
Software Ecosystem Evolution: It’s complex!

Tom Mens and Eleni Constantinou
Software Engineering Lab, COMPLEXYS Institute, University of Mons, Belgium

{first.last}@umons.ac.be

1. INTRODUCTION
This extended abstract proposes a vision statement that

advocates the use of results and mechanisms from complex
systems theory to understand and control the evolution dy-
namics of software ecosystems (SECOs). We argue why
such an interdisciplinary take on software ecosystem evo-
lution may ultimately lead to better techniques and tools
for managing and controlling SECOs. The driving forces of
the ecosystem dynamics will be both social and technical.
The need to adopt such a socio-technical view is confirmed
by [2], and we explored this view in more detail in [13].

Important challenges in SECO research have been iden-
tified in [2, 19]. A first one is the need to understand how
and why ecosystems emerge. This challenge also involves
the need for techniques to identify SECOs and their bound-
aries. Bogart et al. observed that the practices, policies
and tools used by the ecosystem’s actors differ significantly
across SECOs [3]. A question that naturally emerges is
therefore how the social and technical aspects of a SECO
affect its evolution over time. It is yet unclear why some
SECOs continue to survive, while others are abandoned.
Understanding the dynamics of a SECO, and its resilience
to external perturbations becomes key. By resilience we re-
fer to the capacity of an ecosystem to absorb and recover
from environmental changes and disturbances. We hypoth-
esise that a complex systems perspective on SECOs allows
to gain a better understanding in each of the above chal-
lenges, ultimately leading to better tools for supporting the
ecosystem’s actors.

2. COMPLEX SYSTEMS THEORY
As Melanie Mitchell beautifully illustrates in her book,

complex systems abound in all domains of science (ecology,
economy, biology, sociology, computer science, physics, lin-
guistics, and many more) [14]. There is no single encompass-
ing definition of what constitutes a complex system. How-
ever, the majority of complex systems have in common that
they are composed of many interdependent parts that inter-

act with each other and with their environment. By doing
so, collective behaviours emerge that cannot be understood
by studying the components in isolation. Much of the ob-
served complexity arises from interaction dynamics.

One of the goals of complex systems theory is to propose
and validate theoretical models that capture the essential
aspects of real-life complex systems. Such models aim to
explain how complex systems emerge, to understand which
structural or behavioural properties they exhibit, and to pre-
dict how such systems evolve over time.

Network science or network theory is a subdomain of com-
plex systems theory, in which network or graph structures
are used as simplified mathematical models representing the
structural or topological aspects of a complex system. De-
pending on the type of complex system being modelled,
the nodes and edges of the network will represent differ-
ent things. In a social network, for example, nodes will
represent social actors (typically persons, groups or organi-
sations) while the edges will represent interactions between
these actors (e.g., communication about a specific topic, or
collaboration on a joint activity or project). The field of
social network analysis intensively studies such networked
social structures [18].

Many complex networks have tend to have similar charac-
teristics. Skewed distributions: The distribution of many
structural network metrics (such as the in- and out-degree
of nodes) tends to be highly skewed, often corresponding to
some kind of power law or log normal distribution. Scale-
free topology: The observed distributions are invariant to
scale. When zooming in on part of the network, a similar
structure is observed. Small world assumption: The av-
erage path length between any two nodes of the network is
very small. Presence of hubs and clusters: A complex
network tends to have many highly clustered components,
with few hub nodes that interlink these components.

These characteristics make complex networks consider-
ably more resilient to changes than random networks. If
random nodes are removed from the network, it is very likely
that these nodes will have few links (because of the power
law behaviour). Because of this their removal will not im-
pact the overall network structure. On the downside, the
removal of hub nodes (those that have many links) can have
quite dramatic consequences for the ecosystem.

Many different models have been proposed to explain how
such scale-free complex networks emerge. One of the more
popular ones is the theory of preferential attachment [1].
This theory is based on the assumption that networks grow
in such a way that nodes with higher degree receive more



new links than nodes with lower degree.

3. COMPLEX SOFTWARE SYSTEMS
Many researchers have used complex systems theory to

study the network characteristics of software systems. Valverde
et al. [20], Myers et al. [15], Potanin et al. [17], Concas et
al. [7] and Louridas et al. [10] found evidence of scale-free
topologies and highly skewed distributions in dependency
graphs of object-oriented software systems. Such properties
appear to emerge as a side effect of the development process.

