On the average number of colors in the non-equivalent colorings of a graph

G. Devillez ${ }^{1} \quad$ A. Hertz ${ }^{2}$ H. Mélot ${ }^{1} \quad$ S. Bonte ${ }^{1} \quad$ P. Hauweele ${ }^{1}$
${ }^{1}$ Université de Mons, Service d'Algorithmique
${ }^{2}$ Polytechnique Montréal - GERAD
ECCO 2021

Plan

1 Definitions

2 Values of AvCol

3 Extremal graph theory
■ Upper bounds

- Lower bounds

4 Summary of open problems

5 Bibliography

Colorings

Definition 1

A proper vertex coloring of a graph G is an assignment of colors to the vertices of G such that each vertex has only one color and every pair of adjacent vertices have different colors.

■ A coloring induces a partition of the vertices of the graph.

- Two colorings are equivalent if they induce the same partition.

- Colorings 1 and 2 are equivalent but 3 is not.

AvCol, the big picture

NumCol

- We note $\mathcal{B}(G)$ (NumCol), the number of non equivalent colorings of a graph.
■ If G is the empty graph, $\mathcal{B}(G)$ is actually the number of non-equivalent partitions of a set of order n, that is, the nth Bell number.
- Given a fixed number of colors $k, S(G, k)$ is the number of non-equivalent colorings of a graph G using exactly k colors.

AvCol

■ We note $\mathcal{T}(G)$ (TotCol), the total number of colors in the non-equivalent colorings of G.

$$
\mathcal{T}(G)=\sum_{k=1}^{n} k S(G, k)
$$

■ $\mathcal{A}(G)(\mathrm{AvCol})$ is the average number of colors in the non-equivalent colorings of G.

$$
\mathcal{A}(G)=\frac{\mathcal{T}(G)}{\mathcal{B}(G)}
$$

Computing AvCol

- Given a graph G and an edge $u v$ (not) in $G, G-\{u v\}(G+\{u v\})$ is the graph obtained from G by removing (adding) $u v$. The graph $G_{\mid u v}$ is obtained by contracting the (non-)edge $u v$.

Known values

- $\mathcal{A}\left(\mathrm{K}_{n}\right)=n$
- $\mathcal{A}\left(\overline{\mathrm{K}}_{n}\right)=\frac{\mathrm{B}_{n+1}-\mathrm{B}_{n}}{\mathrm{~B}_{n}}$
- Let T be a tree on n vertices, $\mathcal{A}(T)=\frac{\mathcal{T}(T)}{\mathcal{B}(T)}=\frac{\mathrm{B}_{n}}{\mathrm{~B}_{n-1}}$

Known values

- $\mathcal{A}\left(\mathrm{K}_{n}\right)=n$
- $\mathcal{A}\left(\overline{\mathrm{K}}_{n}\right)=\frac{\mathrm{B}_{n+1}-\mathrm{B}_{n}}{\mathrm{~B}_{n}}$
- Let T be a tree on n vertices, $\mathcal{A}(T)=\frac{\mathcal{T}(T)}{\mathcal{B}(T)}=\frac{\mathrm{B}_{n}}{\mathrm{~B}_{n-1}}$

Known values

- $\mathcal{A}\left(\mathrm{K}_{n}\right)=n$
- $\mathcal{A}\left(\overline{\mathrm{K}}_{n}\right)=\frac{\mathrm{B}_{n+1}-\mathrm{B}_{n}}{\mathrm{~B}_{n}}$
- Let T be a tree on n vertices, $\mathcal{A}(T)=\frac{\mathcal{T}(T)}{\mathcal{B}(T)}=\frac{\mathrm{B}_{n}}{\mathrm{~B}_{n-1}}$

Known values

- $\mathcal{A}\left(\mathrm{K}_{n}\right)=n$
- $\mathcal{A}\left(\overline{\mathrm{K}}_{n}\right)=\frac{\mathrm{B}_{n+1}-\mathrm{B}_{n}}{\mathrm{~B}_{n}}$
\square Let T be a tree on n vertices, $\mathcal{A}(T)=\frac{\mathcal{T}(T)}{\mathcal{B}(T)}=\frac{\mathrm{B}_{n}}{\mathrm{~B}_{n-1}}$

Known values

- $\mathcal{A}\left(\mathrm{K}_{n}\right)=n$
- $\mathcal{A}\left(\overline{\mathrm{K}}_{n}\right)=\frac{\mathrm{B}_{n+1}-\mathrm{B}_{n}}{\mathrm{~B}_{n}}$
- Let T be a tree on n vertices, $\mathcal{A}(T)=\frac{\mathcal{T}(T)}{\mathcal{B}(T)}=\frac{\mathrm{B}_{n}}{\mathrm{~B}_{n-1}}$

