A Historical Analysis of Debian
Package Incompatibilities

Maelick Claes*, Tom Mens*, Roberto Di Cosmo! and Jérome Vouillon'
* Software Engineering Lab, COMPLEXYS Research Institute, University of Mons, Belgium
Email: firstname.lastname @umons.ac.be
t Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126 CNRS and INRIA, F-75205 Paris, France
Email: roberto@dicosmo.org, Jerome.Vouillon @pps.univ-paris-diderot.fr

Abstract—Users and developers of software distributions are
often confronted with installation problems due to conflicting
packages. A prototypical example of this are the Linux dis-
tributions such as Debian. Conflicts between packages have
been studied under different points of view in the literature,
in particular for the Debian operating system, but little is known
about how these package conflicts evolve over time.

This article presents an extensive analysis of the evolution
of package incompatibilities, spanning a decade of the life of
the Debian stable and testing distributions for its most popular
architecture, i386. Using the technique of survival analysis, this
empirical study sheds some light on the origin and evolution
of package incompatibilities, and provides the basis for building
indicators that may be used to improve the quality of package-
based distributions.

I. INTRODUCTION

Many free software distributions (e.g., the Linux-based OS
distributions RedHat, Debian, OpenSuse or Ubuntu) are highly
successful repositories based on the central notion of a package
management system. By providing precise metadata for each
package, these distributions allow to compose highly flexible
systems tailored to their user’s needs.

An important part of this medatata are the declared depen-
dencies of each package, which describe the other packages
immediately necessary for its installation and execution. An-
other important part of the metadata are declared conflicts of
each package, which describe the immediate incompatibilities
with other packages. In principle one would like all packages
to be installable together, and the packaging guidelines for De-
bian clearly suggest that conflicts should be used sparingly [l1]].
Nevertheless, there are still many why conflicts may arise [2:
two packages may want to control the same common resource
(a library, a configuration file, a network port), two or more
packages may provide incompatible implementations of the
same functionality, and one can even find special packages
(such as Debian package harden-servers) that are used to
implement security policies by declaring conflicts with all
other packages whose functionality may be abused.

Unfortunately, the interplay between declared dependencies
and declared conflicts that, taken in isolation, make pefect
sense, may end up preventing a user from installing together
a set of software packages that he needs to use simultane-
ously [3], creating a defect in the repository. Identifying and

IThis work has been partially performed at IRILL, |http://www.irill.org,

resolving these issues is very important when maintaining a
package repository, but unfortunately detecting such incom-
patibilities due to the interplay between declared dependencies
and conflicts is algorithmically hard.

Only recently, efficient algorithms and tools have been
proposed for detecting these incompatibilities [4]], and one
of these tools, known as comigrate has been specifically
developed to prevent to a large extent the introduction of such
incompatibilities [5]. Nonetheless, after a set of incompatible
packages has been spotted, a distribution maintainer is still left
with the complex and time-consuming task of finding the right
course of action to resolve it: which of the hundreds of depen-
dencies and conflict relations involved in the incompatibility
needs to be modified? In which package metadata should one
look to find it?

To provide help in this difficult and crucial task, we decided
to perform an extensive analysis of a large package-based
repository over a significant period of time, and study how
package incompatibilities are introduced, evolve, and may get
removed. Mining the history of the repository, and comparing
some of the results with known issues, we are able to provide
insight in the characteristics that are statistically significant to
pinpoint the packages that are most likely to be problematic.

With our study, we aim to provide a basis for building
future indicators and tools that may be used to improve
the quality of package-based distributions. To this extent,
we focus on the following questions. How can we identify
potentially problematic packages in the distribution? When are
incompatibilities introduced in, or removed from, packages?
What causes (dis)appearance of package incompatibilities?

The case study that we have chosen to carry out such an
empirical analysis contains two Debian Linux distributions
(stable and testing) for the i386 architecture, over a 10-
year time period (starting from January 2005). To the best of
our knowledge, this is the first study focusing on the long-
term evolution of package incompatibilities in the Debian
distribution.

A replication package containing the data, scripts and results
of our analysis is available online via the following URL.:
http://www.dicosmo.org/replication/msr2015-coinst.

http://www.irill.org
http://www.dicosmo.org/replication/msr2015-coinst

The remainder of this paper is structured as follows. Sec-
tion I presents the context of the Debian package management
system and introduces the necessary terminology. Section
provides some overall characterisation of the evolution of
Debian package conflicts over time. Section presents the
research questions and methodology, Section [V] reports on
our empirical analysis, and Section [V]] discusses the results.
Section presents some threats to validity of our research.
Section [VII] discusses related work, Section [[X]explores future
work, and Section [X] concludes.

II. CONTEXT
A. About Debian

The Debian distribution is a coherent collection of free
software, initially announced in 1993, with a first stable release
in 1996. To facilitate maintenance and collaborative work,
Debian is built out of individual packages maintained by
independent developers. Over time, Debian has undergone
an impressive growth, and today it contains tens of thou-
sands of different packages, with over a thousand developers.
While it has been ported to a multitude of architectures (see
www.debian.org/ports), and supports several kernels,
this article focuses on the GNU/Linux distribution for the
i386 architecture only. This architecture is historically the first
one for which Debian has been made available, and the most
popular over time.

The development process of the Debian distribution is
mainly organised around three collections of packages, called
releases: stable, testing and unstable. stable corresponds to
the latest official production release (see Table [[), and only
contains stable, well-tested packages. The testing distribution
contains package versions that should be considered for in-
clusion of the next stable Debian release. A stable release
is made by freezing the testing release for a few months to
fix bugs and to remove packages containing too many bugs.
unstable contains packages that are not thoroughly tested and
that may still suffer from stability and security problems. This
release contains the most recent packages but also the most
unstable ones.

TABLE I
STABLE PRODUCTION RELEASES OF DEBIAN

Version| Name | Freeze date | Release date | # packages
3.0 woody 2002-07-19

3.1 sarge 2005-06-06 | about 15K
4.0 etch 2007-04-08 | about 18K
5.0 lenny | 2008-07-27 2009-02-15 | about 23K
6.0 squeeze | 2010-08-06 2011-02-06 | about 28K
7.0 wheezy | 2012-06-30 2013-03-04 | about 36K
8.0 jessie | 2014-11-05 in 2015 N/A

Because we are interested in studying the evolution of De-
bian development activity, our empirical study will primarily
consider the testing release, as well as its impact on the
stable release that is derived from it. The testing release
corresponds most closely to a development version: package
versions contained in it are candidates for the next stable
production release.