Several plausible explanations have been suggested about
why software dependency networks have a scale-free struc-
ture, mostly without any strong compelling evidence: Valverde
et al. [20] suggest that the emergence of scaling arises from
logical optimisation process. Myers et al. [15] proposed
the process of refactoring to improve the structure of ex-
isting code as a possible explanation for the emergence of
scale-free networks in software. Inspired by Darwin’s ideas
of evolutionary adaptation, Venkatasubramanian et al. pro-
posed a generic model based on network parameters such
as efficiency, robustness, cost, and environmental selection
pressure [21]. Using a genetic algorithm their model was
able to generate different types of network structures, de-
pending on the chosen parameters. Li et al. [8] proposed
an extended model of preferential attachment adapted to
software systems, and used it to simulate growth models
that mimic the well-known design principle of low coupling
and high cohesion. If software developers strive towards
this principle, they will naturally obtain systems containing
highly cohesive components that are lowly coupled between
them, reminiscent of the hubs and clusters structure pre-
sented in Section 2.

The complex network properties of social networks have
also been studied by many researchers. For example, López-
Fernándes et al. studied the structure of the collaboration
network of large open source software projects [9]. Pinzger
et al. [16] and many follow-up papers explored the socio-
technical network composed of software developers and the
software modules they contributed to. The use of network
centrality measures of this socio-technical network allowed
them to come up with better defect prediction models.

4. COMPLEX SOFTWARE ECOSYSTEMS
We believe that complex systems theory can be very help-

ful in understanding the evolution of SECOs. Their technical
network structure would be composed of nodes that repre-
sent the software components belonging to the SECO, while
the edges represent component dependencies. The SECOs
social network structure would be composed of nodes that
present the actors of the SECO, while the edges represent
interactions or collaborations between these actors. Both
network structures may have complex network characteris-
tics, and these characteristics may be different from what
one observes at the level of the individual software compo-
nents, packages or projects that make up the SECO, and
that can be considered as complex systems themselves.

The multi-level model proposed by Li et al. for simulat-
ing software network evolution is a good starting point for
further research [8]. They explain that a software system is
multi-level by nature. At the lowest level, one can find for
example classes and their interrelationships. At the second
level, one can find mechanisms like design patterns, libraries

and frameworks. At the third level there are packages, sub-
systems and components. Further levels can be added, if
needed. Such a multi-level model naturally represents the hi-
erarchical structure of software systems and software ecosys-
tems, and simulations based on this model (using historical
data of seem to generate more realistic simulations of soft-
ware network growth. While being a good starting point,
the model needs to be extended to take into account the so-
cial network as well, so that it also reflects the dynamics and
growth of the ecosystem’s contributor community, as well as
the collaborative development process.

While the above model can be used to explain how soft-
ware ecosystems continue to grow under normal circum-
stances, it does not provide any help if dramatic changes
in the technical or social network arise. Therefore, addi-
tional models are needed to study the resilience of soft-
ware ecosystems. To analyse such resilience, dedicated tools
(e.g. web-based dashboards) are needed to analyse or pre-
dict the impact of important perturbations. For example,
one could carry out what if analyses on the effect of remov-
ing hubs that correspond to key contributors in the social
network, or to core components in the technical network of
the SECO. There is a clear need for such analyses. Indeed,
several examples of major disruptions in a SECO due to
unexpected removal of key nodes have been reported. For
example, Zanetti et al. [22] observed the sudden departure
of a core contributor to Gentoo’s bug tracking system, caus-
ing a major disruption in the community’s bug handling
performance. As another example, JavaScript’s npm pack-
age management system was severely affected by the sudden
removal of a single package (leftpad) on which thousands
of other packages depended. Analysing the SECO network
structure would allow to identify hub nodes more easily, al-
lowing the SECO managers to plan ahead by taking appro-
priate actions to reduce the risk of sudden removal of such
nodes, as well as to reduce the impact of such removal if it
does occur.

Since different SECOs use a wide variety of different prac-
tices, policies and tools [3], it is reasonable to expect differ-
ences in the structure of their social and technical network.
More specifically, network measures may reveal important
differences in the characteristics that are typical of complex
systems. Such observed differences in network topology may
be indicative of the ecosystem’s resilience. This would pro-
vide more insights in how the organisational and architec-
tural choices made by a SECO community affect the ecosys-
tem dynamics (e.g., its growth, ease of maintenance and sur-
vival chances). Perhaps differences in the complex network
characteristics of a SECO also depend on the ecosystem’s
domain (e.g., programming languages). We therefore sug-
gest to study how and why SECOs differ from a complex
system point of view, and to leverage these findings for sug-
gesting improvements in the architectural, tooling-related,
and organisational choices made by a SECO.