Known values

- $\mathcal{A}\left(\mathrm{K}_{n}\right)=n$
- $\mathcal{A}\left(\overline{\mathrm{K}}_{n}\right)=\frac{\mathrm{B}_{n+1}-\mathrm{B}_{n}}{\mathrm{~B}_{n}}$
- Let T be a tree on n vertices, $\mathcal{A}(T)=\frac{\mathcal{T}(T)}{\mathcal{B}(T)}=\frac{\mathrm{B}_{n}}{\mathrm{~B}_{n-1}}$

Known values

- $\mathcal{A}\left(\mathrm{K}_{n}\right)=n$
- $\mathcal{A}\left(\overline{\mathrm{K}}_{n}\right)=\frac{\mathrm{B}_{n+1}-\mathrm{B}_{n}}{\mathrm{~B}_{n}}$
- Let T be a tree on n vertices, $\mathcal{A}(T)=\frac{\mathcal{T}(T)}{\mathcal{B}(T)}=\frac{\mathrm{B}_{n}}{\mathrm{~B}_{n-1}}$

Known values

- $\mathcal{A}\left(\mathrm{K}_{n}\right)=n$
- $\mathcal{A}\left(\overline{\mathrm{K}}_{n}\right)=\frac{\mathrm{B}_{n+1}-\mathrm{B}_{n}}{\mathrm{~B}_{n}}$
- Let T be a tree on n vertices, $\mathcal{A}(T)=\frac{\mathcal{T}(T)}{\mathcal{B}(T)}=\frac{\mathrm{B}_{n}}{\mathrm{~B}_{n-1}}$

Upper bound

- Among all graphs on n vertices, which graph maximizes AvCol ?

Upper bound

■ Among all graphs on n vertices, which graph maximizes AvCol ?

- We need a graph such that all colorings have the maximum number of colors.

Upper bound

■ Among all graphs on n vertices, which graph maximizes AvCol ?

- We need a graph such that all colorings have the maximum number of colors.

Upper bound with fixed maximum degree

- If $\Delta(G)=n-1, \mathcal{A}(G) \leq \mathcal{A}\left(\mathrm{K}_{n}\right)$.

Upper bound with fixed maximum degree

- If $\Delta(G)=n-1, \mathcal{A}(G) \leq \mathcal{A}\left(\mathrm{K}_{n}\right)$.
- If $\Delta(G)=n-2, \mathcal{A}(G) \leq \mathcal{A}\left(\mathrm{K}_{n-1} \cup \mathrm{~K}_{1}\right)$.

Upper bound with fixed maximum degree

- If $\Delta(G)=n-1, \mathcal{A}(G) \leq \mathcal{A}\left(\mathrm{K}_{\mathrm{n}}\right)$.
- If $\Delta(G)=n-2, \mathcal{A}(G) \leq \mathcal{A}\left(\mathrm{K}_{n-1} \cup \mathrm{~K}_{1}\right)$.
- If $\Delta(G)=1, \mathcal{A}(G) \leq \mathcal{A}\left(\left\lfloor\frac{n}{2}\right\rfloor \mathrm{K}_{2} \cup(n \bmod 2) \mathrm{K}_{1}\right)$.

Upper bound with fixed maximum degree

- If $\Delta(G)=n-1, \mathcal{A}(G) \leq \mathcal{A}\left(\mathrm{K}_{\mathrm{n}}\right)$.
- If $\Delta(G)=n-2, \mathcal{A}(G) \leq \mathcal{A}\left(\mathrm{K}_{n-1} \cup \mathrm{~K}_{1}\right)$.
- If $\Delta(G)=1, \mathcal{A}(G) \leq \mathcal{A}\left(\left\lfloor\frac{n}{2}\right\rfloor \mathrm{K}_{2} \cup(n \bmod 2) \mathrm{K}_{1}\right)$.
- What about other values of $\Delta(G)$?

Upper bound with fixed maximum degree

- If $\Delta(G)=n-1, \mathcal{A}(G) \leq \mathcal{A}\left(K_{n}\right)$.
- If $\Delta(G)=n-2, \mathcal{A}(G) \leq \mathcal{A}\left(\mathrm{K}_{n-1} \cup \mathrm{~K}_{1}\right)$.
- If $\Delta(G)=1, \mathcal{A}(G) \leq \mathcal{A}\left(\left\lfloor\frac{n}{2}\right\rfloor \mathrm{K}_{2} \cup(n \bmod 2) \mathrm{K}_{1}\right)$.
- What about other values of $\Delta(G)$?