B. Terminology

The Debian package management system relies on metadata
stored in control files. Among others, the control file of
each package P describes the direct relationships with other
packages: dependencies indicate which other packages are
directly needed to perform the installation of P, and declared
conflicts indicate the packages for which it is explicitly known
that they cannot be installed together with P.

However, this explicit declaration of dependencies and con-
flicts is only the beginning of the story. If a package P depends
on @, and Q depends on R, then installing P requires both)
and R, so the package manager needs to follow these declared
dependencies transitively. Even if two packages P and @) do
not declare a conflict, it may very well happen that they cannot
be installed together. For example, P may depend on some P»
and @ on some ()2, with P, and Qs in declared conflict.

This is why in the literature, as well as in this paper, the
term strong conflict is used to indicate that two (or more)
packages can never be installed together, independently from
what is explicitly declared as a conflict in their metadata [3].
In addition, we use the term conflicting package to refer to
a package that has at least one strong conflict with another
package.

It is important to stress that strong conflicts are not neces-
sarily “bad”: many packages may not be installable together
“by design”. But if such conflicts are not reported explic-
itly as declared conflicts, they should still be considered as
“problematic”: a user may be unaware of the impossibility to
install both packages together, and during package evolution
new and unexpected indirect strong conflicts may arise without
the package maintainers being aware of them.

C. Mining Strong Conflicts

For the Debian i386 testing and stable distributions we
have extracted daily snapshots during the almost 10-year
period from 12 March 2005 (>14K packages) until 6 January
2015 (>42K packages). For each daily snapshot, we only con-
sidered packages included in the official Debian distribution.
We excluded from our analysis those packages that belong to
the contrib or non-free category due to a restrictive license
or legal issues.

A major problem when analysing package strong conflicts is
the sheer size of the package dependency graph: there are lit-
erally thousands of different packages with implicit or explicit
dependencies to many other packages. As an example, the full
graph for the Debian i386 testing distribution on 1 January
2014 contained 38,411 packages, 181,265 dependencies, 1,490
declared conflicts and 49,026 strong conflicts.

In [4]] we addressed this problem by proposing an algorithm
and theoretical framework to compress such a dependency
graph to a much smaller one with a simpler structure, but
with equivalent co-installability properties, which is called a
co-installability kernel. The idea is that sets of packages are
bundled together into a equivalence classes if all packages in
the set do not have a strong conflict with one another, while
the collection of other packages with which they have strong

www.debian.org/ports

conflicts is the same. Applying this algorithm to the Debian
i386 testing distribution on 1 January 2014 results in 994
equivalence classes, and 4,336 incompatibilities between these
equivalence classes.

The coinst tool (coinst.irill.org) was developed specifi-
cally for extracting and visualizing coinstallability kernels for
GNU/Linux distributions. We used the output of this tool as
the basis of our analysis.

For each daily snapshot, we used R scripts to browse and
extract all names of packages contained in the main archive
area (i.e., belonging to the official Debian distributionﬂ To
retrieve the information about the co-installation conflicts of
these packages we used JSON output files generated by coinst
with the command
coinst -conflicts conflicts -stats -o graph.dot Packages.bz2 >& log

Previous research used strong conflict graphs to determine
appropriate solutions to package co-installation problems.
These solutions, however, did not take into account the evolu-
tion over time of these strong conflicts. In our current work,
we aim to determine to which extent this historical data
provides additional information to understand and predict how
strong conflicts evolve over time, and to improve support for
addressing package co-installation problems.

III. OVERALL CHARACTERISATION

Let us start by presenting some plots and descriptive statis-
tics characterising the evolution of strong conflicting packages
belonging to the Debian stable and testing distributions.

Fig. [I] compares the daily evolution of the total number of
packages (in blue) against the number of strong conflicting
packages (in red). The evolution of the stable distribution
(solid lines) clearly shows “plateaus” that start at the moment
of a major public release of a new Debian version. This is
quite normal, as the stable version of Debian is only allowed
to incorporate security-critical changes after a release.

The testing distribution (dotted lines) is more interesting:
the development process leads to a general linearly increasing
trend, with some periods of stability or light decrease that start
at the official freeze date of the testing distribution (dotted
vertical lines), and end at the official date of the next stable
public release (solid vertical lines). During these freeze periods
only bug fixes are allowed or packages can be removed, while
it is generally forbidden to add any new package or package
version to the testing distribution.

Fig. 2] shows the evolution over time of the ratio of the
number of strong conflicting packages in a snapshot over all
packages in that snapshot. For the testing distribution (dotted
blue lines) we observe that, starting from 2007 and with
only a few exceptions, this ratio remains between 25% and
15%. We also observe a slight decrease over time, despite the
fact that the number of packages continues to increase with

'The information for a given snapshot date <DATE>
(using the format YYYYMMDD) is available on
http://snapshot.debian.org/archive/debian/< DATE>T060000Z/dists/testing/
main/binary-i386/Packages.bz2

1 1 1
' ' '
40000 - 1 1 1
' ' 1,
1 1 o
' 1 PR
1 1 e 1
30000 - 1 ' o '
' T
1 P | 1
1 g 1 1
e L !
20000 - , . .
o T 1 1
1 1 1
1 1 1
1 1 1
10000 - 1 1 1
1 1 1
il 1 e
- - A8 e foreern s T
— 1 1 1
0= i i [[[i
& g & & &5 & & & & 5 &
0 © ~ @© =) o -]) < [t}
o o o o o = - = = - -
=1 =1 =] =] =1 o o o o o o
« « « « « « « « & « «

Fig. 1. Daily evolution of the total number of packages (in blue) and strong
conflicting packages (in red) for the testing distribution (dotted coloured lines)
and stable distribution (solid coloured lines) of Debian. Solid vertical black
lines correspond to official dates of a stable public release. Dotted vertical
black lines correspond to the freeze dates of the testing distribution preceding
the stable release.

0.5-

0.4-

0.3-

0.2-

o i
0.1-
i i i i i i i i i i i
5 5 & & 5 5 5 & & 5 5
0 © ~ ©)) - « ™ < 0
<] S S] 3 s = = 2 = °
o o o o o o o o o o o
8V} o 8V} 3\ o o (8 8V} (3 8V} o

Fig. 2. Ratio of strong conflicting packages in snapshots of the testing
distribution (dotted blue lines) and the stable distribution (solid blue lines).

each new major release: this corresponds to the fact that the
Debian community actively works to keep strong conflicts at
a minimum. For the stable distribution (solid blue lines) we
observe the same evolutionary behaviour, combined with the
presence of the “plateaus” corresponding to different public
releases of Debian that were also found in Fig. [T} Finally, for
the testing distribution we observe quite a number of “trend
breaks”, i.e., sudden increases in the number or ration of strong
conflicts that appear suddenly and disappear after some time.
This will be the subject of deeper investigation in Section [V]

Fig. [3 displays, per daily snapshot of the testing distribu-
tion, the relative number of strong conflicts per package. Most
of the time there are between 2,000 and 3,000 packages with
exactly one strong conflict. This corresponds to a ratio of about
50% of all strong conflicting packages. There are much less
packages having two strong conflicts, and even less with three
strong conflicts or more.

