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ABSTRACT: We investigate the interaction of light in gain-
enhanced multilayered hyperbolic metamaterials in the strong
interaction regime. Pumping the dye in the dielectric layers
from inside the light cone, while emission occurs into the
lower hyperbolic band outside the light cone, eases the
problem of light incoupling. In the strong coupling regime
both emission and absorption lines cause a distortion of the
plasmonic modes due to Rabi splitting and a -symmetry-
broken phase, with generation of exceptional points at loss−
gain compensation frequencies. We derive a semiclassical
model that describes these phenomena for finite and infinite
devices in detail, requiring only the overlap factor and the complex frequencies of the dye transition and the optical mode.
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In the last decades metamaterials have attracted tremendous
scientific interest owing to their abilities to manipulate

electromagnetic waves in manners not found in nature.1−3

Driven by recent advances in nanolithography and nano-
chemistry, new types of functionalized optical metamaterials
have emerged, profiting from a strongly enhanced interaction
with inclusions of nonlinear and gain materials on subwave-
length scales.4−8 In particular, valuable opportunities are offered
by hyperbolic metamaterials (HMMs), which typically consist
of periodic stacks of metallic and dielectric layers or arrays of
metallic nanorods inside a dielectric host.9 It is the combination
of structural simplicity10−12 with a range of interesting
properties (such as negative refraction,13 an extremely large
optical density of states,14−16 large propagation constants,17

subwavelength imaging far below the diffraction limit18,19) that
makes these metamaterials ideal candidates for a range of
applications, such as lithography20,21 and sensing.22 However,
like many metamaterials based on metal−dielectric structures,
HMMs often suffer from high ohmic losses.23−25 The inclusion
of gain media in the dielectric material offers a pathway to
mitigate these losses26−32 and gives rise to the new class of
active HMMs, where light strongly interacts with quantum
transitions of the active medium.33−36

Here, we investigate a multilayer HMM structure infiltrated
with dye molecules inside the dielectric layers, which can
conveniently be modeled on the basis of a four-level (quantum)
system. While the weak coupling regime was studied for loss
compensation,37 we here consider strong coupling with large
oscillator strengths, where light enters a dressed state with
electronic transitions associated with both the absorption and
the emission line of the dye.38−40 Previously, Shekhar and

Jacob41 theoretically investigated strong coupling between the
intersubband absorption line of a multiple quantum-well gain
medium and the bulk polariton of a finite HMM. However, the
simultaneous interaction of light with an absorption and an
emission line, as present in optically pumped gain media such
as dyes, has, to the best of our knowledge, not been studied yet.
The proposed HMM is fundamentally simple to fabricate

and features a band structure optimized for efficient incoupling
from within the light cone. It also exhibits rich physics that ties
multiple concepts together, as exposed by detailed analytical
and numerical modeling. The absorption line of the dye leads
to strong coupling features, with large momentum modes
exhibiting the typical avoided crossings via Rabi splitting. On
the other hand, the gain provided gives rise to exceptional
points (EPs) close to the emission line, which are actively
examined in parity−time ( ) symmetry studies.42,43 We
show that these EPs lead to group velocity singularities and
arise naturally when the band edges intersect with the inversion
line, i.e., where the losses are precisely compensated by gain.
Thus, the four-level dye brings various related features together
in a judiciously tailorable fashion. Both the finite and the
infinite multilayers are discussed, each time showing the same
class of effects, but in a particularly distinctive way. An
important result is our semianalytical theory, which faithfully
models and explains the behaviors of the modes at play and
matches very well with exact transfer-matrix calculations.
In Section 1 we detail the structure, together with the dye

parameters, and analyze the passive dispersion diagram. The
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theory for passive and optically pumped active HMMs is
presented in Section 2, including a semianalytical model for
coupling with the electronic dye transitions. In the results
Section 3 we first discuss the interaction of finite and infinite
HMMs with absorption or emission lines in isolation and then
with the full four-level dye model.