Conjecture

Let G be a graph with n vertices and maximum degree $\Delta(G) \neq 2$.

$$
\mathcal{A}(G) \leq \mathcal{A}\left(\left\lfloor\frac{n}{\Delta(G)+1}\right\rfloor \mathrm{K}_{\Delta(G)+1} \cup \mathrm{~K}_{n \bmod (\Delta(G)+1)}\right)
$$

Upper bound with fixed maximum degree

- If $\Delta(G)=n-1, \mathcal{A}(G) \leq \mathcal{A}\left(\mathrm{K}_{\mathrm{n}}\right)$.
- If $\Delta(G)=n-2, \mathcal{A}(G) \leq \mathcal{A}\left(\mathrm{K}_{n-1} \cup \mathrm{~K}_{1}\right)$.
- If $\Delta(G)=1, \mathcal{A}(G) \leq \mathcal{A}\left(\left\lfloor\frac{n}{2}\right\rfloor \mathrm{K}_{2} \cup(n \bmod 2) \mathrm{K}_{1}\right)$.
- What about other values of $\Delta(G)$?

Conjecture

Let G be a graph with n vertices and maximum degree $\Delta(G) \neq 2$.

$$
\mathcal{A}(G) \leq \mathcal{A}\left(\left\lfloor\frac{n}{\Delta(G)+1}\right\rfloor \mathrm{K}_{\Delta(G)+1} \cup \mathrm{~K}_{n \bmod (\Delta(G)+1)}\right)
$$

- We tested all graphs of order $n \leq 12$ (166 122463891 graphs) and found only one counter-example :

$$
\mathcal{A}\left(2 \mathrm{~K}_{4} \cup \mathrm{~K}_{2}\right)<\mathcal{A}\left(\overline{\mathrm{C}}_{6} \cup \mathrm{~K}_{4}\right)
$$

Upper bound when $\Delta(G)=2$

Let $\mathrm{U}_{n}(n \geq 3)$ be the following graph.

$$
U_{n}= \begin{cases}\frac{n}{3} K_{3} & \text { if } n \bmod 3=0, \text { and } n \geq 3 \\ \frac{n-1}{3} K_{3} \cup K_{1} & \text { if } n=4 \text { or } n=7, \\ \frac{n-4}{3} K_{3} \cup C_{4} & \text { if } n \bmod 3=1, \text { and } n \geq 10 \\ \frac{n-5}{3} K_{3} \cup C_{5} & \text { if } n \bmod 3=2, \text { and } n \geq 5\end{cases}
$$

Theorem

Let G be a graph of order $n \geq 3$ and maximum degree $\Delta(G)=2$, then,

$$
\mathcal{A}(G) \leq \mathcal{A}\left(U_{n}\right)
$$

with equality only if $G \simeq \mathrm{U}_{n}$.

Lower bound

- Among all graphs on n vertices, which graph minimizes AvCol ?

Lower bound

- Among all graphs on n vertices, which graph minimizes AvCol ?
- The graph that can be colored with the least number of colors ?

Lower bound

- Among all graphs on n vertices, which graph minimizes AvCol ?
- The graph that can be colored with the least number of colors ?

Removing an edge

■ Any edge removal in these graphs strictly increases $\mathcal{A}(G)$.

Isolating a vertex

■ Removing all incident edges to the red vertices will not decrease $\mathcal{A}(G)$.

Adding isolated vertices

Adding isolated vertices

Some properties

■ If v is a dominant vertex of $G, \mathcal{A}(G)=\mathcal{A}(G-v)+1$.

- If v is a vertex of degree at most 4 or a simplicial vertex, $\mathcal{A}(G)>\mathcal{A}(G-v)$.
$■$ If v is a simplicial vertex and u is a neighbor of $v, \mathcal{A}(G)>\mathcal{A}(G-u v)$.

Sketch of proof for chordal graphs - Fixed $\chi(G)$

- If G is a chordal graph, $\mathcal{A}(G) \geq \mathcal{A}\left(\mathrm{K}_{\chi(G)} \cup(n-\chi(G)) \mathrm{K}_{1}\right)$.

Sketch of proof for chordal graphs - Fixed $\chi(G)$

- If G is a chordal graph, $\mathcal{A}(G) \geq \mathcal{A}\left(\mathrm{K}_{\chi(G)} \cup(n-\chi(G)) \mathrm{K}_{1}\right)$.

■ Chordal graphs are perfect graphs.