Fig. [displays the same information but for the stable
distribution. Again we observe the familiar “plateaus” and a
ratio of between 50% and 70% of all conflicting packages that
had only one strong conflict for the considered daily snapshots.

http://coinst.irill.org

1.00 -

of conflicts

o

3

o
|

more
five

four

% packages
o
o
3

three

two

N
a
|

one

0.00 -

2005-01
2006-01
2007-01
2008-01
2011-01
2012-01
2013-01
2014-01
2015-01

Fig. 3. Daily evolution of the number of packages in the testing distribution
having a strong conflict with 1, 2, 3, 4, 5 or >5 packages.

1.00 -

— # of conflicts

more

five

ﬁ

Packages

four
three

% packages

two

o

)

o
|

one

0.00 -

o o o o - - o o o o o

g g g g g g g g T g g

b & s & > s & 4 a < 0

3 3 S 3 3 3 b 3 3) 2

o o (=] (=] o o o o o o o

& & & & & & & & & & &
Time

Fig. 4. Daily evolution of the number of packages in the stable distribution
having a strong conflict with 1, 2, 3, 4, 5 or >5 packages.

Fig. [3] visualises the age of the packages present in the
Debian testing distribution on 6 January 2015. There are in
total 42,603 such packages (out of a total of 67,748 packages
that existed at some time during the entire considered period).
Gaps in the histogram are caused by the freeze periods during
which addition of new packages is not allowed. The peak on
the right represents all packages that have been there since the
beginning of the considered period. It corresponds to 15.8%
of all packages in the distribution of 6 January 2015.

Among all packages considered in Fig. [5} let us focus
on only those 16,101 packages that had a strong conflict
at least once in their lifetime. Fig. [6] visualises the number
of conflicting days for these packages as a percentage of
their total lifetime. We observe that 6,063 (i.e., 37.66%)
packages were almost never conflicting (<5% of the
time). Another peak is observed at the other side of the
spectrum, were we find 21.28% of all packages (3,427 in
total) that had at least one strong conflict >95% of the
time. More specifically, 18.7% of all considered packages
(3,009 in total) had strong conflicts during their entire lifetime.

6000 -

4000 -

Packages

2000 -

Fig. 5. Age (in years) of packages that were present in the Debian testing
distribution on 2015-01-06.

3000 -

™

=]

S

S
|

1000 -

i i i
0.0 0.3 0.6 0.9
Percentage of conflicting days

Fig. 6. Ratio of days that strong conflicting packages in the Debian testing
distribution on 2015-01-06 were in conflict previously.

Fig. [7] shows the same information as Fig. [6| but for
the stable distribution. Unsurprisingly, because packages in
the stable distribution tend to be stable, strong conflicting
packages in this distribution tend to remain in conflict during
their entire lifetime.

3000 -

Packages
S
8
]

1000 -

| |
50 0.75 1.00

i
0.00 0.25 0.
Percentage of conflicting days

Fig. 7. Ratio of days that strong conflicting packages in the Debian stable
distribution on 2015-01-06 were in conflict previously.

IV. RESEARCH METHOD

We will address the questions announced in the introduction
by empirically analysing of the testing package distribution
evolution of Debian’s i386 architecture. More specifically,
we will address each of the following research questions, in
separate subsections. Answers to these questions will allow
us, at the longer term, to come up with quality indicators and
tool support for dealing with strong conflicting packages.
R@Q:1 How can we identify problematic packages in the dis-
tribution?

R@Q-> How long does it take before a strong conflict is intro-
duced in a package?

RQ@3 What is the effect of strong conflicts on the longevity
of packages?

R@Q, How long does it take before all conflicts get removed
from a strong conflicting package?

RQs What causes frequent appearance and disappearance of
strong conflicts?

Because many of these research questions require us to
study time-dependent data, we need to resort to the statistical
technique of survival analysis [6], [7] to be able to answer
research questions related to the introduction and survival
of strong conflicts in packages (RQ2 and RQ@4), as well
as the survival of strong conflicting packages in the Debian
distribution (RQ3).

Survival analysis models the time it takes for events to occur
and allows to take into account so-called right-censored data,
for which it may be unknown whether the event occurred
or not because it has not yet occurred or the subject has
“disappeared”. For example, if we study the survival of all
packages during the period from January 2010 till December
2014, we do not know which of these packages may have
become inactive after the end of the period of study.

Since we cannot assume a particular distribution of survival
times, we need to resort to non-parametric survival analysis
methods such as the Kaplan-Meier estimator [8]]. The survival
function models the probability of an arbitrary subject in the
dataset to survive t units of time after the start of the study.
Kaplan-Meier curves visualise the cumulative probability to
survive from time zero. As a result, these curves start at value
1 (100% probability of survival at time zero) and continue to
decrease monotonically over time.

All survival analysis results produced in this paper were ob-
tained using R scripts that relied on the R package survival for
computation and on the R package ggplot2 for Visualisation

V. EMPIRICAL ANALYSIS
RQ1 How can we identify potentially problematic packages?

As previously discussed, some of the conflicts present in
the repository are there by design, but others are unjustified
and harmful. Distinguishing the good from the bad ones is a
complex task that has traditionally required a lot of manual

2See |cran.r-project.org/web/packages/survival| and cran.r-project.org/web/
packages/ggplot2.

investigation, with many issues going unnoticed for quite
an extensive amount of time. In this research question, we
look for a way of automating the detection of potentially
problematic packages, and reduce the amount of effort needed
to nail down real issues.

a) Aggregate Analysis

A natural approach to identify potentially problematic pack-
ages is to look for trend breaks in the evolution of the
absolute or relative number of strong conflicting packages in
the distribution: sudden increases in their number is a clear
hint that some problematic package has appeared, and sudden
decreases indicate that some problematic package has been
fixed. Many discontinuities are clearly visible in Fig. [T] and [2]
with peaks ranging from a few hundreds to over 4000 strong
conflicts.

