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Abstract

Background

Cognitive models indicated that social anxiety disorder (SAD) would be caused and main-

tained by a biased attentional processing of threatening information. This study investigates

whether socially anxious children may present impaired attentional engagement and dis-

engagement from negative emotional faces, as well as their underlying event-related poten-

tial responses.

Methods and findings

Fifteen children with high levels of social anxiety (HSA; 9 boys; mean age = 9.99y; SD =

1.14) and twenty low socially anxious children (LSA; 16 boys; mean age = 10.47y; SD =

1.17) participated in a spatial cueing task in which they had to detect targets following neu-

tral/disgusted faces in a valid or invalid location. No group effect was reported on reaction

times [p>.05]. However, electrophysiological data showed lower P3a amplitude in HSA chil-

dren compared with the LSA group when processing facial stimuli. They also reported larger

N2 amplitudes for valid-disgusted targets and a larger P3a amplitude for the invalid-dis-

gusted ones.

Conclusion

In terms of electrophysiological data, our results validated, the hypothesis of attentional dis-

engagement difficulties in SAD children. We also confirm the idea that high levels of social

anxiety are associated with cognitive control impairments and have a greater impact on the

processing efficiency than on the performance effectiveness.
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1. Introduction

Social anxiety disorder (SAD) refers to a condition in which individuals experience fear when

they are performing a specific social task under the scrutiny of others [1]. SAD affects up to

10% of the pediatric population [2–5]. It can develop as early as 8 years old [6] and is associ-

ated with several negative consequences on social, academic and familial life, that can predict a

more severe and persistent form of the disorder in adulthood [7, 8].

Recent research on the cognitive factors of SAD highlighted that the onset and maintenance

of the disorder may arise from a biased attentional system in favor of threat-related stimuli

such as human faces showing signs of disapproval or criticism [9–13]. Three mechanisms act-

ing at different information processing stages are likely to contribute to this enhanced atten-

tional processing, known as attentional bias (AB) for threat [14]: (i) a lower detection

threshold for threatening stimuli resulting in an initial hypervigilance; (ii) a sustained attention

to threatening cues leading to attentional disengagement impairments and to a stronger cogni-

tive elaboration of the threat; (iii) a subsequent attentional avoidance when the threat is dis-

played for longer periods [15, 16]. The most widely used paradigm to assess AB is the visual

dot-probe task [17] in which paired stimuli (e.g. a threat-neutral word pair or an angry-neutral

face pair) are presented simultaneously on a computer screen. The stimuli then disappear and

are followed by a visual target (e.g. a dot), presented in the spatial location previously occupied

by the threatening (valid condition) or the neutral (invalid condition) stimulus. AB for threat

classically infer from shorter reaction times (RTs) to detect targets in the valid condition and

by longer RTs to detect targets in the invalid condition [18].

The attentional control theory [19, 20] postulates that attentional control plays a central

role in the occurrence of AB for threat in anxiety disorders and has been supported by behav-

ioral [21, 22] and neuroimaging results [23, 24]. Attentional control is known to be critical for

inhibition and attentional shifting [19, 20, 25]. Inhibition enables the withstanding of interfer-

ence from task-irrelevant stimuli or responses, while attentional shifting underlies attention

flexibility abilities and the attentional focus on task-relevant stimuli of importance [20, 25].

Because of the inhibition and shifting deficits, anxious individuals would present a less efficient

top-down attentional control, leading to an imbalance between the goal-oriented and the stim-

ulus-driven attentional systems. Consequently, anxious individuals would display a hyperac-

tive stimulus-driven system associated with the facilitated detection of threatening cues and

attentional engagement towards them.

While AB for threat has been well-documented regarding anxious adults [9], there are

inconsistent results among children. On the one hand, there is evidence for attentional hyper-

vigilance for threat in children with various types of anxiety disorders (for a review, see [26]).

In particular, Roy et al. (2008) [27] demonstrated a greater AB for angry faces in children aged

between 7 and 18 years old and suffering from a generalized anxiety disorder, SAD and/or sep-

aration anxiety disorder, in comparison to their healthy peers. Results from the study con-

ducted by Waters and colleagues (2011) [28] on socially anxious children aged between 5 and

12 years old revealed an AB for angry faces only in children with high symptom severity, while

children with low symptom severity showed a bias away from the threat. On the other hand,

several studies failed to show any AB for threat in children suffering from various types of anx-

iety disorders [9, 29]. The model proposed by Eysenck et al. (2007) also posits that group dif-

ferences between anxious and non-anxious individuals for threat processing may not appear at

behavioral level because anxiety acts more on processing efficiency (i.e. the amount of cogni-

tive efforts needed) than on performance effectiveness (i.e. the performance quality). In other

words, anxious individuals may recruit more neural resources during task performance to

compensate for their reduced attentional control and their inhibition impairments, and finally
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behave as non-anxious individuals. Therefore, behavioral measures that focus on performance

effectiveness may be not sensitive enough to assess efficiency deficit and detect AB. The appli-

cation of this model to children suffering from social anxiety could therefore justify the incon-

sistencies observed in the literature.