Sketch of proof for chordal graphs - Fixed $\chi(G)$

- If G is a chordal graph, $\mathcal{A}(G) \geq \mathcal{A}\left(\mathrm{K}_{\chi(G)} \cup(n-\chi(G)) \mathrm{K}_{1}\right)$.
- Chordal graphs are perfect graphs.
- Chordal graphs that are not a clique contain at least 2 non-adjacent simplicial vertices.

Sketch of proof for chordal graphs - Fixed $\chi(G)$

- If G is a chordal graph, $\mathcal{A}(G) \geq \mathcal{A}\left(\mathrm{K}_{\chi(G)} \cup(n-\chi(G)) \mathrm{K}_{1}\right)$.
- Chordal graphs are perfect graphs.
- Chordal graphs that are not a clique contain at least 2 non-adjacent simplicial vertices.
- We can reduce the graph to $K i_{n, \chi(G)}$ by removing repeatedly removing an edge adjacent to a simplicial vertex.

Sketch of proof for chordal graphs - Fixed $\chi(G)$

- If G is a chordal graph, $\mathcal{A}(G) \geq \mathcal{A}\left(\mathrm{K}_{\chi(G)} \cup(n-\chi(G)) \mathrm{K}_{1}\right)$.
- Chordal graphs are perfect graphs.
- Chordal graphs that are not a clique contain at least 2 non-adjacent simplicial vertices.
- We can reduce the graph to $K i_{n, \chi(G)}$ by removing repeatedly removing an edge adjacent to a simplicial vertex.

Sketch of proof for chordal graphs - Fixed $\chi(G)$

- If G is a chordal graph, $\mathcal{A}(G) \geq \mathcal{A}\left(\mathrm{K}_{\chi(G)} \cup(n-\chi(G)) \mathrm{K}_{1}\right)$.
- Chordal graphs are perfect graphs.
- Chordal graphs that are not a clique contain at least 2 non-adjacent simplicial vertices.
- We can reduce the graph to $K i_{n, \chi(G)}$ by removing repeatedly removing an edge adjacent to a simplicial vertex.

Sketch of proof for chordal graphs - Fixed $\chi(G)$

- If G is a chordal graph, $\mathcal{A}(G) \geq \mathcal{A}\left(\mathrm{K}_{\chi(G)} \cup(n-\chi(G)) \mathrm{K}_{1}\right)$.
- Chordal graphs are perfect graphs.
- Chordal graphs that are not a clique contain at least 2 non-adjacent simplicial vertices.
- We can reduce the graph to $K i_{n, \chi(G)}$ by removing repeatedly removing an edge adjacent to a simplicial vertex.

Sketch of proof for chordal graphs - Fixed $\chi(G)$

- If G is a chordal graph, $\mathcal{A}(G) \geq \mathcal{A}\left(\mathrm{K}_{\chi(G)} \cup(n-\chi(G)) \mathrm{K}_{1}\right)$.
- Chordal graphs are perfect graphs.
- Chordal graphs that are not a clique contain at least 2 non-adjacent simplicial vertices.
- We can reduce the graph to $K i_{n, \chi(G)}$ by removing repeatedly removing an edge adjacent to a simplicial vertex.

Sketch of proof for chordal graphs - Fixed $\chi(G)$

- If G is a chordal graph, $\mathcal{A}(G) \geq \mathcal{A}\left(\mathrm{K}_{\chi(G)} \cup(n-\chi(G)) \mathrm{K}_{1}\right)$.
- Chordal graphs are perfect graphs.
- Chordal graphs that are not a clique contain at least 2 non-adjacent simplicial vertices.
- We can reduce the graph to $K i_{n, \chi(G)}$ by removing repeatedly removing an edge adjacent to a simplicial vertex.

$K i_{7,4}$

Lower bound with fixed chromatic number

- $\mathcal{A}\left(\overline{\mathrm{K}}_{n}\right) \leq \mathcal{A}\left(K i_{n, m}\right)$.
- If G is a chordal graph, $\mathcal{A}(G) \geq \mathcal{A}\left(K i_{n, \chi(G)}\right)$.

Lower bound with fixed chromatic number

- $\mathcal{A}\left(\overline{\mathrm{K}}_{n}\right) \leq \mathcal{A}\left(K i_{n, m}\right)$.
- If G is a chordal graph, $\mathcal{A}(G) \geq \mathcal{A}\left(K i_{n, \chi(G)}\right)$.
- If $\Delta(G) \in\{1,2, n-1\}, \mathcal{A}(G) \geq \mathcal{A}\left(K i_{n, \chi(G)}\right)$.