1. STRUCTURE

As a practical realization of an optically pumped HMM we
propose a multilayer structure where dye-infiltrated epoxy is
spin-coated on silver layers,44 represented in Figure 1a (period
delimited by the orange dashed lines). The dye that provides
gain is represented by a four-level model, with energy levels as
sketched in Figure 1b. Pumping of the dye and population
inversion involves the excitation of electrons from the
fundamental level with energy E1 to the excited state E2 (blue
arrow in Figure 1b). The electrons relax through fast
nonradiative processes (green arrows in Figure 1b), and
spontaneous and stimulated light emission occurs via the
optically active transition from E3 to E4 providing gain (red
arrow in Figure 1b).
Further, to accommodate for optical pumping and solve the

problem of light injection into hyperbolic modes literally on the
fly, we propose a structure where high-energy pump light can
propagate inside the structure to excite the dye, providing gain
at the lower emission frequency. A typical dispersion of a
hyperbolic multilayer is depicted in Figure 1c, where the orange
curves are the dispersions at the center of the Brillouin zone
and the purple curves are those at the edge of the Brillouin
zone (see below for more details). The multilayer presents thus
two distinct plasmonic bands, the lower one providing the
propagation of extremely high momentum waves (red-shaded
zone in Figure 1c) and the upper one lying partially inside the
light cone (gray-shaded zone in Figure 1c). For this reason it is
crucial that the absorption line of the dye falls within the upper
band inside the light cone, while the emission line resides in the
lower band (horizontal dashed lines in Figure 1c). This
particular arrangement allows for light emission into the
hyperbolic modes, benefiting simultaneously from both a strong
field enhancement and large wavevectors.

2. THEORY

In this section we start with a standard theory of passive
HMMs; then we motivate our choice of parameters for the dye-
infiltrated structure, and subsequently we develop a semi-
analytical model that describes optical mode coupling with the
dye transitions.

Passive HMMs. Effective medium theory is often used to
approximately describe the optical properties of hyperbolic
multilayers.45−47 However, as pointed out, the effective medium
model becomes increasingly inaccurate for larger wavevectors
and frequencies, as the quasi-static approximation breaks
down.48−50

Rather than relying on the effective medium approximation,
we use the exact dispersion relation (for TM polarization),
which is found directly by solving Bloch’s eigenvalue equation
Mb = λ±b, where M is the transfer matrix of the unit cell and b
the Bloch eigenvectors. The Bloch eigenvalues can be
represented as λ± = e±ikzD where D = dm + dd is the thickness
of the unit cell and kz the Bloch wavevector. The exact
dispersion for a two-layer metal−dielectric HMM is51,52
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with decay coefficients κd,m = (kx
2 − k0

2εd,m)
1/2 in the dielectric

and metallic layers, respectively. In this work a simple Drude
model, εm = 1 − ωp

2/(ω2 + iωγp), with plasma frequency ωp =
1.26 × 1016 rad/s and damping rate γp = 5 × 1013 s−1 is used to
model the silver layers in the visible regime.53−55 Using eq 1 we
can express the Bloch eigenvalues as

λ = ± = Λ ± − Λ± k D i k D icos( ) sin( ) 1z z
2

(2)

Thus, the eigenvalues become degenerate when Λ = ±1, which
implies Re(Λ) = ±1 and Im(Λ) = 0, i.e., when kzD is purely
real and the Bloch wavector is at the center or edges of the
Brillouin zone (where kz = 0 or kz = π/D so cos(kzD) = ±1).
This statement remains valid for active multilayer structures
and implies the existence of exceptional points at the
intersection of the loss-compensation curves (defined by the
Im(Λ) = 0 condition) and the edges of the plasmonic bands
(more details later in the Results section).
As explained in the previous section, the intersection point

between the upper and lower bands of the HMM (highlighted
by the green circle in Figure 1c) is of particular interest for the
design of the active, optically pumped HMM, and the
geometric and dye parameters should be selected carefully.
This intersection point has the frequency51