We retrieved all trend breaks that added at least 500 strong
conflicts, using the coinst-upgrade tool described in [5]] that is
able to identify the root causes for the changes in conflicts be-
tween two repositories. We then manually inspected each trend
break, and checked it against the information available from
the Debian project, to determine the nature of the problematic
packages and the degree of seriousness of the problem, and
paired the events where each problematic package was first
introduced and then removed.

The result of this analysis is summarised in Table For
each problematic trend break, we report the date of the trend
break, the number of new strong conflicts that were introduced
at that date, the main root cause of the problem, the number
of days it took to fix the problem, and the number of strong
conflicts that were resolved by the fix. We also report whether
the root cause of the problem would have been prevented
by using one of the more recent tools comigrate [9] and
challenged [10] that have been developed to improve the
quality assurance process.

From Table [[Il we observe that a few trend breaks were
dayflies that were fixed the day after their introduction, while
several took a few weeks, three took hundreds of days to fix,
two have been fixed in several phases, and two still remain
unfixed today. Most of these issues would have been captured
by the comigrate tool if it would have been available at that
time, and one issue could have been anticipated using the
challenged tool.

Interestingly, a few relevant trend breaks are not identifiable
by any of the existing tools, while a check for trend breaks
in the aggregate analysis (as done here) would have drawn
attention to them. This provides evidence of the added value
of our approach.

b) Individual Analysis

Once a trend break has been spotted, one still needs to iden-
tify manually what are the potentially problematic packages.
This process can be automated by studying their characteristics
related to strong conflicts by resorting to three simple metrics
for each package:

cran.r-project.org/web/packages/survival
cran.r-project.org/web/packages/ggplot2
cran.r-project.org/web/packages/ggplot2

Trend breaks Start date Days to fix Main root cause (manually identified) Tool able to detect | Relevance
+4379/-4201 | 2006-06-02 19 | updated x11-common conflicts with videogen comigrate medium
+2364/-2371 | 2011-03-30 1 | new libgdk-pixbuf* conflicts with libgtk2.0-0 this paper medium
+1658 | 2009-09-16 not fixed yet | new liboss-salsa-asound2 conflicts with all alsa tools this paper minor
+1279/-809 | 2005-10-15 120 | reinstallable cdebconf conflicts with debconf this paper serious
+1268/-1270 | 2012-01-12 10 | updated initscripts conflicts with sysklogd comigrate serious
+1188/-2442 | 2006-09-01 984 | updated python conflicts with ppmtofb challenged minor
+1025/-1282 | 2011-06-19 45 | updated initscripts conflicts with selinux-policy-default comigrate serious
+859/-1126 | 2012-06-23 1 | new libopenblas-base conflicts with libatlas3gf-* this paper medium
+763 | 2011-04-26 not fixed yet | updated libsdl1.2debian conflicts with liboss-salsa-asound2 | comigrate minor
+758/-756 | 2012-05-18 1 | updated netbase conflicts with ifupdown comigrate serious
+727 | 2013-05-05 | multiple dates | new libopenmpi1.6 conflicts with libopenmpi1.3 comigrate medium
same same multiple dates | less conflicts with man comigrate serious
+706/-732 | 2008-05-17 11 | updated libldap-2.4-2 conflicts with libldap2 comigrate minor
+682/-1074 | 2007-09-10 316 | updated libpam-modules conflicts with libpam-umask comigrate minor
+633/-577 | 2013-07-26 19 | updated initscripts conflicts with bootchart comigrate minor
+632 | 2007-04-08 | multiple dates | new package libgif4 conflicts with libungif4g this paper minor
+536/-558 | 2011-03-21 31 | new packages libhttp-* conflicts with libwww-perl this paper medium

AGGREGATE ANALYSIS OF TREND BREAKS AND THEIR MANUALLY IDENTIFIED ROOT CAUSE. THE FIRST COLUMN DISPLAYS +N/-M WHERE N IS THE

TABLE 11

NUMBER OF CONFLICTS INTRODUCED BY THE TREND BREAK AND M THE NUMBER OF RESOLVED CONFLICTS WHEN THE ROOT CAUSE IS FIXED.

o minimum number of strong conflicts

o maximum number of strong conflicts

o conflicting days over mean, i.e., number of days the pack-
age has more strong conflicts than mazimumdtminimum

The motivation for choosing these metrics is that one
should focus on packages with a significant amount of strong
conflicts, while at the same time ignoring those packages that
have such a large number of conflicts only for a short period
of time. Indeed, the latter case usually corresponds to transient
problems, like the dayflies that we were able to identify in the
previous aggregate analysis.

Potentially problematic minimum | maximum | conflicting days
package conflicts conflicts over mean
libgdk-pixbuf2.0-0 0 675 1349
libgdk-pixbuf2.0-dev 0 3320 915
liboss4-salsa-asound2 2963 3252 891
liboss-salsa-asound2 1741 2664 862
klogd 3 502 709
sysklogd 3 719 639
ppmtofb 0 719 639
selinux-policy-default 0 719 633
aide 0 719 633
libpam-umask 0 720 546
libldap2 0 719 546
libaws2.2 0 719 546
libaws-bin 0 2247 315
libhugs-Ildap 0 2620 44
bootchart 0 598 31
libopenblas-base 0 1171 28
TABLE III

TOP 16 OF POTENTIALLY PROBLEMATIC PACKAGES IDENTIFIED BY THREE
SIMPLE METRICS. PACKAGES LISTED IN BOLDFACE ALSO APPEAR AS A
ROOT CAUSE IN TABLE[

After ordering the packages with respect to our three
metrics, we obtain a list of potentially problematic packages,
of which we presented the first lines in Table Interestingly,
we find back most of the packages that were already identified
during the aggregate analysis (see Table[[I), with the important
advantage that the proposed metrics can be computed fully
automatically, and do not require any manual inspection.

RQs How long does it take before a strong conflict is
introduced in a package?

For our second research question, we are interested in the
first time a strong conflict appears in a package. We hypothe-
sise that newly introduced packages have a high likelihood of
introducing strong conflicts.

To analyse this, we have to exclude all packages that are
present at the first day of the considered period for which we
have data, since we have no way of knowing when a strong
conflict first appeared in them. This leaves us with 54,988
packages that are introduced somewhere during the considered
timeframe.

30000 -

20000 -

Packages

10000 -

0-

1
After introduction

1
Upon introduction

Never

Fig. 8. Number of newly introduced Debian packages, classified according
to when the first strong conflict was introduced for that package: never, upon
package introduction, or after package introduction.

These packages can be classified into three different cate-
gories, summarised in Fig. [§] and discussed below.