The event-related potentials (ERP) technique seems particularly relevant to measure these

two dimensions of efficiency and effectiveness. Indeed, because of its high temporal resolution,

it allows to examine the time course of cerebral activations and to infer on cognitive processing

steps leading to behavioral performance. Accordingly, ERPs may allow disentangling whether

AB for threat is due to a faster engagement for threat and/or to a difficulty in disengaging from

threat [30, 31]. They can also identify whether anxiety influences information processing and

examine whether compensatory mechanisms appear, even in the absence of group differences

between anxious and non-anxious individuals at a behavioral level. Finally, this noninvasive

method is well-suited to experimentation with young children [32].

Only a few studies used ERPs to assess the cerebral correlates of threat processing in chil-

dren with SAD [33] or at high risk for SAD [34, 35] and results showed increased amplitudes

in early and late ERP components. Notably, these studies found an enhancement of the P1

amplitude in response to angry faces in these children. The P1 is a positive deflection that

peaks approximately 90–110 ms after the occurrence of the stimulus [36, 37]. It is elicited from

the extrastriate areas of the visual cortex when a stimulus is detected [38] and indexes early,

pre-attentive processes [39]. Its amplitude increases for attended stimuli and can be modulated

by top-down attention processes [40]. The results obtained by Bechor and colleagues (2019)

[33] and by Pollak and Tolley-Schell (2003) [34] suggest that anxious children may devote

more attentional resources associated with early orienting processes towards threatening facial

stimuli. Bechor et al. (2019) [33] also found a larger N170 amplitude in anxious children by

comparison to a control group, particularly when exposed to threatening cues. The N170 is a

negative early component peaking around 140 and 180 ms after stimulus onset at occipito-

parietal sites [41, 42] and is related to the processing of facial structures [41, 43]. The third

interesting ERP component to investigate in anxious children would be the N2. The N2 is a

fronto-central negativity generated by the anterior cingulate cortex (ACC) and the orbito-

frontal cortex [44, 45] which occurs 200–300 ms post-stimulus and reflects cognitive control

[46] and conflict monitoring [24, 47]. As for that component, only Thai, Taber-Thomas and

Pérez-Edgar (2016) [35] reported that, during facial cues processing, increased amplitudes

were associated with attentional bias as measured through RTs. Interestingly, these authors

also found that only non-anxious children had higher P1 amplitudes for targets replacing

angry faces, suggesting that non-anxious children may also be prone to show a hypervigilance

towards threat-cued locations. Finally, ERP studies conducted in pediatric populations also

investigated two higher-order cognitive ERP components, namely the P3a, which is associated

with the detection and involuntary attentional orienting towards an incoming distractor sti-

muli [48–51] and the P3b, which is thought to reflect involuntary switching of attention

towards distractors and their inhibition, according to the specific contents to the task at hand

[50, 52]. Both components peak between 300 and 500 ms after stimulus onset [53] but while

the P3a is thought to be maximal at fronto-central sites, the P3b is maximal at centro-parietal

sites [49, 52, 54]. Bechor and colleagues (2019) [33] found reduced P3b in response to all facial

stimuli in a group of anxious children aged between 8 and 12 by comparison to a control

group. Authors have interpreted this result as indexing a poorer attentional control in pediat-

ric anxiety. Furthermore, Pollak and Tolley-Schell [34] found, in children at higher risk of anx-

iety disorder, larger P3b amplitudes regarding the processing of targets following invalid angry

faces comparing with invalid happy faces, suggesting an increased need for resources to disen-

gage attention from a location previously occupied by a threat.
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However, two major difficulties have been outlined in studies measuring ERP in pediatric

populations. First, the child’s brain is still developing and components may present particular-

ities in terms of topography or temporality, which complicates their identification and func-

tional understanding [55–57]. Secondly, as outlined by Kujawa, Weinberg, Hajcak and Klein

(2013) [58], EEG data in children are more likely to include noise and artifacts. These two con-

siderations point to the need for a more refined analysis method to obtain more consistent

ERP data [58]. In this perspective, temporal-spatial PCA have been proposed as a useful and

more reliable measurement data for separating sources of variability in components and differ-

entiating latent components from unsystematic sources of noise in adults [59, 60] and children

[60, 61].

The aim of the current study was to assess the cognitive correlates of the processing of emo-

tional stimuli in children with social anxiety and to provide support for the phenomenon of

AB by recording evoked potentials and subjecting the data to a temporal-spatial PCA. To this

end, we used an emotional spatial-cueing task, in which children had to detect a target pre-

ceded by a single cue presented in the left or the right hemifield. Cues may orient attention

toward a valid location (when the target will appear on the same hemifield) or an invalid one

(when targets appear on the opposite hemifield). Unlike the visual dot-probe task using a pair

of cues, this paradigm allows to postulate that participants focus their attention on the single

cue, and allows distinguishing between attentional engagement and disengagement processes

[62]. Moreover, we chose to use faces expressing disgust instead of anger because disgust faces

convey a negative evaluation of rejection and avoidance and are rated even more negatively

than angry faces by anxious individuals [63–67].

We hypothesized that all children would display an attentional preference for disgusted

faces by comparison to neutral faces because of the increased arousal of these kinds of stimuli.