Figure 1. (a) Schematic of the active HMM, consisting of silver (blue) and dye-infiltrated (red dots) epoxy layers (green), with a unit cell marked by
orange dashed lines. (b) Energy diagram of a four-level dye molecule, with an absorption (blue) and emission line (red). (c) Illustration of the
plasmonic bands of the passive HMM with the dye absorption line at frequency ωa (blue dashed line) above and the emission line at frequency ωe
(red dashed line) below the intersection point, highlighted by the green circle, where the upper (gray shaded) and lower band (red shaded) connect.
Inset of (c) shows a zoom-in on this intersection point.
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To facilitate pumping into the upper band and emission into
the lower band (horizontal lines in Figure 1c), the layer
thicknesses need to be chosen such that for the given dye the
peaks of absorption and emission lines fall above and below the
intersection point, respectively.
Dye-Infiltrated Multilayer. To demonstrate the feasibility

of optical pumping in the structure, we consider realistic
material parameters for the dye model. Rhodamine 6G,
frequently used for loss compensation in optical metamate-
rials,56,57 has peak emission and absorption wavelengths at 520
and 480 nm, which translates into angular frequencies ωe =
0.288ωp and ωa = 0.313ωp. The respective line widths are
approximately γe,a = 0.005ωp. With the dye embedded in epoxy
(εepoxy = 2.56) the permittivity of the active dielectric layers is
modeled by Lorentzians (see Supporting Information for more
details)

ε ω γ ω γ= + +g L g L2.56 ( , ) ( , )d a a a e e e (4)
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is the normalized second-order Lorentzian line-shape function
of the excitonic transitions. The coupling strengths ga and ge
determine the oscillator strength of the absorption and
emission lines, respectively. While they generally depend on
the population of the various levels (Figure 1b), we here
assume an inverted system with equal coupling strengths but
opposite signs, ge = −ga (where ga > 0), for the emission and
absorption lines.
To push the absorption line into the upper and the emission

line into the lower band (Figure 1c), we align the intersection
point (green circle in Figure1c) between the two transitions at
ω = 0.3ωp. From eq 3 we thus find the required ratio of layer
thicknesses dd ≈ 4dm. In addition, to allow for large
wavevectors, which are useful for instance for imaging
applications, we aim for a large bandwidth of the lower band.
The period therefore needs to be as small as possible, as the
wavevector along z is limited by the Brillouin zone edge (|kz,max|
= π/D). Considering fabrication constraints we choose dm = 5
nm, as vapor-deposited silver layers of this thickness are

sufficiently smooth when a 1 nm thick germanium layer is used
as a wetting layer,44,58 and dd = 20 nm, which is readily
achievable by spin-coating.
To determine the effectiveness of the optical pump scheme,

we first calculate the light transmittance of the passive
multilayer for a finite structure of 10 periods. Figure 2a
shows that transmission of incident waves above ω = 0.3ωp
from inside the light cone is almost perfect (white region).
Note that, for finite multilayers the plasmonic bands are
replaced by discrete modes, as opposed to the continuous
bands observed for infinite structures. A typical eigenmode
profile is presented in Figure 2b, showing the magnetic field
profile of the third discrete eigenmode of the lower band at ω =
0.25ωp (marked by a black star in Figure 2a). This mode is
symmetric and presents three maxima and two nodes. When
the order of the mode increases, the number of nodes increases
and the interaction with the gain medium is then reduced.
As the passive structure is almost transparent to the pump,

absorption of light by the dyes should be effective. To confirm
this, we calculate (with the commercial finite-element software
COMSOL Multiphysics 5.2) the absorbance within the various
layers with dyes for normal incidence (kx = 0), by taking into
account the absorption line only (emission switched off); see
Figure 2c. The total absorbance by the dyes (blue curve) at the
central absorption frequency is almost 90%, with about 25% of
the light absorbed in the first period (brown curve) and 10% in
the fifth period (yellow curve). For the last period (purple
curve) the absorbance is small, as most of the light has already
been absorbed. We note that with the population numbers fixed
this analysis neglects saturation effects, which render the
dielectric layers transparent with increasing pump strength,
until all layers are equally pumped into inversion.

