L'impact des traitements thermiques et CIC sur la microstructure et les propriétés mécaniques des pièces en Ti6Al4V par EBM et contrôle géométrique du procédé pour guider l'usinage

Journées A3TS Fabrication Additive, 2-3 décembre 2015

<u>S. Michotte (</u>SIRRIS), C. de Formanoir et S. Godet (ULB), <u>A. Dolimont et E. Rivière (</u>UMons)

130 experts and a high-tech infrastructure Local presence, always near industry

S. Michotte

A. Dolimont et E. Rivière

Plan

- Le procédé EBM en bref
- Microstructure Ti6Al4V et rugosité de surface
- Propritétés mécaniques en statique
- Impact de la CIC
- Impact des traitements thermiques
- Propriétés mécaniques en fatigue
- Caractérisation de la précision dimensionelle du procédé pour guider l'usinage

EBM process

Preheating I

Outer Contours

Extra heating I

Preheating II

Inner Contours

Core-melting

Paramètres process les plus significatifs

 $density E = \frac{60kV * current I}{spot size d * speed v * layer thickness t}$

layer	50 μm	70 µm
Hatch spacing	100 µm	200 µm
Spot size	200 µm	400 µm
Speed function	98	36

Microstructure Ti64 EBM

Relations de Burgers -> 12 variantes Réduction de l'anisotropie

300 µm 300 um b) \vec{a} 0 300 µm 300 µm c) d) Titanium (Aleba) 1010 Boundaries: Rotation Angle 5* 15* 180* 15* ULB POLYTECH MONS

Lionel Germain, LEM3, Metz

Rugosité de surface ~ 35µm

Reconstruction numérique des grains parents β proche de la surface A.A. Antonysamy, et al., Materials Characterization, 84 (2013) 153-168

L.E. Murr et al., J. of the Mechanical Behavior of Biomedical Materials, 2 (2009) 20-32

Propriétés méca Ti64 EBM en statique

Impact du CIC sur les propriétés méca statiques

Polissage -> augmentation de la résistance à la rupture (~70MPa)

CIC (920°C \pm 10 – 1000bar –0/+50 – 120minutes –0/+30) -> diminution résistance à la rupture (~50MPa) et augmentation ductilité

Impact du traitement thermique (30min)

Lamelles 1.8 \pm 0.2 μ m ~brut subtransus

Lamelles 2.9 \pm 0.2 μ m^{b)}

10T0 21T0

Présence de α_{GB} empêche la croissance des grains. Grossissement des lamelles

supertransus

Absence de α_{GB} conduit à une croissance des grains β .

Impact du traitement thermique (2)

proche Fraction volumique de la phase β à l'équilibre ~ 10%

Propriétés méca Ti64 EBM fatigue

Control: force

Impact rugosité Form: sinusoidal Impact CIC R: 0.1 Fatigue Curve Ref 2 **Roll formed** TiAl6V4

microstructure lamellaire -> haute résistance à la croissance des fissures de fatigue (déflection des fissures suivant les paquets de lamelles orientés différemment - profil de fissuration irrégulier, consommant une énergie additionnelle pour la propagation de fissure)

Propriétés méca Ti64 EBM fatigue (2)

P. Edwards et al., Journal of Manufacturing Science and Engineering, 135 (2013) 7

H. K. Rafi et al., 23rd Solid Freeform Fabrication Symposium, 2012

Vertical > Horizontal

Vertical < Horizontal

Propriétés méca Ti64 EBM fatigue (3)

V. Chastand, A. Tezenas et Y. Cadoret (Thales)

Usinage de pièces EBM

Temps d'usinage +- 30 sec pour une pièce de 60 mm Vc = 50m/minUsure outils comparable à l'usinage titane classique Brut <> CIC ic

driving industry by technology

Caractérisation précision du process EBM en vue de guider l'usinage

Usinage traditionnel

Pas certain d'atteindre les tolérences

nécessité d'un bon contrôle du procédé

Caractérisation précision du process EBM en vue de guider l'usinage

Caractérisation précision du procédé EBM en vue de guider l'usinage

- Définition des surépaisseurs d'usiange en fonderie:
 0.5 mm± ½ IT
- $0.5 + \frac{1}{2}$ IT _x(d)

Evolution of the capability depending of the interval tolerance : Diameter Cyl 2 EPS1

Procédé	Fonderie Sable	Fonderie moule permanent	EBM	
IT	IT11-IT16	IT10-IT13	IT12-IT15	
СТ	CT7-CT9	CT6-CT8	CT6-CT7	
Ra	6,3- 50 <i>µm</i>	3,2-12,5 µm	8–30 µm	
Ex.: pour 100mm : 0,5mm +- ½ IT15(100) = 1,3mm				

Conclusions sur le procédé EBM (Ti6Al4V)

- Forte influence rugosité de surface sur les propriétés mécaniques statique et fatigue
- Gain significatif du CIC en ductilité et fatigue
- Légère anisotropie
- Propriétés légèrement supérieure à la fonderie
- Propriétés légèrement inférieures au forgé
- Capabilité « dimensionnelle » aussi bonne que fonderie sable et comparable fonderie moule permanent