However, we also postulated that this effect would be more prominent in HSA children, since

social anxiety increases attention towards social threat. Following the main assumptions of the

attentional control theory, we postulated that more group differences were to be observed at

the electrophysiological level than at the behavioral level because of the supposed greater

impact of high levels of anxiety on processing efficiency than on performance effectiveness. In

other words, we did not expect to find significant group differences on the RTs associated with

the processing of targets, but we predicted to observe such differences on the ERP (e.g.

increased amplitudes) during both the processing of threatening facial cues and targets follow-

ing them.

2. Method

2.1 Participants

Fifteen children (6 girls) aged between 8 and 12 years old (mean age = 9.99; SD = 1.17) and pre-

senting high levels of social anxiety were selected to participate in this study. We selected this

age range because of evidence suggesting that more than 50% of socially anxious children

develop their symptoms before 13 years old [68] and that symptoms can already be seen in

children as young as 8 years old [6]. Children were included in the high social anxiety (HSA)

group if they showed a score of 18 or higher at the Social Phobia and Anxiety Inventory for

Children (SPAI-C; [69]). They were paired to twenty low socially anxious (LSA) children (4

girls; mean age = 10.47; SD = 1.14), reporting a score below 18 at the SPAI-C. All children were

also assessed for state and trait anxiety using the State-Trait Anxiety Inventory for Children

(STAI-C; [70]). The sample characteristics are presented in Table 1. All children were free

from learning, neurologic or other psychiatric disorders as assessed with the Child Behavior

Checklist [71, 72]. The ethical board of the Faculty of Psychology and Educational Sciences of
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the University of Mons approved this study. All participants and their legal guardian gave writ-

ten informed consent. The work described has been carried out in accordance with the Code

of Ethics of the Declaration of Helsinki. Children received a €20 gift-card for their

participation.

2.2 Task and materials

The emotional spatial-cueing task was adapted from the protocol used by Bar-Haim, Morag

and Glickman (2011) [30]. The task was administered using E-Prime 2.0 software (Psychology

Software Tools, Pittsburgh, PA) on an Asus X756U system (screen of 17 inches) in the Cogni-

tive Psychology and Neuropsychology research laboratory of the University of Mons. Each

trial began with a fixation cross appearing at the center of the screen for 500 milliseconds.

Then, two rectangular frames (600 mm X 1000 mm) appeared on the right and the left side of

the fixation cross for 500 milliseconds, and one of them showed a face depicting either a dis-

gusted or a neutral expression. The pictures shown were faces of 10 different children (5 boys

and 5 girls) from the Radboud Faces Database [73]. After the faces disappeared, a target (a

star) (400 mm X 400 mm) appeared at the center of one of the rectangles. In 50% of the trials,

targets appeared in the previous location of the face (valid trials) and in the remaining 50%,

targets appeared on the opposite side of the screen (invalid trials). Participants were told to

indicate as fast as possible the location of the target by pressing the corresponding button of

the mouse. Targets remained on the screen until a response was made. A new trial began 500

milliseconds after the target offset. Before the test, participants received 16 randomly presented

practice trials, 4 per condition (Valid/Invalid Neutral; Valid/Invalid Disgust). The entire task

comprised 512 trials, presented in 8 blocks of 64 trials each. Within each block, 50% of the tri-

als presented disgusted faces and 50% presented neutral faces. Trials were presented in a ran-

domized order.

2.3 Behavioral data

RTs for each response corresponded to the time between the presentation of the target and the

button press. Only RTs for correct responses were analyzed. Trials with RT longer than 2000

milliseconds and shorter than 150 milliseconds and then those with RT higher than 2.5 SDs

above or lower than -2.5 SDs below the participants’ mean were discarded in order to reduce

the influence of outliers. Individual mean RTs were computed for each experimental condition

on the remaining trials (93.88% of the data).

2.4 EEG acquisition, preprocessing and analysis

EEG data were recorded at a sampling rate of 500 Hz (V-Amp, Brain Products, GmbH,

Munich, Germany: 0–500 Hz bandwidth, 24-bit A/D conversion) from 64 electrodes sites

(AF3, AF4, AF7, AF8, AFz, C1, C2, C3, C4, C5, C6, CP1, CP2, CP3, CP4, CP5, CP6, CPz, Cz,

Table 1. Demographic and psychopathological data for the LSA and HSA groups (�� p-values< .01; � p-values< .05) (M = male; F = female).

LSA HSA Group comparison

M SD M SD p

Gender (M/F) 16/4 9/6 .201

Age (years) 10.47 1.14 9.99 1.17 .233��

State Anxiety 39.30 3.34 38.87 2.47 .676��

Trait Anxiety 34.31 7.87 39.33 5.96 .049��

Social Anxiety �9.67 4.84 21.29 2.75 .001��

https://doi.org/10.1371/journal.pone.0261172.t001
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F1, F2, F3, F4, F5, F6, F7, F8, FC1, FC2, FC3, FC4, FC5, FC6, FCz, Fp1, Fp2, FT10, FT7, FT8,

FT9, Fz, O1, O2, Oz, P1, P2, P3, P5, P6, P7, P8, PO3, PO4, PO7, PO8, POz, Pz, T7, T8, TP10,

TP7, TP8, and TP9), with an actiCap acquisition system arranged in a standard 10–20 layout

(Brain Products, GmbH, Munich, Germany). One electrode (P4) has been excluded from fur-

ther analyzes due to poor functioning during data acquisition. The reference electrode was

located at FCz throughout the recording. The ground electrode was placed on the forehead

between Fp1 and Fp2. Electrode impedances were kept below 10 kΩ. Off-line analysis was per-

formed using Brain Vision Analyzer 2 software (Brain Products, GmbH, Munich, Germany).