Semiclassical Model. To understand the coupling of the
modes with the dyes, we develop a model that describes the
behavior of the oscillators. As the four-level dye presents an
absorption and an emission line, with opposite signs for the
coupling strength, we expect to have two distinct interactions at
these frequencies.
For finite structures (Figure 2a) the continuous bands are

replaced by discrete resonant modes, with the number of these
modes per band equal to the number of periods (there are 10
modes for a 10-period stack; note that some of the modes are
invisible with the scale of Figure 2a). When infiltrated with
dyes, coupling between these discrete modes and the excitonic
lines occurs. For simplicity, we first examine coupling with only

Figure 2. (a) Transmittance of a finite HMM of 10 periods with thickness dm = 5 nm (logarithmic scale). (b) Magnetic field profile Hy of the third
eigenmode of the lower band at ω = 0.25ωp, marked by a black star in (a). (c) Absorbance at normal incidence (ωa = 0.313ωp) of the dyes for the
whole structure (blue curve), the first period (brown curve), the fifth period (yellow curve), and the last period (purple curve), respectively.
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one excitonic line (either the emission or absorption line)
before showing the full model. From the Maxwell−Bloch
equations and the wave equation we derive a semiclassical
model for this system, which results in coupled oscillator
equations for the modal field amplitude E and the polarization
of the respective transition P (see details in the Supporting
Information):

ε ε ε
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where Ωm and Ω12 are the complex frequencies of the selected
optical mode and the excitonic transition (absorption or
emission), whose negative imaginary parts are the modal
damping rate γm and the line width of the transition (γa or γe),
respectively. The off-diagonal coupling terms are determined as
Am = ΩmΓ/2 and K12 = σ12/ε0, introducing the spatial overlap
factor Γ of the plasmonic mode with the dielectric medium and
the cross-section σ12 of the excitonic transition under
consideration. The latter relates to the coupling strength of
the oscillator via g = πσ12/ε0.
Solving for the eigenfrequencies Ω± of the coupled system

we find

Ω = Ω + Ω ± + Ω − Ω± K A
1
2

( )
1
2

4 ( )m 12 12 m m 12
2

(7)

which defines the mode splitting within the semiclassical
coupling model for two oscillators. Note that, with all other
parameters determined, the only remaining parameters to fit are
the frequency of the selected optical mode Ωm and its spatial
overlap factor Γ with the gain layers. Both parameters only

depend on properties of the passive structure and are
independent of the dye characteristics. For the given structure
we determine γm ≈ 0.004ωp for the decay rate of the modes (γm
does not change much for the various modes of the lower
band) and an overlap factor of Γ ≈ 1/3 as best fits to the modes
shown in Figure 2a. Both parameters prove to be relatively
frequency insensitive within the range under consideration
(between 0.2 and 0.4ωp).
Unlike the standard classical oscillator model, the semi-

classical model predicts different behaviors for the absorption
and emission cases. Indeed, the cross-section σ12 is related to
the population levels via

μ
σ = −

−
ℏ

N N( )

312
12

2
2 1

(8)

where μ12 is the dipole matrix element and N1 and N2 are the
density of atoms in the ground state and excited states,
respectively. For absorption transitions (where N2 < N1) eq 7
describes the usual transition from weak coupling to strong
coupling, manifesting itself as vacuum Rabi splitting within the
semiclassical framework. As the cross-section becomes negative
for emission processes (N2 > N1), the term 4K12Am in the
discriminant of eq 7 becomes negative too. For sufficiently large
coupling strength ge the sign flip for an emission line produces a
splitting behavior similar to the fork observed in -symmetry
breaking scenarios. These two distinct behaviors will be
described in detail in Section 3, where we discuss the results.
In the complete case of four-level dyes, coupling occurs

simultaneously to both emission and absorption lines. Each line
provides its own polarization Pe and Pa that interacts with the

Figure 3. (a) Reflectance with an absorption line in the weak coupling regime (ga = 3 × 1012) and (c) strong coupling regime (ga = 1014) for the
finite structure (logarithmic scale). The green and magenta curves are obtained via our semiclassical model for two different modes. (b) Dispersion
diagram of the infinite structure with an absorption line in the weak coupling regime and (d) strong coupling regime. Orange curves are the edges of
the plasmonic band at the center of the Brillouin zone (Re(Λ) = 1), and magenta curves are those at the edge of the Brillouin zone (Re(Λ) = −1). (e
and f) Real and imaginary parts of the complex eigenfrequencies Ω± obtained with the model (green curves) in the strong coupling regime. Blue
dashed curve is the excitonic absorption line, and black dashed curve is the unperturbed optical mode. The two polaritons resulting from the
coupling of the optical mode with the excitonic line are identified by the numbers 1 and 2 (Ω− and Ω+, respectively).