1) Most new packages (64.59%, corresponding to 35,516
packages) never encounter a strong conflict.

2) For the 19,472 packages (i.e., 35.41%) that do encounter
a strong conflict, in the majority of the cases (52.91%,
corresponding to 10,302 out of 19,472 packages) a strong

conflict is already present at the moment of introduction
of the package.

3) For the remaining 9,170 strong conflicting packages, a
strong conflict was introduced at least one day (but
often much longer) after package introduction. The
distribution of the number of days before the first strong
conflict is introduced has a median value of slightly below
one year (326 days to be precise) and follows a decreasing
trend (see Fig. 9).

2500 -
2000 -
1500 -

1000 -

| | |
0 1000 2000 3000

Fig. 9. Frequency distribution of the number of days (x-axis) before strong
conflicts arise in newly introduced packages. Packages without strong conflicts
or containing strong conflicts at the day of their creation are excluded.

It is important to note that the results in Fig. [9] are an
underapproximation, since packages that have not encountered
a strong conflict during the considered period may still become
strong conflicting in the future. Survival analysis takes into
account this probability. Fig. [I0] shows the Kaplan-Meier
curve. It shows the cumulative probability S(¢) that a package
stays without conflicts for at least ¢ years. The curve shows
that a package has around 80% of chance of never gaining
any conflicts in its first 10 years of existence. Moreover, as
the curve appears to converge and because of its shape, the
longer a package has survived without strong conflicts, the less
likely it becomes that a strong conflict will appear.

1.0

0.0 02 04 06 0.8

T T T T 1
0 2 4 6 8 10

Fig. 10. Kaplan-Meier curve for the introduction of strong conflicts in non-
conflicting packages. The time scale on the x-axis is expressed in number of
years.

RQs3 What is the effect of strong conflicts on the longevity of
packages?

First, we study whether the absence of strong conflicts upon
introduction of a package has an effect on its longevity. For
the same reason as in R(Q)2 we use survival analysis to answer
this question. We analyse only those 54,988 packages that
are newly introduced after the beginning of the considered
period, because we cannot know the age of the other packages.
Fig. [I1] shows the Kaplan-Meier curves for the cumulative
probability of the survival function. The green curve shows the
survival probability for packages without strong conflicts upon
introduction, the red curve shows the probability for packages
containing strong conflicts at the time of package introduction.

e
After
g — Introduction
o
© |
o
< |
o
N
o
o |
° T T T T T

0 2 4 6 8 10

Fig. 11. Kaplan-Meier curves of the longevity (in years) of Debian testing
packages with strong conflicts upon (in red) or after (in green) the time the
package got introduced.

We used the survdiff function from the R package survival
to test for difference with statistical significance between two
survival distributions. This function implements the G* family
of nonparametric tests [L1]. If p = 0 (as in our case), this
becomes a log-rank test, also known as a Mantel-Haenszel
test [12]], [[13]. Using this test, we found that packages for
which a strong conflict has been introduced after introduction
of the package live longer than packages that already had a
strong conflict upon introduction. When looking at the figure,
however, the difference is fairly small, and becomes smaller
as the package survives longer.

e

; — Conflicts

S No conflicts

©

S i,

< et

3

o

8

o |

e T T T T T
0 2 4 6 8 10

Fig. 12. Kaplan-Meier curves of the longevity (in years) of Debian testing
packages without (in green) or with at least one strong conflict (in red) during
their lifetime.

Secondly, we study whether the absence of strong conflicts
during the entire observed lifetime of a package has an
effect on its longevity. Fig. [I2] shows the Kaplan-Meier curve

for the survival probabilities. Again, a log rank test reveals
a difference with statistical significance: packages suffering
from strong conflicts during their lifetime tend to live longer
than packages without strong conflicts. This difference is in
the opposite direction of what one would intuitively expect.
When looking at the figure, however, the observed difference
appears to be negligible.

Thirdly, we compare the longevity of packages that were
strong conflicting during their entire lifetime (i.e., 100% of the
time) with packages that only had strong conflicts occasionally
(<100% of the time). Fig. shows the Kaplan-Meier curve
for the survival probability. Again, a log rank test reveals a
difference with statistical significance: packages that are in
strong conflict occasionally tend to live longer than packages
that are in strong conflict during their entire lifetime. In this
case, the difference is much more pronounced. Nevertheless,
a package which is in conflict its entire lifetime has still more
than 25% probability to survive more than 10 years.

1.0

Occasionnally
— Always

0.0 02 04 06 08

T T T T 1
0 2 4 6 8 10

Fig. 13. Kaplan-Meier curves of the longevity (in years) of Debian testing
packages with occasional strong conflicts (green) versus packages with strong
conflicts during their entire lifetime (red).

RQ4 How long does it take before all conflicts get removed
from a strong conflicting package?

This question is the counterpart of question R()3 where we
studied how long packages survive. With R()4 we analyse how
long strong conflicts survive. For this analysis, we do not in-
clude those packages that were already in strong conflict at the
beginning of the considered period. We therefore exclude 220
packages that already existed at the beginning of the studied
period, that still existed at the end of the considered period,
and that contained strong conflicts all their lifetime. Because
of this, we might slightly underestimate the probability for a
strong conflict to be long-lived.

Fig. [14] presents the Kaplan-Meier curve of the probability
S(t) of a package to stay in strong conflict at least t years.
We make the distinction between strong conflicts that were
introduced upon package introduction and those that were
introduced after package introduction. The survival probability
for the latter starts with a steep descent. Indeed, most strong
conflicts introduced after package introduction do not last
very long: 50% of them stay less than 24 days. In contrast,
50% of the strong conflicts that were already present upon
package introduction stay more than 11 months! Similarly,

1.0

After package introduction
— —— Upon package introduction

0.0 02 04 06 0.8

T T T T 1
0 2 4 6 8 10

Fig. 14. Kaplan-Meier curve of the probability (over time) for all strong
conflicts to get removed from packages.

strong conflicts added upon package introduction have a 15%
probability to survive at least 10 years, while those added
after package introduction have less than 5% probability of
surviving 10 years or more.

Even if most strong conflicts are short-lived, some packages
will continue to have strong conflicts for a long time, and it
may not be possible to remove these conflicts. An example
of such a package is courier-imap, which provides an IMAP
mail server and which is in conflict with any other package
providing an IMAP server.