We applied a band-pass IIR filter (0.1 to 30 Hz) and then, to correct eye blink artifacts, we

used a semi-automatic ocular correction function implemented in the Analyzer 2.0 that used a

simplified version of the independent component analysis (ICA) to correct ocular artifact spe-

cifically in the EEG signal [74]. This method has been proven to be useful to separate neural

activity from muscle and blink artifacts in EEG data (e.g. [75]) and has been shown to present

several advantages compared to other artifact removal methods (see [74]). All data were re-ref-

erenced to the average of all scalp electrodes. Finally, both for faces and targets processing, we

created epochs by segmenting data from 200 milliseconds before and 500 milliseconds after

stimulus onset. Epochs were baseline corrected using the mean voltage calculated from the 200

milliseconds preceding the event. Each epoch of 700 milliseconds with at least one channel

showing a maximal amplitude difference of 200 μV was excluded from further analysis. Stimu-

lus-locked ERPs were averaged separately for faces and targets.

ERP averages for each participant in each experimental conditions were submitted to tem-

poral-spatial principal component analyses (PCA) using the ERP PCA Toolkit, version 2.7

[76] and respected the published guidelines for applying PCA to ERP datasets [77, 78]. PCA

analyses are used to extracts linear combinations of data that distinguish patterns of electro-

cortical activity across all-time points and recording sites [58]. Separated analyses were con-

ducted for faces and targets processing. Firstly, a temporal PCA was performed to capture the

variance across time points and to maximize the initial separation of ERP components [79].

All-time points were used as variables, and we considered all subjects, conditions and record-

ing sites as observations. Simulation studies previously conducted suggested that Promax rota-

tions are the most effective for temporal analyses since they do not force orthogonality

amongst the components [76, 78]. Therefore, a Promax rotation was used, and following this

first rotation, a parallel test [80] was conducted on the resulting Scree plot [81], in which the

Scree of our dataset is compared to a Scree plot derived from a fully random dataset. The num-

ber of factors retained is thus based on the largest number of factors that account for a greater

proportion of variance of the fully random data set (see [76] for more information). Based on

this criterion and on the resulting Scree plots [81], seventeen temporal factors were extracted

for faces processing (total variance explained = 97.3%), and eighteen temporal factors were

extracted for targets processing (total variance explained = 91.5%). Each temporal factor may

be considered to be a virtual epoch and can be described both by its factor loading (which

describes the time course of that factor) and its factor scores (which give that factor’s value for

each combination of subject, picture type, and recording site). Spatial information is preserved

by temporal PCA; scalp topography can be reconstructed for any time point, subject, and con-

dition by multiplying the corresponding electrode scores by the factor loading and standard

deviation [82].

A spatial PCA was then performed on each of the temporal factors to synthesize the spatial

dimensions of the dataset. Since simulation studies suggest that Infomax rotations are the

most effective for spatial analyses (52, 54), an Infomax rotation was used for faces and targets

processing separately. Recording sites were used as variables and all subjects, conditions and

temporal scores were used as observations, thus a spatial PCA was conducted on each temporal
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factor retained in the previous step. Based on the average Scree plots resulting from the parallel

test [80], six spatial factors were extracted for each of the 17 temporal factors identified for

faces processing (total variance explained = 83.7%), resulting in 102 unique combinations of

factors for faces processing. Following the same procedure for targets processing, six spatial

factors were extracted for each of the 17 temporal factors identified (total variance

explained = 84.3%), resulting in 108 combinations of factors. The covariance matrix and Kai-

ser normalization were used for each PCA [83]. To assess timing and spatial voltage distribu-

tions directly, we translated all factors back into voltages (μV) by multiplying factor scores by

their corresponding loadings and standard deviations; in this way, both the time course and

scalp topography of the electrocortical activity captured by that temporospatial factor combi-

nation can be directly assessed [59].

The temporal-spatial factors that accounted for at least 0.5% unique variance, i.e. 40 factors

for faces processing and 39 factors for targets processing, were subjected to a robust ANOVA

[84–86] to determine which components were significantly modulated by experimental condi-

tions. As recommended by Dien and colleagues (2005), a visual inspection of the waveforms asso-

ciated with each combination of factors was used to select those that corresponded the most to

ERP components relevant to the paradigm used. Accordingly, and following the literature on the

electrophysiological correlates of AB in anxious children [33–35], we considered as being repre-

sentative for the P100, a maximal relative positivity recorded at occipital electrodes at*100 to

150 ms after stimulus onset. We will consider for the N170, a negative temporal deflection occur-

ring and for the N200, a fronto-central negativity, peaking between 150 and 230 ms and 200 and

300 ms following stimulus onset, respectively. The P3a would be associated to a positivity located

at fronto-central sites and peaking at*300 to 400 ms after stimulus onset; and for the P3b, a posi-

tivity located at parieto-occipital sites and peaking at*300 to 400 ms after stimulus onset.