ACS Photonics Article

DOI: 10.1021/acsphotonics.8b00300
ACS Photonics XXXX, XXX, XXX−XXX

D

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.8b00300/suppl_file/ph8b00300_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.8b00300/suppl_file/ph8b00300_si_001.pdf
http://dx.doi.org/10.1021/acsphotonics.8b00300


amplitude E of the optical mode. This results in a modified
coupling model:
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where Ωa and Ωe denote the complex frequencies of absorption
and emission lines, respectively. The matrix elements Ka,e =
σa,e/ε0 are expressed in terms of the cross-sections σa and σe,
which in turn are proportional to the coupling strengths ga and
ge, respectively. It follows that solving the eigenvalue equation
determines the three eigenfrequencies Ω̃. As Ka > 0 and Ke < 0,
a mixed behavior of Rabi splitting and -symmetry breaking
is expected for sufficiently large coupling strengths, as discussed
next.

3. RESULTS

Having introduced the structure and the semianalytical theory,
we proceed to investigate the active HMM dispersion. Again we
first consider the absorption and emission lines in isolation, and
later we employ the full four-level dye system. In each part we
compare the discrete mode behavior in finite structures with
the resulting deformation of bands in infinite structures. The
semiclassical model is applied to a specific discrete mode and
provides a good description of the behavior for finite devices in
all cases (loss, gain, and both). As we will see, the absorption
line produces the classical strong coupling behavior (Rabi
splitting), whereas the emission line leads to a fork-like splitting
and the appearance of exceptional points.
Absorption: Weak and Strong Coupling. We focus on

the effect of an absorption line on the dispersion, ignoring the
emission for the moment. Qualitatively we can distinguish two
regimes, a weak coupling regime characterized by small
distortions of the dispersion and a strong coupling regime
leading to Rabi splitting of modes.
Figure 3a shows the reflectance map of a 10-period finite

structure via transfer-matrix calculations, with each reflectance
maximum indicating a discrete plasmonic mode. For a small
value of the oscillator coupling strength (ga = 3 × 1012) a slight
perturbation and smearing of the optical modes is observed
around ωa = 0.313ωp when compared with the passive case
(Figure 2a).
When applying the semiclassical model to two particular

modes (green and magenta curves in Figure 3a), one obtains an
excellent fit to the exact transfer-matrix results. A slight
deviation from the passive case around ωa is visible for the
green curve, e.g., indicating the coupling with the dye. We can
understand the weak coupling from the model eq 7, as in this
regime |4KaAm| ≪ |Ωm − Ωa|

2, so Ω+ ≈ Ωm and Ω− ≈ Ωa. This
means that one mode retains the character of the optical mode,
and the other that of the excitonic line.
A similar small perturbation around ωa is observable at the

band edge of the infinite multilayer (Figure 3b) showing the
real part of Λ (analytically calculated with eq 1). The orange
curves correspond to the plasmonic band edge at the center of
the Brillouin zone (Re(Λ) = 1), while the magenta curve is the
plasmonic band edge at the edge of the Brillouin zone (Re(Λ)
= −1). Comparing the band edges in the active case of Figure
3b (orange and magenta curves) with the band edges in the

passive case of Figure 1c (orange and purple curves), one can
see that the absorption line causes only a very small deviation.
However, the dispersion qualitatively changes in the strong

coupling regime for a larger coupling strength (ga = 1014, Figure
3c), where anticrossings appear and a gap opens in the
reflectance map. This effect is particularly visible for the discrete
modes of finite structures, and we plot the same two modes as
before using the model with green and magenta curves. Again,
the model fits well with the exact results, even in this strongly
coupled case. We can understand the behavior by inspection of
eq 7: close to the crossing point of the optical mode and the
excitonic line (ωm = ωa) the first term in the square root
dominates and one obtains (Ωm − Ωa)