4000 -

version

3000 - — testing

variable
2000 - — week
— month

1000 - more

O
2013401“
f§
-2

2014-01

2005-01 ‘AL
:_E%:=-
=

2012-01~ =

2006-01
2007-01
2008-01
2009-01
2010-01
2011-01
2015-01

Fig. 15. Number of Debian testing packages for which at least one strong
conflict got introduced and for which all strong conflicts were removed after,
respectively: less than one week (blue); between one week and a month (red);
more than a month (purple).

Because of the short-lived nature of strong conflicts, we
analysed the history of the conflict resolution times in Fig. [I5]
As in Fig. [} vertical lines indicate the start date and end
date of each freeze period. Regardless of the resolution time,
we observe that strong conflicts do not get introduced during
freeze periods. This is indeed what we expected, since the
freeze periods are meant to fix bugs and resolve problems,
rather than introducing new problems. When comparing the
dates of strong conflict introduction for those packages with
short resolution times (less than a week) to those packages
with longer resolution times (more than a week), we cannot
reveal any specific pattern. Except perhaps for the fact that,
since 2011, the introduction of strong conflicts in packages
with short resolution times tends to be concentrated just before
or just after a freeze period.

RQs5 What causes frequent appearance and disappearance of
strong conflicts?

We now focus on the events that cause a package to become
strong conflicting or to loose all its strong conflicts.

During the considered period, there were 26,266 packages
that became strong conflicting 49,768 times. Similarly, there
were 25,178 packages that lost all their strong conflicts 51,248
times.

TABLE IV
DISTRIBUTION OF THE NUMBER OF TIMES EACH PACKAGE BECAME strong
conflicting.
< 50% | 60% | 70% | 80% | 90% | 100%
1 2 2 3 4 20
TABLE V

DISTRIBUTION OF THE NUMBER OF TIMES EACH PACKAGE LOST ALL ITS
strong conflicts.

<50% | 60% | 70% | 80% | 90% | 100%
1 2 2 3 4 21

Tables [TV] and [V] show that most packages became strong
conflicting or lost all their strong conflicts only once, while
for only very few packages this happened many times (up
to respectively 20 and 21 times). We manually analysed the
packages with most repeated strong conflict additions and
removals: erlang, openoffice.org-thesaurus-en-us and a
few related packages. The explanations we found for these
frequent state changes are twofold.

A first reason is that new versions of related packages
can get introduced in the testing distribution at slightly
different times. This introduces temporary incompatibilities
because there is no explicit dependency between the involved
related packages. The old Debian migration tools could not
cope with these situations, while the more recent comigrate
tool would prevent this. This happened twelve times for the
packages erlang and erlang-doc-html, and four times for the
packages openoffice.org-thesaurus-en-us and openclipart-
openoffice.org (later renamed openclipart-libreoffice).

A second reason for repeated addition and removal of
strong conflicts is that some packages have a large number
of dependencies, and are hence more likely to be impacted.
This was especially the case for OpenOffice packages, but
also happened for erlang that depends on iniscripts which
got transient strong conflicts three times.

VI. DISCUSSION

With R(Q); we have shown that a simple approach based
on monitoring trend breaks in the number of strong conflicts
present in the distribution is able to identify several significant
disruptions in the past history of Debian packages. Manual
inspection of these issues revealed that most of them uncover
medium to serious issues in the quality of the repository, as

summarised in Table Many of these issues would have
been prevented by using recent tools like comigrate [9] and
challenged [10], which are now being gradually introduced
in the Debian QA process. This constitutes strong evidence
of the relevance of these tools, which may be adapted to
other kinds of repositories. We also showed that some of the
uncovered issues would have not been captured by any of
the existing tools, while a simple check for sudden increases
in the number of strong conflicts would spot them. This
provides strong motivation for adding such a check in Debian’s
QA process, and more generally to the QA process for all
GNU/Linux distributions.

For questions R(Q)2, RQs and RQ4 we studied the relation
between the presence of strong conflicts on the longevity
of packages. To this extent we made use of the statistical
technique of survival analysis.

RQ> revealed that, for all packages in the Debian testing
distribution that were newly introduced during the considered
analysis period, strong conflicts only occurred in about one
third of them (35.41%). We also observed that, the longer a
package has survived without strong conflicts, the less likely
it becomes that strong conflicts will appear.

With RQ3; we assessed the effect of strong conflicts on the
longevity of packages. Packages that were introduced conflict-
free tend to live longer than packages that already had a
conflict at the moment they were introduced, but the observed
difference is quite small. For those packages where strong
conflicts did occur, in roughly half of the cases strong conflicts
were already present at the moment of package introduction.

Finally, packages that are in conflict occasionally tend to
live longer than packages that are always in conflict, with
a clear observed difference. Hence, it makes sense to focus
on packages that are always conflicting, to detect as early as
possible those which need to be dropped.

With RQ)4 we studied the time it takes for all strong conflicts
in a package to disappear. We observed that for those packages
that already had strong conflicts upon package introduction, it
takes much longer (if at all) before all these strong conflicts get
removed than for packages that started off without any strong
conflicts. Although this may seem contradictory at first, it is
consistent with the intuition that a strong conflict present at
the moment of package introduction may be actually needed
to express intended incompatibilities, and does not necessarily
represent a real defect. This also explains why many strong
conflicts never get removed.

We also observed that, if a previously existing package
becomes strong conflicting, it often does not take a long time
before these conflicts get removed (less than 24 days in half
of the cases), which is strong evidence that these conflicts are
not intended incompatibilities, but defects in the repository
that need to be fixed. Their present is clear indication of the
need of incorporating better tools in the QA process.

Finally, our analysis of the packages that most frequently
switched from conflicting to non conflicting (R({)5) showed

again clearly the need for modern tools like comigrate or
an improved version thereof that are able to prevent the ap-
pearance of new incompatibilities. Without such tools, several
packages get impacted and fixed over and over again with
every new version coming in.

VII. THREATS TO VALIDITY

The foremost threat to validity relates to generalisability.
We have restricted ourselves to Debian in this paper, but the
lessons learned from our study of the evolution of package
incompatibilities could be applied to other package-based
software distributions as well. Such insights, as well as the
tools and best practices used for reducing the extent of the
problem (e.g., comigrate in the context of Debian) could
help maintainers of other distributions to improve upon their
practices and increase the quality of their repositories.

In most of our analyses, we had to exclude those packages
that already existed before the considered 10-year period,
because earlier data is unfortunately no longer available, and
those packages that continue to exist after the considered
period. If we could include these packages, the obtained results
might change. We are fairly confident, however, that the main
conclusions of our analysis will remain the same, given the
fact that the evolution history over time remained fairly stable.