2.5 Statistical analyses

Comparisons between groups were performed on anxiety (social, trait and state anxiety) char-

acteristics using: (i) Wilcoxon rank-sum tests or independent t-tests for quantitative variables

when the distributions of these variables were significantly different from normal or not,

respectively; (ii) Pearson chi-square tests for qualitative variables. The normality of the distri-

bution of quantitative parameters was assessed with Shapiro–Wilk tests. For RTs, General Lin-

ear Model analyses were conducted with 2-Emotion (Disgust and Neutral) X 2-Validity

(Valid, Invalid) X 2-Visual Field (Left, Right) as within-subject factors and Groups (HSA,

LSA) as the between-subjects factor. All the analyses have been performed using the software

IBM SPSS Statistics for Windows (Version 21, Armonk, NY, IBM Corp.). The significance

level was set at p< .05 (two-tailed) throughout the analyses.

Regarding ERP data, to avoid the biasing effects of non-normality, (co)variance heterogene-

ity between groups, and to reduce Type I errors [87], robust analyses of variance (ANOVA)

were conducted on the selected temporal-spatial factors using the ERP PCA Toolkit [76, 85].

The seed for the number generation was set at 1000, and the number of iterations used for

bootstrapping was 4,999 [77, 88]. Given potential variability in p values using this approach

[84], simulations were run 11 times, with median p values reported, and only results in which

the median p value plus 2 standard deviations remained below 0.05 were considered significant

[84]. Robust ANOVA tests are indicated by “TWJt/c,” and the interpretation of this statistic

and resulting p values are identical to a conventional ANOVA. Further information about

robust ANOVA tests can be found at Dien (2010) [76].

A 2-Emotion (Disgust and Neutral) X 2-Visual Field (Left and Right) X 2-Group (HSA and

LSA) analysis was conducted on temporal-spatial factors associated with faces processing. A
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2-Emotion (Disgust and Neutral) X 2-Visual Field (Left and Right) X 2-Validity (Valid and

Invalid) X 2-Groups (HSA and LSA) analysis was conducted on the temporal-spatial factors

associated with targets processing. Only temporospatial factors for which statistically signifi-

cant results were found are presented in the results section.

3. Results

3.1 Demographic and psychopathological data

Data are presented in Table 1. Groups did not significantly differ on sex ratio [U = 120; p =
.201], age [t(33) = 1.22; p = .233] or state anxiety [U = 123.5; p = .370]. Social anxiety [t(33) =

-8.32; p< .001] and trait anxiety [t(32) = -2.05; p = .049] was higher in the HSA group than in

the LSA group.

3.2 Behavioral data

Mean RTs obtained by each group in each experimental condition are presented in Fig 1.

ANOVA conducted on RTs only revealed a significant interaction between Emotion and

Validity [F (1,33) = 28.28; p< .001]. However, paired sample T tests conducted on this interac-

tion failed to demonstrate significant differences between conditions [p-values > .05].

3.3 ERP data

3.3.1 Faces processing. The original grand average waveforms for each face type and

visual field are presented in Fig 1A. No significant effect was found on the factors correspond-

ing to the N170 and the P3b components.

3.3.1.1 P1. The two factors (TF1/SF2, TF1/SF3) representing the P1 component peaked at

154 milliseconds at parieto-occipital recording sites (Table 2 and Fig 2B). For the TF1/SF2

Fig 1. Mean reaction times (in milliseconds) obtained by each group of children in each experimental condition of

the emotional spatial-cueing task.

https://doi.org/10.1371/journal.pone.0261172.g001
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factor, the main effect of Emotion was significant [TWJT/C (1.0, 30.0) = 5.41; p = .029], showing

a higher amplitude for neutral faces [M = 1.93] than for disgusted faces [M = 0.91]. The main

effect of EFE was also significant for the TF1/SF3 factor [TWJT/C (1.0, 20.1) = 6.12; p = .025],

again showing an increased amplitude for neutral [M = 2.64] compared to disgusted faces

[M = 2.15].

3.3.1.2 P3a. The TF3/SF3 factor was associated with the temporal window of the P3a, peak-

ing at 382 milliseconds at frontal recording sites (Table 2 and Fig 2B). The main effect of

Group was significant [TWJT/C (1.0, 27.5) = 4.63; p = .002] with a greater amplitude in the LSA

group [M = 0.75] than in the HSA group [M = -0.43].

3.3.2 Targets processing. The original grand average waveforms for each face type and

visual field are presented in Fig 3A.

Table 2. PCA factor combinations selected for further analysis on faces and targets processing.