2 ≈ (γm − γa)
2. If

Re(4KaAm) ≫ (γm − γa)
2 and Re(4KaAm) ≫ γm,γa (the

resonance line width of the optical mode and the exciton needs
to be smaller than the splitting to be in the strong coupling
regime), the square root becomes real and a gap opens. The
width of this gap is the Rabi spl i t t ing energy
ℏΩ = K A2Rabi a m , with Am containing the overlap factor Γ.
When the order of the optical mode increases, the number of
nodes of the mode profile also increases, reducing slightly Γ
and thus the Rabi splitting. An analogous situation was reported
by Shekhar and Jacob,41 where they studied the interaction
between intersubband transitions of multiple quantum well
layers and optical modes in an HMM.
Interestingly, our model allows directly determining the Rabi

splitting with only prior knowledge of the dispersion character-
istics of the unperturbed optical mode and the absorption line
(Figure 3e). Figure 3e shows the dispersion of the polaritons
calculated with our model (green curves) using parameters of
the excitonic line (blue dashed curve) and the unperturbed
optical mode (black dashed curve). Away from the crossing, the
polaritons simply follow the two components, with one
polariton being dominantly plasmonic (polariton 1) while the
other is dominantly excitonic (polariton 2) for small wave-
vector kx (and vice versa for large kx). At the crossing point a
gap opens and the two polaritons are a mixed state between an
excitonic and a plasmonic mode.
Another advantage of our model is that we can retrieve not

only the real parts of the polaritonic eigenfrequencies but also
their imaginary parts (Figure 3f), thus providing the essential
mode characteristics, while most other models convey only the
real parts. For example, the imaginary parts of Ω± are small in
the region where we can see the modes in Figure 3c and large
in the more blurry parts, where the modes become over-
damped. This is the reason that only polariton 1 is visible for
small wavevectors kx (as the imaginary part of the
eigenfrequency of polariton 1 increases in magnitude with kx)
and only polariton 2 for large kx (as the imaginary part of the
eigenfrequency of polariton 2 decreases in magnitude with kx).
The strong coupling effect is also observed in the infinite

structure (Figure 3d), where bands arise from the continuum of
resonances. In the absence of discrete resonances the impact of
strong coupling is less obvious, as the gap effectively closes due
to the superposition of an infinite number of dispersive modes.
At the band edges, however, a strong distortion is observed
(analytical calculation of Λ in Figure 3d) around ωa, which
corresponds with the anticrossings of the finite stack. Indeed,
the band edges tend to larger or smaller values of kx, below or
above the absorption line, respectively.

Emission: Exceptional Points. We next consider the
emission line in isolation, ignoring the absorption line. For
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emission processes Ke (via σe) changes sign in eq 8, and the first
term in the square root of eq 7 also changes sign. However, for
a small coupling strength (such as ge = 3 × 1012) one has |
4KeAm| ≪ |Ωm − Ωe|

2, so the situation is similar to a weakly
coupled absorption line, where modes become only slightly
perturbed (not shown), just as in Figure 3a and b.
The situation becomes more interesting for larger coupling

strength (ge = 1014) when the line widths of the optical mode
and emission line are similar and small compared to the
frequencies, which is true for our parameters (γm = 0.004ωp ≈
γe = 0.005ωp). Again we notice from the reflectance map of the
finite structure (Figure 4a) that a gap opens for the plasmonic
modes around the emission frequency (ωe = 0.288ωp). The
modes bend toward smaller kx below the emission line and
toward larger kx above. This behavior is opposite the previous
case, where we only took the absorption line into account. With
the semiclassical model applied to two particular mode couples
(green and magenta lines in Figure 4a), we again obtain a very
good agreement with the exact results.
To understand the behavior with the model equations, we

examine the argument of the square root of eq 7:

ω ω+ −K A4 ( )e m m e
2 . As the first term becomes large and

negative when the coupling strength increases, the square root
becomes almost purely complex in the regime where |4KeAm| >
[ωm(kx) − ωe]

2, which means that both eigenfrequencies Ω±
have the same real parts but imaginary parts with opposite
signs. In other words, this regime is similar to the broken-
symmetry phase of systems that produce fork-like
bifurcations and give rise to exceptional points when the two
modes merge. As a side note we point out that -symmetric

hypercrystals made of HMMs were studied in ref 59, but the
gain was introduced in the dielectric surrounding the HMM,
and not directly into the HMM as proposed here.
To analyze the coupling behavior in more detail, we show the

uncoupled and coupled modes in Figure 4c for a particular
optical mode (corresponding to the green curve in Figure 4a).
The two branches of the fork correspond to the polaritons 1
and 2 in Figure 4c. However, only polariton 2 appears in the
reflectance map of Figure 4a. The imaginary part of polariton 1
(not visible in Figure 4a) has a large imaginary part of the
eigenfrequency (Figure 4d) and is therefore strongly damped
(broadened line), while the polariton 2 has a smaller imaginary
part and can thus be observed in Figure 4a as a sharp
resonance, except in the gap region, where its imaginary part is
positive and large (gain).
The “lines of points” appearing in the large gain case around