Lower bound with fixed chromatic number

- $\mathcal{A}\left(\bar{K}_{n}\right) \leq \mathcal{A}\left(K i_{n, m}\right)$.
- If G is a chordal graph, $\mathcal{A}(G) \geq \mathcal{A}\left(K i_{n, \chi(G)}\right)$.
- If $\Delta(G) \in\{1,2, n-1\}, \mathcal{A}(G) \geq \mathcal{A}\left(K i_{n, \chi(G)}\right)$.

Conjecture

Let G be a graph with n vertices.

$$
\mathcal{A}(G) \geq \mathcal{A}\left(K i_{n, \chi(G)}\right)
$$

Lower bound with fixed maximum degree

$S i_{9,6}$

- $\mathcal{A}\left(\overline{\mathrm{K}}_{n}\right) \leq \mathcal{A}\left(S i_{n, m}\right)$.

Lower bound with fixed maximum degree

$S_{9,6}$

- $\mathcal{A}\left(\overline{\mathrm{K}}_{n}\right) \leq \mathcal{A}\left(S i_{n, m}\right)$.
- If $\Delta(G) \in\{1,2, n-1\}$ or G is a chordal graph, $\mathcal{A}(G) \geq \mathcal{A}\left(S i_{n, \Delta(G)}\right)$.

Lower bound with fixed maximum degree

$S_{9,6}$

- $\mathcal{A}\left(\overline{\mathrm{K}}_{n}\right) \leq \mathcal{A}\left(S i_{n, m}\right)$.
- If $\Delta(G) \in\{1,2, n-1\}$ or G is a chordal graph, $\mathcal{A}(G) \geq \mathcal{A}\left(S i_{n, \Delta(G)}\right)$.

Conjecture

Let G be a graph with n vertices.

$$
\mathcal{A}(G) \geq \mathcal{A}\left(S i_{n, \Delta(G)}\right)
$$

Summary of open problems

- Is it true that $\mathcal{A}(G) \leq \mathcal{A}\left(\left\lfloor\frac{n}{\Delta(G)+1}\right\rfloor \mathrm{K}_{\Delta(G)+1} \cup \mathrm{~K}_{n \bmod (\Delta(G)+1)}\right)$?
$■$ Is it true that $\mathcal{A}\left(\overline{\mathrm{K}}_{n}\right) \leq \mathcal{A}(G)$?
\square Is it true that $\mathcal{A}(G) \geq \mathcal{A}\left(K i_{n, \chi(G)}\right)$?
- Is it true that $\mathcal{A}(G) \geq \mathcal{A}\left(S i_{n, \Delta(G)+1}\right)$?
- Let v be a vertex of a graph G, is it true that $\mathcal{A}(G)>\mathcal{A}(G-v)$?

Bibliography I

囯 Alain Hertz, Hadrien Mélot, Sébastien Bonte, Gauvain Devillez, and Pierre Hauweele.
Upper bounds on the average number of colors in the non-equivalent colorings of a graph, 2021.

图 Alain Hertz, Hadrien Mélot, Sébastien Bonte, and Gauvain Devillez. Lower bounds and properties for the average number of colors in the non-equivalent colorings of a graph, 2021.

R Alain Hertz, Anaelle Hertz, and Hadrien Mélot.
Using graph theory to derive inequalities for the bell numbers, 2021.

Colorings

- We consider simple undirected graphs.

Definition 2

A vertex-coloring of a graph is an assignment of colors to its vertices. A proper coloring is a coloring such that adjacent vertices have different colors.

- A coloring induces a partition of the vertices of a graph.
$■$ We say that two colorings are equivalent if they induce the same partition of the vertices.

Bell numbers

Definition 3

The $n^{\text {th }}$ Bell number $\left(\mathrm{B}_{n}\right)$ is the number of non-equivalent partitions of a set with n elements.

■ If the set is the set of vertices of a graph, we could extend this definition by forbidding adjacent vertices from being in the same partition.

- This is the number of non-equivalent proper colorings of a graph or NumCol ($\mathcal{B}(G)$).
- We can also define the number of non-equivalent proper colorings of a graph with k colors as $S(G, k)$. Thus, $\mathcal{B}(G)=\sum_{k=1} n S(G, k)$.

Avcol

- We write $\mathcal{T}(G)=\sum_{k=1}^{n} S(G, k)$ the total number of colors in the non-equivalent colorings of a graph G.
- We define $\mathcal{A}(G)=\frac{\mathcal{T}(G)}{\mathcal{B}(G)}$ as the average number of colors in the non-equivalent colorings of G.

- $\mathcal{B}\left(\mathrm{P}_{4}\right)=5, \mathcal{T}\left(\mathrm{P}_{4}\right)=15, \mathcal{A}\left(\mathrm{P}_{4}\right)=\frac{15}{5}=3$