Corresponding ERP component Temporal-spatial factor combination Variance explained Temporal loading peak (ms) Spatial loading peak Polarity

Faces P100 TF1/SF2 31.9 154 PO8 Positive

TF1/SF3 28.4 154 PO7 Positive

Faces P3a TF3/SF3 2.5 382 FP2 Positive

Targets P100 TF2/SF1 48.7 154 PO8 Positive

TF2/SF2 18.8 154 PO7 Positive

Targets N2 TF4/SF2 21.9 288 AF8 Negative

TF4/SF4 6.1 288 PO7 Negative

Targets P3a TF3/SF2 22.5 340 F7 Positive

TF3/SF3 14.9 340 PO7 Negative

https://doi.org/10.1371/journal.pone.0261172.t002

Fig 2. ERPs associated with faces processing. (a) Grand average ERPS prior to PCA analyses for the two types of faces

(disgust and neutral) and the two visual fields (RVF = right visual field: LVF = left visual field) obtained at Fz, Cz, and

POz; (b)Topographic maps for the temporal-spatial factors associated with faces processing.

https://doi.org/10.1371/journal.pone.0261172.g002
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3.3.2.1 P1. The two factors associated with the P1 component (TF2/SF1, TF2/SF2) peaked

at 154 milliseconds at parietal and parieto-occipital recording sites (Table 2 and Fig 3B). The

interaction between Emotion and Validity was significant for the TF2/SF1 factor [TWJT/C (1.0,

24.9) = 5.45; p = .030]. This interaction could be decomposed in a significant effect of Validity

for targets following neutral faces only [TWJT/C (1.0, 25.5) = 6.17; p = .023], showing an

increased P1 amplitude for invalid-neutral [M = 9.54] compared to the valid-neutral targets

[M = 8.91]. For the TF2/SF2 factor, there was a significant main effect of Emotion [TWJT/C

(1.0, 18.7) = 8.22; p = .010] with higher amplitudes for targets following neutral faces

[M = 1.43] compared to disgusted faces [M = 1]. A main effect of Validity was also found on

this factor [TWJT/C (1.0, 29.8) = 29.11; p< .001], reflecting a greater P1 amplitude for targets in

the valid [M = 1.51] than in the invalid condition [M = 0.93]. The interaction between Emo-

tion and Validity was also significant for the TF2/SF2 factor [TWJT/C (1.0, 24.9) = 15.66; p =

.004]: amplitude was higher for targets in the disgust-valid [M= 1.05] condition compared to

the neutral-valid condition [M= 0.90; TWJT/C (1.0, 19.3] = 15.09; p = .004]. A significant inter-

action between Emotion and the Visual Field was found on the TF2/SF2 factor [TWJT/C (1.0,

27.8) = 16.79; p< .001] highlighting that, when the target was presented on the left side of the

screen, the P1 amplitude was increased for neutral [M = 0.12] compared to disgusted faces [M
= -0.84; TWJT/C (1.0, 21.7) = 18.61; p< .001].

3.3.2.2 N2. The two factors associated with the N2 were negative components peaking at

288 milliseconds at fronto-parietal (TF4/SF2) and parieto-occipital (TF4/SF4) recording sites

(Table 2 and Fig 3B). For the TF4/SF2 factor, there was a significant main effect of Emotion

[TWJT/C (1.0, 26.9) = 10.98; p = .006] showing more negative amplitudes for targets following

neutral faces [M= 0.53] than for targets following disgusted faces [M= -0.26]. The interaction

between Emotion and Validity was significant for the TF4/SF2 factor [TWJT/C (1.0, 29.5) =

39.99; p< .001], reflecting, in the valid condition, an increased amplitude for targets following

Fig 3. ERPs associated with targets processing. (a) Grand average ERPS prior to PCA analyses for the two types of

faces (disgust and neutral) and the two validity conditions (valid and invalid), and the two visual fields (RVF = right

visual field: LVF = left visual field) obtained at Fz, Cz, and POz; (b)Topographic maps for the temporal-spatial factors

associated with targets processing.

https://doi.org/10.1371/journal.pone.0261172.g003
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disgusted faces [M = -0.35] in comparison to targets following neutral faces [M = 1.80; TWJT/c

(1.0, 24.9) = 8.91; p = .005].

For the TF4/SF4 factor, a significant interaction between Emotion and Validity was found

[TWJT/c (1.0, 28.7) = 10.65; p = .005] and indicated a wider N2 amplitude for disgusted faces

[M = -0.12] than for neutral faces [M = 0.45] in the valid condition only [TWJT/c (1.0, 24.9) =

8.91; p = .005]. The interaction between Emotion and Visual Field was significant [TWJT/c (1.0,

27.4) = 4.60; p = .038] and revealed that, for targets presented on the left side of the screen, N2

amplitude was bigger for those following disgusted faces [M = -0.90] than for neutral faces [M
= -0.42]. Finally, there was a significant interaction between Group, Emotion and Validity for

the TF4/SF4 factor [TWJT/c (1.0, 28.7) = 21.18; p< .001]. For the children with HSA, the inter-

action between Emotion and Validity [TWJT/c (1.0, 13.0) = 28.68; p< .001] was significant,

showing a more negative amplitude for targets in the disgust-valid [M= -0.54] compared to

the disgust-invalid condition [M= 0.17; TWJT/c (1.0, 13.0) = 13.96; p = .006]. The opposite pat-

tern was found for targets preceded by neutral faces, with a more negative amplitude in the

neutral-invalid [M= -0.55] in comparison to the neutral-valid condition [M = -0.30; TWJT/c

(1.0, 13.0) = 14.37; p = .019]. The interaction between Emotion and Validity was not significant

for the LSA group [TWJT/c (1.0, 17.0) = 0.97; p = .33].