ω = 0.27ωp and ω = 0.31ωp (highlighted by the blue arrows in
Figure 4a) are not true exceptional points. Indeed, they would
be “pure” exceptional points if the square root in eq 7 was zero
(so that the eigenvalues are degenerate), which is not exactly
the case here. However, these high-reflection points are regions
where the imaginary part of the eigenfrequency of polariton 2 is
close to zero (see Figure 4d), and thus the resonances become
very sharp.
Just as for the absorption case, remnants of the fork-like

splitting can be observed only at the edges of the plasmonic
band of the infinite multilayer structure (Figure 4b, showing the
real part of Λ). An important distortion is observed around ωe
= 0.288ωp, where the band edges (Re(Λ) = +1, orange curves,
and Re(Λ) = −1, magenta curves) undergo a distortion similar
to that of the resonances of the finite stack. Indeed, the band

Figure 4. (a) Reflectance with an emission line in the large coupling strength regime (ge = 1014) for the finite structure (logarithmic scale). The green
and magenta curves were obtained via our semiclassical model on two different modes. (b) Dispersion diagram of the infinite structure with an
emission line in the large coupling strength regime. Orange curves are the edges of the plasmonic band at the center of the Brillouin zone (Re(Λ) =
1), magenta curves are those at the edge of the Brillouin zone (Re(Λ) = −1), and cyan curves are the loss-compensation boundary (Im(Λ) = 0). (c)
Real (green solid curves) and (d) imaginary (green dashed curves) parts of the complex eigenfrequencies Ω± obtained with our semiclassical model.
In (c) the red dashed curve is the excitonic emission line and the black dashed curve is the unperturbed optical mode. The two polaritons resulting
from the coupling of the optical mode with the excitonic line are identified by the green numbers 1 and 2 (Ω+ and Ω−, respectively).
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edges tend to smaller (larger) kx below (above) the emission
line. The cyan curves in Figure 4b are the loss−gain
compensation boundaries (Im(Λ) = 0), which intersect the
band edges. From eq 2 we know that here the condition for the
generation of exceptional points is met. True exceptional points
thus appear in the case of an infinite multilayer, as discussed in
more detail in the next section.
Strong Gain−Loss Interaction. We introduce the full

four-level dispersion of pumped dye molecules, including both
the absorption and emission line. We will see that loss
compensation and the appearance of exceptional points are
directly connected.
Figure 5a shows the reflectance map obtained with the

transfer-matrix method of the finite structure for large coupling
strengths g = ga = ge = 1014. As before, the maxima of reflectance

are discrete modes, and we apply the full semiclassical model eq
9 for two optical modes (green and magenta) to obtain the
polaritons. Zoom-ins on the splitting behavior with the model
are provided by Figure 5c and d.
The blurry regions (around 0.28−0.29ωp and 0.31−0.32ωp)

occur when the magnitude of the imaginary part of the
eigenfrequencies becomes large, while regions where discrete
modes are visible have very small imaginary parts (Figure 5d).
At the absorption line (blue curve in Figure 5c) the typical
mode-splitting occurs, while at the emission line (red curve in
Figure 5c) the fork-like features of systems are present
(Figure 5c). In the region between the two excitonic lines
(between ωe and ωa) the modes tend toward large kx and can
reach extremely high values of the effective index (for example,
the bifurcation point of the green mode around ω = 0.3ωp in