5. SUMMARY
To summarise, we believe that research on software ecosys-

tem evolution can benefit a lot from taking a complex sys-
tems perspective,. We propose to consider open source SECOs
as complex systems, and to use measures and models from
network science to study the emergent characteristics of
the SECOs’ socio-technical networks. We suggest to use
growth models inspired by the theory of preferential attach-



ment to explain the emergent dynamics of the observed net-
work structure. In addition, we propose to rely on models
of resilience to assess and reduce the impact of major dis-
ruptions in the ecosystem. Finally, we suggest to compare
the complex networks of multiple SECOs, in order to assess
the impact of the architectural and organisational choices of
the community on the resilience and maintainability of their
SECO.

6. REFERENCES
[1] A.-L. Barabási and R. Albert. Emergence of scaling in

random networks. Science, 286:509–512, 1999.

[2] K. Blincoe, F. Harrison, and D. Damian. Ecosystems
in GitHub and a method for ecosystem identification
using reference coupling. In Int’l Conf. Mining
Software Repositories, 2015.

[3] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung.
How to break an API: Cost negotiation and
community values in three software ecosystems. In
Int’l Symp. Foundations of Software Engineering,
2016.

[4] M. Cataldo, J. D. Herbsleb, and K. M. Carley.
Socio-technical congruence: A framework for assessing
the impact of technical and work dependencies on
software development productivity. In Int’l Symp.
Empirical Software Engineering and Measurement,
pages 2–11. ACM , 2008.

[5] M. Cataldo, A. Mockus, J. A. Roberts, and J. D.
Herbsleb. Software dependencies, work dependencies,
and their impact on failures. IEEE Transactions on
Software Engineering, 35(6):864–878, Nov 2009.

[6] L. J. Colfer and C. Y. Baldwin. The mirroring
hypothesis: Theory, evidence and exceptions.
Technical Report Finance Working Paper No. 16-124,
Harvard Business School, May 2016.

[7] G. Concas, M. Marchesi, S. Pinna, and N. Serra.
Power-laws in a large object-oriented software system.
IEEE Trans. Soft. Eng., 33(10):687–708, 2007.

[8] H. Li, L.-Y. Hao, and R. Chen. Multi-level formation
of complex software systems. Entropy, 18(178), 2016.

[9] L. Lopez-Fernandez, G. Robles,
J. Gonzalez-Barahona, and I. Herraiz. Applying social
network analysis techniques to community-driven libre
software projects. In Integrated Approaches in
Information Technology and Web Engineering:
Advancing Organizational Knowledge Sharing,
chapter 3, pages 28–50. IGI Global, 2009.

[10] P. Louridas, D. Spinellis, and V. Vlachos. Power laws
in software. ACM Trans. Software Engineering and
Methodology, 18(1):1–26, Oct. 2008.

[11] A. MacCormack, C. Baldwin, and J. Rusnak.
Exploring the duality between product and
organizational architectures: A test of the “mirroring”
hypothesis. Research Policy, 41(8):1309 – 1324, 2012.

[12] K. Manikas and K. M. Hansen. Software ecosystems:
A systematic literature review. J. Systems and
Software, 86(5):1294–1306, May 2013.

[13] T. Mens. An ecosystemic and socio-technical view on
software maintenance and evolution. In Int’l Conf.
Software Maintenance and Evolution, 2016.

[14] M. Mitchell. Complexity: A Guided Tour. Oxford
University Press, 2011.

[15] C. R. Myers. Software systems as complex networks:
Structure, function, and evolvability of software
collaboration graphs. Physical Review E, 68(4), 2003.

[16] M. Pinzger, N. Nagappan, and B. Murphy. Can
developer-module networks predict failures? In Int’l
Symp. Foundations of Software Engineering, pages
2–12. ACM, 2008.

[17] A. Potanin, J. Noble, M. Frean, and R. Biddle.
Scale-free geometry in oo programs. Commun. ACM,
48(5):99–103, May 2005.

[18] J. Scott. Social Network Analysis. SAGE, 2012.

[19] A. Serebrenik and T. Mens. Challenges in software
ecosystems research. In European Conference on
Software Architecture Workshops, pages 40:1–40:6,
2015.

[20] S. Valverde, R. Ferrer Cancho, and R. V. Solé.
Scale-free networks from optimal design. Europhysics
Letters, 60, 2002.

[21] V. Venkatasubramanian, S. Katare, P. R. Patkar, and
F.-P. Mu. Spontaneous emergence of complex optimal
networks through evolutionary adaptation. Computers
and Chemical Engineering, 28(9):1789–1798, 2004.

[22] M. S. Zanetti, I. Scholtes, C. J. Tessone, and
F. Schweitzer. The rise and fall of a central
contributor: Dynamics of social organization and
performance in the Gentoo community. In Int’l
Workshop on Cooperative and Human Aspects of
Software Engineering, pages 49–56, May 2013.