3.3.2.3 P3a. The TF3/SF2 factor was associated with the P3a component and peaked at 340

milliseconds at frontal recording sites (Table 2 and Fig 3B). Moreover, the TF3/SF3 factor, a

negative deflection that peaked at 340 milliseconds at parieto-occipital sites, could be topo-

graphically considered as a negative counterpart of the P3a component.

There was a significant main effect of Emotion for the TF3/SF2 [TWJT/c (1.0, 26.8) = 31.5; p
< .001] indicating wider amplitudes for targets appearing after disgusted faces [M = 0.02] than

for targets appearing after neutral faces [M= -0.82; TWJT/c (1.0, 26.8) = 31.50; p< .001]. The

main effect of Validity was also significant, with an enhanced amplitude for targets appearing

in the invalid condition [M= 0.24] compared to the valid condition [M= -1.03; TWJT/c (1.0,

23.2) = 46.68; p< .001]. There was a significant interaction between Emotion and Validity

[TWJT/c (1.0, 28.5) = 41.53; p< .001] that showed larger amplitudes for targets in the neutral-

valid [M= -2.02] than in the disgust-valid condition [M= -0.04; TWJT/c (1.0, 28.0) = 61.41; p<

.001]. No such effect was observed for targets in the invalid condition [TWJT/c (1.0, 26.6) =

1.91; p = .017].

The interaction between Emotion and Visual Field was significant [TWJT/c (1.0, 30.0) =

39.08; p< .001], indicating that, for targets presented on the left side of the screen, P3a ampli-

tude was larger for targets following disgusted faces [M = 4.27] than neutral faces [M = 2.37;

TWJT/c (1.0, 25.8) = 51.03; p< .001]. Finally, the interaction between Emotion, Visual Field

and Validity was also significant [TWJT/c (1.0, 29.1) = 73.59; p< .001]. This interaction could

be decomposed in a significant interaction between Emotion and Validity when targets are

presented on the left side of the screen [TWJT/c (1.0, 29.8) = 88.68; p< .001] which indicates

larger P3a amplitude for targets in the disgust-valid [M = 3.70] than in the neutral-valid condi-

tion [M = -0.58; TWJT/c (1.0, 27.4) = 93.84; p< .001]. No such effect was observed for targets in

the invalid condition [TWJT/c (1.0, 29.7) = 3.18; p = .084].

Analyses on the TF3/SF3 factor showed a significant interaction between Group, Emotion

and Validity [TWJT/c (1.0, 27.7) = 4.89; p = .036]. For children with HSA, there was a significant

interaction between Emotion and Validity [TWJT/c (1.0, 13.0) = 7.17; p = .021] showing lower

amplitudes for targets in the disgust-valid [M= -2.53] than in the disgust-invalid condition [M
= -2.07; TWJT/c (1.0, 13.0) = 6.43, p = .021]. We found no significant effect of Validity for neu-

tral faces [p = .07]. No significant effect was observed for disgusted and for neutral faces for

LSA [p-values > .05].
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4. Discussion

This study aimed to investigate the mechanisms underlying the attentional bias towards dis-

gusted faces in socially anxious children. To this end, 15 children with HSA and 20 children

with LSA, all aged between 8 and 12, performed an emotional spatial-cueing task requiring

them to detect a target following either neutral or disgusted faces while their electroencephalo-

grams were recorded.

In line with our expectations, no group differences were found on RTs which confirmed

some studies previously conducted in children with various anxiety disorders [89–91]. How-

ever, some significant differences appeared between experimental groups on various ERP

components. We found increased N2 amplitudes for targets following valid disgusted faces

and increased P3a amplitudes for targets following invalid disgusted faces in HSA children

and in comparison to neutral faces. Taken together, these results support the idea of preferen-

tial neural processing of threatening stimuli in children with HSA. More precisely, they suggest

that the attention of socially anxious children would have been captured by the presentation of

the disgusted faces. Therefore, when asked to process a following target, HSA children would

have experienced difficulties and needed more effort to disengage their attention from the

faces to detect and evaluate a target appearing on the opposite side of the screen correctly [9,

92]. We also found lower frontal P3a amplitudes in HSA children in comparison to LSA chil-

dren that can be related to the less effective attentional control frequently reported in anxious

children [19, 93, 94] that would lead them to devote less neural resources to the detection and

evaluation of faces which are task-irrelevant [33].

