Tao Huang. An empirical
case study on the temporary file smell in Dockerfiles. IEEE Access, 2019.
doi: 10.1109/ACCESS.2019.2905424.

Dirk Merkel. Docker: lightweight Linux containers for consistent development
and deployment. Linuxz Journal, 2014(239):2, 2014.

Gianluca Mezzetti, Anders Mgller, and Martin Toldam Torp. Type regression
testing to detect breaking changes in Node. js libraries. In European Confer-
ence on Object-Oriented Programming, 2018. doi: 10.4230/LIPIcs. ECOOP.
2018.7.

Anders Moller and Martin Toldam Torp. Model-based testing of breaking
changes in Node.js libraries. In Joint Meeting on Furopean Software Engi-
neering Conference and Symposium on the Foundations of Software Engi-
neering, pages 409-419. ACM, 2019. doi: 10.1145/3338906.3338940.

Adrian Mouat. Using Docker: Developing and Deploying Software with Con-
tainers. O’Reilly Media, Inc., 2015.

Lucas Nussbaum and Stefano Zacchiroli. The ultimate Debian database: Con-
solidating bazaar metadata for quality assurance and data mining. In Work-
ing Conference on Mining Software Repositories, pages 52—61, 2010. doi:
10.1109/MSR..2010.5463277.

Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, Jeff Skowronek, and
Linda Devine. Exploring methods for evaluating group differences on the
NSSE and other surveys: Are the t-test and Cohen’s d indices the most
appropriate choices? In Annual Meeting of the Southern Association for
Institutional Research, 2006.

Pasquale Salza, Fabio Palomba, Dario Di Nucci, Andrea De Lucia, and Filom-
ena Ferrucci. Third-party libraries in mobile apps: When, how, and why
developers update them. FEmpirical Software Engineering, 25:2341-2377,
2020. doi: 10.1007/s10664-019-09754-1.

Rui Shu, Xiaohui Gu, and William Enck. A study of security vulnerabilities on
Docker Hub. In International Conference on Data and Application Security
and Privacy, pages 269-280. ACM, 2017. doi: 10.1145/3029806.3029832.

Emilien Socchi and Jonathan Luu. A deep dive into Docker Hub’s security
landscape — a story of inheritance? Master’s thesis, University of Oslo, 2019.

The Debian GNU/Linux FAQ. The Debian package management
tools. https://www.debian.org/doc/manuals/debian-faq/pkgtools.en.html,
August 2019. Accessed: 20 August 2020.

52 Ahmed Zerouali et al.

James Turnbull. The Docker Book: Containerization is the new virtualization.
James Turnbull, 2014.

Brian Vermeer and William Henry. Shifting Docker security left.
https://snyk.io/blog/shifting-docker-security-left/, 2019. accessed:
02/11/2019.

Jérome Vouillon and Roberto Di Cosmo. On software component co-
installability. In Joint Furopean Soft. Eng. Conf. and ACM SIGSOFT Int.
Symp. on Foundations of Software Engineering, 2011. doi: 10.1145/2025113.
2025149.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen.
Ezperimentation in Software Engineering - An Introduction. Kluwer, 2000.
doi: 10.1007/978-1-4615-4625-2.

Rodrigo Elizalde Zapata, Raula Gaikovina Kula, Bodin Chinthanet, Takashi
Ishio, Kenichi Matsumoto, and Akinori Ihara. Towards smoother li-
brary migrations: A look at vulnerable dependency migrations at func-
tion level for npm JavaScript packages. In International Conference on
Software Maintenance and FEvolution, pages 559-563. IEEE, 2018. doi:
10.1109/ICSME.2018.00067.

Ahmed Zerouali. A Measurement Framework for Analyzing Technical Lag in
Open-Source Software Ecosystems. PhD thesis, University of Mons, Septem-
ber 2019.

Ahmed Zerouali. Replication package for Debian-based Docker images.
https://doi.org/10.5281/zenodo.3765315, 2020.

Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jests
Gonzéalez-Barahona. An empirical analysis of technical lag in npm package
dependencies. In International Conference on Software Reuse, pages 95—110.
Springer, 2018. doi: 10.1007/978-3-319-90421-4_6.

Ahmed Zerouali, Valerio Cosentino, Gregorio Robles, Jesus M Gonzalez-
Barahona, and Tom Mens. Conpan: a tool to analyze packages in soft-
ware containers. In Proceedings of the 16th International Conference on
Mining Software Repositories, pages 592-596. IEEE Press, 2019a. doi:
10.1109/MSR.2019.00089.

Ahmed Zerouali, Tom Mens, Jesus Gonzalez-Barahona, Alexandre Decan,
Eleni Constantinou, and Gregorio Robles. A formal framework for mea-
suring technical lag in component repositories—and its application to npm.
Journal of Software: Evolution and Process, 2019b. doi: 10.1002/smr.2157.

Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesus M. Gonzalez-
Barahona. On the relation between outdated Docker containers, severity
vulnerabilities, and bugs. In International Conference on Software Anal-
ysis, Evolution and Reengineering, pages 491-501. IEEE, Feb 2019c. doi:
10.1109/SANER.2019.8668013.

Jiahong Zhou, Wei Chen, Guoquan Wu, and Jun Wei. SemiTagRec: A semi-
supervised learning based tag recommendation approach for Docker repos-
itories. In International Conference on Software and Systems Reuse, pages
132-148. Springer, 2019. doi: 10.1007/978-3-030-22888-0_10.

A multi-dimensional analysis of technical lag in Debian-based Docker images 53

Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael
Pradel. Small world with high risks: A study of security threats in the npm
ecosystem. In USENIX Security Symposium, pages 1-16, 2019.