Our analysis is based on the output produced by the coinst
tool. The risk that possible bugs in this tool may affect the
outcome of our results is quite limited because the algorithms
underlying coinst have been formally verified in Coq [14]],
and this tool has been used repeatedly in the past by different
researchers. Moreover, conflicts identified by coinst can be
independently checked using other existing tools, like dose-
deb-coinstall from the Dose suite used regularly on Debian
repositories [15].

Finally, the scripts that we have developed for our empirical
analysis may still contain some bugs, and the obtained results
may be biased by some simplifying assumptions we have made
during our analysis.

VIII. RELATED WORK

The Debian free software distribution is one of the largest
organised collections of software packages today, and the
availability of the full history of its evolution has made it an
ideal object of study over the last few years, to the point that
several infrastructures have been built to ease the extraction
of information from this historical data: the Ultimated Debian
Database (UDD) described by Nussbaum et al. in [16], and
the Debsources archive described by Zacchiroli et al. in [17].

At the macro level, several characteristics of the Debian
package repositories have been discussed in the literature.
The small-world structure of the repositories is shown in [[18]]
and [19]. The growth of the distribution, according to its
package size and programming language usage has been first
analysed in [20] and more recently in [17]. Changes in package

characteristics such as age, maintainers, bugs and popularity
are charted in [21].

Another series of studies focused on identifying uninstal-
lable packages in a repository: since the pioneering work
of [22] we know that, despite the NP-compeleteness of
the general problem, efficient tools can be developed for
identifying them. Galindo et al. [23] even propose to use
software product line tools for this task. Strong dependencies
and conflicts have been studied in [24]], [3]. Incompatibilities
among sets of packages, whose origins have been classified
in [2], can be efficiently computed [4] and used to guide
the acceptance of new packages in the distribution [5]. The
current paper builds on the above described tools to perform
an extensive historical analysis of these incompatibilities.

With motivations similar to ours, Bavota et al. studied the
14-year evolution of project dependencies and their likely im-
pact on upgrade problems in the Apache ecosystem, consisting
of 147 projects [25]. A significant difference with our work
is that they performed an in-depth manual investigation of
the issues reported in the bug tracker to identify the origin
of incompatibilities, while our work relies to a large extent
on advanced automated tools such as coinst and comigrate,
since manual inspection is unfeasible at the scale of a package
repository as large as Debian.

The statistical technique of survival analysis that we have
used to respond to research questions R(Q)s to R(Q)4 has been
used by other researchers as well in the context of empirical
software engineering. Samoladas et al. [26] used it to predict
the survivability of open source projects over time. Scanniello
[27] analysed dead code in five open source Java software
systems. Kyriakakis et al. [28] studied function usage and
function removal in five large PHP applications.

IX. FUTURE WORK

The different techniques employed in this incompatibili-
ties mining effort may be aggregated into a metrics-based
dashboard targeted to Debian package maintainers and users,
replicated for all supported architectures, besides the i386
we studied here, and integrated into a platform such as
Debsources, that has been specifically created to analyse and
reason about the evolution of the Debian distribution [17]].

The current empirical analysis was only based on metrics
related to packages and their strong conflicts. A natural future
line of investigation is to augment this data taking into account
informations related to the package maintainers (such as
proportion and size of maintained packages, experience [29],
territoriality, turnover [30]] and focus [31]), or to user adoption,
exploiting the data collected by the Debian Popularity Contest
project (popcon.debian.org).

Finally, we plan to investigate to what extent the findings
extracted from, and the tools used for, analysing the Debian
history can be reused in the framework of other package-based
software distributions, such as NPM and CRAN [32].

popcon.debian.org

X. CONCLUSION

The incompatibilities among packages known as strong
conflicts are an important problem in package-based distri-
butions, and have been studied in a series of recent research
works [4], [5], [9]. Leveraging the coinst, coinst-upgrade
and comigrate tools issued from this research work, we
empirically analysed the evolution of strong conflicts among
packages for all the available history of the Debian package-
based software distribution for the i386 architecture, which
spans a decade.

While the number of packages in the Debian testing
distribution increases linearly, the ratio of packages with
strong conflicts stays more or less constant, with occasionally
important decreases or increases in the number of strong
conflicts. This reflects the fact that the Debian maintainer make
a specific effort to reduce as much as possible strong conflicts,
which must be accepted only when they describe component
incompatibilities that cannot be otherwise eliminated.

We investigated the likely causes of introducing or removing
strong conflicts by relating them to the presence of declared
dependencies and declared conflicts stored in the control file
metadata of each Debian package. We observed that the
introduction or removal of declared conflicts in a limited
number of packages tends to spread across thousands of other
packages because of direct or indirect dependencies.

Using the statistical technique of survival analysis, we
investigated the moment and cause of introduction and removal
of strong conflicts in Debian packages, as well as the relation
with the packages’ longevity. We found limited evidence that
packages containing strong conflicts live longer than those
without. We also found evidence that:

« packages that are always in strong conflict have a smaller
survival probability than those who are not;

« the longer a package has survived without strong con-
flicts, the less likely it is that a strong conflict will appear;

o strong conflicts that are already present upon package
introduction tend to stay present much longer than strong
conflict that are added later;

o half of the strong conflicts that appear after package
introduction stay a short amount of time (< 1 month).

These findings confirm the importance of adopting tools and
techniques that prevent the introduction of strong conflicts.
Without these tools, the historical analysis reveals that a lot
of defects get regularly reintroduced, with peaks reaching tens
of times for the same package.

Using metrics related to the presence, amount and duration
of strong conflicts, we could identify several packages that
have been reported as problematic by the Debian community
in the past. We have shown how various of these issues would
have been prevented by using recently developed tools, but
several issues spotted by our metrics would not be captured
by any existing tool. This is a strong motivation for introducing
these metrics in the future into the repository quality assurance
process. As an added bonus, the simplicity of our metrics
makes them easily transposable to other package repositories.

ACKNOWLEDGMENTS

This research was carried out in the context of ARC research
project AUWB-12/17-UMONS- 3. We thank S. Zacchiroli and
A. Serebrenik for feedback on an earlier version of this paper.

REFERENCES

[1] T. D. Project, “Debian policy manual, section 7,” https://www.
debian.org/doc/debian-policy/ch-relationships.html, March 2015, re-
trieved March 2015.

[2] C. Artho, K. Suzaki, R. Di Cosmo, R. Treinen, and S. Zacchiroli,
“Why do software packages conflict?” in Int’l Conf. Mining Software
Repositories, 2012, pp. 141-150.

[3] R. Di Cosmo and J. Boender, “Using strong conflicts to detect quality
issues in component-based complex systems,” in Indian Software Engi-
neering Conf., 2010, pp. 163-172.