Several other significant effects appeared on ERP components, and these were conflicting

with our initial hypotheses. Indeed, we documented in all children increased P1 amplitudes

for the processing of neutral faces, higher P1 amplitudes for targets following neutral faces in

the valid conditions, and enhanced N2/P3a amplitudes for targets following neutral faces in

the invalid conditions and in comparison with disgusted faces. The results of our study tend to

show that 8 to 12-year-old children have an enhanced and sustained attentional engagement

towards neutral faces and that the processing of neutral faces would have required an increased

cognitive control [46] and conflict monitoring abilities [24, 47]. Specifically, here, the conflict

arose from the fact that participants had to inhibit the cognitive process of the cue to detect the

target appearing on the opposite side of the screen correctly. Consequently, results suggest that

children’s attentional focus would have been maintained on the spot previously occupied by

the neutral faces and that they experienced subsequent attentional disengagement difficulties

from these. The observation of increased ERP amplitudes in response to neutral faces was

somewhat contradictory to our hypotheses and quite surprising given the documented AB

towards negative expressions in pediatric populations (e.g. [95]). However, an increased pro-

cessing of neutral faces has already been demonstrated in both socially anxious adults [96–

100] and children [101]. We may interpret these effects within the framework of the atten-

tional control theory [19], which initially states that anxious individuals would display global
attentional control impairments that would be inflated during the confrontation to negative

facial expressions. As explained by the theory, these impairments would lead to an imbalance

between a hyperactive bottom-up attentional system and a hypoactive top-down system.

Therefore, we hypothesize that the hyperactivation of the amygdala would have led children to

interpret neutral faces as conveying a threatening load [100, 102]. Furthermore, and in line

with the works by Kagan et al. [103, 104], one may hypothesize that the arousal level conveyed

by the ambiguity of neutral faces may be considered as threatening by all children because of

their uncertainty. If neutral faces can be interpreted as threatening, our observations question

the relevance of opposing neutral and negative faces to assess attentional biases towards threat.
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The observation of such an attentional bias towards neutral in both LSA and HAS group

can be understood from a developmental point of view. Indeed, attentional control has been

shown to rely on the dorsolateral prefrontal cortex [23, 105], which undergoes one of the lon-

gest periods of development of any brain region [21, 106] and developmental variabilities have

been evidenced in studies involving attentional control functions until the age of 12 [107, 108].

We may posit that the function would still be immature in our selected age range (8–12 years

old). Therefore, all the children of our study would have presented immature attentional con-

trol abilities, resulting in hypervigilance and facilitated detection of neutrality and in dis-

engagement difficulties from what they may have considered as threatening. However, unlike

socially anxious children, with age, we postulate that LSA children will be progressively more

able to inhibit and control the automatic processing of threat [109, 110], which stresses the

need for longitudinal studies on these issues.

Our findings should be considered cautiously regarding a number of limitations. The first

limitation concerns the relatively small sample size and the use of robust ANOVAs that may

limit the statistical power of analyses, but which outlined the need for future studies on a larger

population. The second concerns the age of the children investigated. Children from our sam-

ple were aged between 8 and 12 years old, which prevented us from investigating the modula-

tion of effects with age and with the maturation of attentional control. Studies found

developmental variabilities in tasks involving attentional control until the age of 12 [107, 108].

It would thus be interesting to replicate this study with older children. Thirdly, we investigated

a sub-clinical sample and not children with clinical levels of SAD. Therefore, we could assume

that more pronounced or additional effects could be revealed in clinical samples. Furthermore,

the effects–or the lack of effect–on the early visual component such as the P1 may arise from

differences in the low-level properties between stimuli. Therefore, it could be useful, in future

research, to assess these low-level properties or to control them beforehand. Finally, the pre-

sentation duration of our stimuli (500 milliseconds) prevented us from evaluating the compo-

nents associated with the later-stage of attentional processing such as the late positive potential

(LPP); for which interesting results for anxious children have already been demonstrated (for

a review, see [39]).

5. Conclusion

This study is the first to investigate the neural responses associated with threat processing in

children with high social anxiety levels. Results showed that high levels of social anxiety in chil-

dren was not associated with behavioral manifestation of AB which confirms one of the main

assumptions of the attentional control theory [19, 20] stating that the effects of anxiety are

higher on processing efficiency than on performance effectiveness. However, ERP data showed

that high socially anxious children experience difficulties to disengage their attention from dis-

gusted faces. Social anxiety appears to act as a filter on the later stages of the (still early) atten-

tional processing of threatening social stimuli. Our data confirmed the presence of attentional

control deficits in HSA children, as suggested by the lower P3a amplitudes in response to all

emotional faces in this group. They also demonstrated that HSA children appears to commit

more neural resources to obtain behavioral performances similar to the ones of LSA children,

as suggested by the increased N2 and P3a amplitudes for targets associated with disgusted

faces. This suggests the applicability of the distinction between the notions of performance

effectiveness and processing efficiency made by the attentional control theory [19, 20]. Our

research also allows to assume that the N2 and the P3a components should be considered in

further studies as biomarkers of high levels of social anxiety, notably when investigating the

efficacy of attentional training sessions designed to reduced anxiety levels. Finally, we
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hypothesized that the ambiguity conveyed by neutral faces leads children to devote more neu-

ral resources to perceive them and perhaps interpret them as threatening probably due to the

immaturity of the cerebral regions implicated in attentional control abilities in this age range.

Further studies should investigate AB towards neutral social stimuli.
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