Figure 5. (a) Reflectance with both absorption and emission in the large coupling strength regime (g = 1014) for the finite structure (logarithmic
scale). The green and magenta curves are obtained via our semiclassical model on two different modes. (b) Dispersion diagram of the infinite
structure with both absorption and emission lines in the large coupling strength regime. Orange curves are the edges of the plasmonic band at the
center of the Brillouin zone (Re(Λ) = 1), magenta curves are those at the edge of the Brillouin zone (Re(Λ) = −1), and cyan curves are the loss-
compensation boundary (Im(Λ) = 0). (c) Real (green solid curves) and (d) imaginary (green dashed curves) parts of the complex eigenfrequencies
Ω̃ obtained with our semiclassical model. In (c) the red dashed curve is the excitonic emission line, the blue dashed curve is the excitonic absorption
line, and the black dashed curve is the unperturbed optical mode. The three polaritons resulting from the coupling of the optical mode with the two
excitonic lines are identified by the green numbers 1, 2, and 3.

Figure 6. (a) Group index in the z direction (ng,z) of the dye-infiltrated multilayer. (b) Zoom-in on EP1. (c) Zoom-in on EP3. Orange curves
correspond to the band edges at the Brillouin zone center kzD = 0, magenta curves correspond to the band edges at the Brillouin zone edge kzD = π,
and cyan curves correspond to the gain−loss compensation line where Im(Λ) = 0.
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Figure 5c has an effective index of 7, while at this frequency the
effective index was 4 in the passive HMM). Only the dispersion
of polaritons 3 and 2 (for small kx and in the vicinity of the
gain/loss compensation points) can be observed in Figure 5a,
because of their small (in magnitude) imaginary parts of their
eigenfrequencies. Polariton 1 cannot be observed, as it is always
overdamped (Figure 5d).
As discussed previously, the emission and absorption lines

exert a similar effect on the band edges of the infinite HMM. In
this case the forks at the edges provide real EPs, unlike the
points in the dispersion diagram of the finite structure, where a
vanishing imaginary part produces just lines of sharp
resonances. In Figure 5b (the real part of Λ of the infinite
HMM) an important distortion is observed around ωe and ωa,
where the band edges (Re(Λ) = +1, orange curves, and Re(Λ)
= −1, magenta curves) undergo a distortion similar to the
resonances of the finite stack. The cyan curves in Figure 5b are
the loss−gain compensation boundaries, which intersect the
band edges. At these intersections Λ = ±1; so from eq 2 one
concludes that the eigenvalues are degenerate and that these
points are thus EPs.
The presence of EPs has significant implications in the

infinite structure, e.g., on the group index (along z) ng,z
(calculated using the implicit function theorem60); see Figure
6a. Five EPs exist with the chosen parameters. Zoom-ins on
two EPs (EP1 and EP2, one on each band edge) are also shown
in Figure 6b and c, providing evidence that ng,z diverges, which
is a signature of the existence of exceptional points, connecting
with recent results in ref 61. These singularities were also
studied recently by Pick et al.62

Note that there is a very direct connection in position (in the
(kx, ω) dispersion coordinates) between the EPs of the infinite
and the finite multilayer. For the finite structure one compares
with the two “lines of points” in Figure 5a (ω = 0.275ωp and ω
= 0.3ωp), but only with the points at the smallest and largest kx
for each line. For instance, EP1 is visible in both Figure 6a and
Figure 5a at ω = 0.275ωp and kx/k0 = 9. Similarly, EP3 is both
times visible at ω = 0.3ωp and kx/k0 = 6. This correspondence
shows that in both cases the exceptional points arise effectively
from a mechanism similar to -symmetry.

■ CONCLUSION

Introduction of gain in HMMs provides a means for loss
compensation and opens a convenient route facilitating
injection of light into hyperbolic modes, which are otherwise
not directly accessible from within the light cone. In this paper
we have studied the impact of four-level dye molecules
embedded in the dielectric medium of multilayer HMMs. We
considered both the weak and strong coupling regime of
interaction with the emission and absorption lines, respectively.
We developed a semianalytical model to describe these
phenomena and demonstrated that the model fits very well
with the exact results obtained by the transfer-matrix method.
In the weak coupling regime we observe, as expected, only a
small perturbation of the band without apparent differences. In
the strong coupling regime, however, both emission and
absorption lines produce extreme distortions of the plasmonic
band due to Rabi splitting and a -symmetry-broken phase
with generation of EPs at the loss−gain compensation
frequencies. These results are important for active components
with HMMs and for the use of EPs in active multilayers.
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