[4] J. Vouillon and R. Di Cosmo, “On software component co-installability,”
ACM Trans. Softw. Eng. Methodol., vol. 22, no. 4, p. 34, 2013.

[5] J. Vouillon and R. Di Cosmo, “Broken sets in software repository
evolution,” in Int’l Conf. Software Engineering, 2013, pp. 412-421.

[6] D. Kleinbaum, Survival Analysis a Self Learning Text, 2nd ed. Springer,
2005.

[71 J. P. Klein and M. L. Moeschberger, Survival Analysis: Techniques for
Censored and Truncated Data, 2013.

[81 P. M. E.L. Kaplan, “Nonparametric estimation for incomplete observa-
tions,” J. American Statistical Association, vol. 53, no. 282, pp. 457481,
1958.

[9]1 J. Vouillon, M. Dogguy, and R. D. Cosmo, “Easing software component

repository evolution,” in Int’l Conf. Software Engineering, 2014, pp.

756-766.

P. Abate, R. Di Cosmo, R. Treinen, and S. Zacchiroli, “Learning from

the future of component repositories,” in Proceedings of the 15th ACM

SIGSOFT symposium on Component Based Software Engineering, ser.

CBSE ’12. New York, NY, USA: ACM, 2012, pp. 51-60. [Online].

Available: http://doi.acm.org/10.1145/2304736.2304747

D. P. Harrington and T. R. Fleming, “A class of rank test procedures for

censored survival data,” Biometrika, vol. 69, pp. 553-566, 1982.

N. Mantel, “Evaluation of survival data and two new rank order statistics

arising in its consideration,” Cancer Chemother Rep., vol. 50, no. 3, pp.

163-170, 1966.

R. Peto and J. Peto, “Asymptotically efficient rank invariant test pro-

cedures,” Journal of the Royal Statistical Society, vol. 135, no. 2, pp.

185-207, 1972.

[14] The Coq Development Team, The Coq Proof Assistant Reference

Manual — Version V8.2, 2008. [Online]. Available: http://coq.inria.fr

P. Abate and R. Treinen, “The dose-debcheck primer,” https:

//gforge.inria.fr/docman/view.php/4395/8241/debcheck- primer.html, Oc-

tober 2012, retrieved November 2012.

L. Nussbaum and S. Zacchiroli, “The ultimate Debian database: Con-

solidating bazaar metadata for quality assurance and data mining,” in

Working Conf. Mining Software Repositories (MSR), 2010, pp. 52-61.

M. Caneill and S. Zacchiroli, “Debsources: Live and historical views

on macro-level software evolution,” in Int’l Symp. Empirical Software

Engineering and Measurement, 2014, p. 28.

N. LaBelle and E. Wallingford, “Inter-package dependency networks in

open-source software,” Tech. Rep., 2004.

[19] J. Boender and S. Fernandes, “Small world characteristics of FLOSS
distributions,” in Software Engineering and Formal Methods Collocated
Workshops — Revised Selected Papers, 2013, pp. 417-429.

[20] J. M. Gonzailez-Barahona, G. Robles, M. Michlmayr, J. J. Amor, and

D. M. German, “Macro-level software evolution: a case study of a large

software compilation,” Empirical Software Engineering, vol. 14, no. 3,

pp. 262-285, 2009.

R. Nguyen and R. C. Holt, “Life and death of software packages:

an evolutionary study of debian,” in Center for Advanced Studies on

Collaborative Research (CASCON), 2012, pp. 192-204.

F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon, B. Durak, X. Leroy,

and R. Treinen, “Managing the complexity of large free and open source

package-based software distributions.” in Int’l Conf. Automated Software

Engineering (ASE), 2006, pp. 199-208.

(10]

(11]

(12]

[13]

[15]

[16]

[17]

[18]

(21]

[22]

https://www.debian.org/doc/debian-policy/ch-relationships.html
https://www.debian.org/doc/debian-policy/ch-relationships.html
http://doi.acm.org/10.1145/2304736.2304747
http://coq.inria.fr
https://gforge.inria.fr/docman/view.php/4395/8241/debcheck-primer.html
https://gforge.inria.fr/docman/view.php/4395/8241/debcheck-primer.html

[23]

[24]

[25]

[26]

[27]

[28]

J. A. Galindo, D. Benavides, and S. Segura, “Debian packages reposi-
tories as software product line models. towards automated analysis.” in
Int’l Workshop on Automated Configuration and Tailoring of Applica-
tions (ACoTA), 2010, pp. 29-34.

P. Abate, R. Di Cosmo, J. Boender, and S. Zacchiroli, “Strong dependen-
cies between software components,” in Int’l Symp. Empirical Software
Engineering and Measurement, 2009, pp. 89-99.

G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “How
the Apache community upgrades dependencies: an evolutionary study,”
J. Empirical Software Engineering, Sept. 2014.

I. Samoladas, L. Angelis, and I. Stamelos, “Survival analysis on the
duration of open source projects,” Information & Software Technology,
vol. 52, no. 9, pp. 902-922, 2010.

G. Scanniello, “Source code survival with the kaplan meier estimator,”
in Int’l Conf. Software Maintenance, 2011, pp. 524-527.

P. Kyriakakis and A. Chatzigeorgiou, “Maintenance patterns of large-
scale PHP web applications,” in Int’l Conf. Software Maintenance and

[29]

(30]

[31]

[32]

Evolution, 2014, pp. 381-390.

D. Izquierdo-Cortazar, G. Robles, and J. M. Gonzailez-Barahona, “Do
more experienced developers introduce fewer bugs?” in Int’l Conf. Open
Source Systems, 2012, pp. 268-273.

D. Izquierdo-Cortazar, G. Robles, F. Ortega, and J. M. Gonzdlez-
Barahona, “Using software archaeology to measure knowledge loss in
software projects due to developer turnover,” in Hawaii Int’l Conf.
Systems Science, 2009, pp. 1-10.

D. Posnett, R. D’Souza, P. Devanbu, and V. Filkov, “Dual ecological
measures of focus in software development,” in Int’l Conf. Software
Engineering. 1EEE, 2013, pp. 452-461.

M. Claes, T. Mens, and P. Grosjean, “On the maintainability of CRAN
packages,” in Int’l Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE). 1EEE, 2014, pp. 308-312.

	Introduction
	Context
	About Debian
	Terminology
	Mining Strong Conflicts

	Overall Characterisation
	Research Method
	Empirical Analysis
	Discussion
	Threats to Validity
	Related Work
	Future Work
	Conclusion
	References

