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Abstract. We consider weighted o-minimal hybrid systems, which ex-
tend classical o-minimal hybrid systems with cost functions. These cost
functions are “observer variables” which increase while the system evolves
but do not constrain the behaviour of the system. In this paper, we prove
two main results: (i) optimal o-minimal hybrid games are decidable; (i)
the model-checking of WCTL, an extension of CTL which can constrain the
cost variables, is decidable over that model. This has to be compared with
the same problems in the framework of timed automata where both prob-
lems are undecidable in general, while they are decidable for the restricted
class of one-clock timed automata.

1 Introduction

O-minimal hybrid systems. Hybrid systems are finite-state machines where each
state is equipped with a continuous dynamics. In the last thirty years, for-
mal verification of such systems has become a very active field of research in
computer science. In this context, hybrid automata, an extension of timed au-
tomata [AD94], have been intensively studied [Hen95, [Hen96], and decidable
subclasses of hybrid systems have been identified like initialized rectangular hy-
brid automata [Hen96] or o-minimal hybrid automata. This latter model has
been pointed out in [LPS00] as an interesting class of systems with very rich
continuous dynamics, but limited discrete steps (at each discrete step, all vari-
ables have to be reset, independently from their initial values). Behaviours of
such a system can be decoupled into continuous and discrete parts, properties
of a global o-minimal system can thus be deduced directly from properties of
the continuous parts of the system. This property and properties of o-minimal
structures (see [vdD98| for an overview) are exploited in the word encoding
techniques, which have been developed in [BMRT04] for (finitely) abstracting
behaviours of the system. Using techniques based on this abstraction, reachabil-
ity properties [BMO05], reachability control properties have been proved
decidable for o-minimal hybrid systems. This technique was also used in order
to compute a (tight) exponential bound on the size of the coarsest finite bisim-
ulation of Pfaffian hybrid systems (see [KVO0G]).
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Models for resource consumption. A research direction which has recently re-
ceived substantial attention is the twist or extension of (decidable) models for
representing more fairly interesting properties of embedded systems, for instance
resource consumption. In that context, timed automata [AD94] have been ex-
tended with cost information bringing the model of weighted (or priced) timed
automata [ALPOI, BFHT01]. A timed automaton is a finite automaton with
clock variables (i.e. variables which increase as global time) that can be tested
towards constants or reset. In the model of weighted timed automata, an extra
cost variable is added, which is used as an observer variable (it does not con-
strain the behaviour of the system), evolving linearly while time elapses, and
subject to discrete jumps when discrete transitions are taken. This model was
appealing for expressing quantitative properties of real-time systems, which was
concretized by the decidability of the optimal reachability problem (find the best
way — in terms of cost — of reaching a given state)
together with the development of the tool Uppaal Cora [cor(6], and then by the
computability of the optimal mean-cost (find the best way for the system to have
a “cost per time unit” as low as possible) [BBL04]. However, more involved prop-
erties like cost-optimal reachability control (find the minimum cost that can be
ensured for reaching a given state, whatever does the environment in which the
system is embedded) or WCTL model-checking (WCTL extends the branching-
time temporal logic CTL with cost constraints on modalities [BBR04, [BBROG])
have been proved undecidable for weighted timed automata with three clocks or
more, see [BBR04, BBROS, BBM0G]. Though both problems have recently been
proved decidable for one-clock weighted timed automata
these undecidability results are nevertheless disappointing, because the one-clock
assumption is rather restrictive.

Our contributions. In this paper, we propose a natural extension of o-minimal
hybrid systems with (definable) positive cost functions which increase while time
progresses and which can be used in an optimization criterion, as in the case of
weighted timed automata. It is worth noticing here that though the underly-
ing system is o-minimal, this extended model, called weighted o-minimal hybrid
automaton, is not o-minimal as we do not require that the cost is reset when a
discrete transition is taken. However, we prove in this paper that the cost-optimal
reachability control problem and the WCTL model-checking problem are both
decidable for this class of systems. Because of the existing results on weighted
timed automata, this is really a surprise, and makes o-minimal hybrid systems
an analyzable, though powerful model. The decidability results of course partly
rely on the word encoding techniques that we mentioned earlier, but also require
refinements and involved techniques, specific to each of the two problems.

2 General Background

Let M be a structure. In this paper when we say that some relation, subset
or function is definable, we mean it is first-order definable in the sense of the
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structure M. A general reference for first-order logic is [Hod97]. We denote by
Th(M) the theory of M. In the sequel we only consider structures M that
are expansions of ordered groups containing two constant symbols, i.e. M =
(M, +,0,1,<,...).

2.1 O-Minimality

Let us recall the definition of o-minimal structures [PS8G] and give some ex-
amples of such structures. The reader interested in o-minimality should refer
to [vdD98] for further results and an extensive bibliography on this subject. In
the sequel of the paper we focus on o-minimal structures with a decidable theory
in order to obtain decidability and computability results.

Definition 1. A totally ordered structure M = (M, <,...) is o-minimal if every
definable subset of M is a finite union of points and open intervals (possibly
unbounded).

Example 1. Examples of o-minimal structures are the ordered group of rationals
(Q, <,+,0,1), the ordered field of reals (R, <, +,-,0,1), the field of reals with
restricted pfaffian functions and the exponential function [Wil96].

2.2 O-Minimal Dynamical Systems

In this subsection we define the notion of o-minimal dynamical systems.
Definition 2 (O-minimal dynamical system). An o-minimal dynamical
system s a pair (M, ) where:

- M= (M,+,0,1,<,...) is an o-minimal expansion of an ordered group,
— v : Vi xV — V4 is a function definable in M (where Vi C Mk V C M,
and Vo C Mkz) The function v is called the dynamics of the system.

Classically, when M is the set of the real numbers, we see V' as the time, V3 x V'
as the space-time, V5 as the (output) space and V; as the input space. We keep
this terminology in the more general context of a structure M.

»n

Ezample 2. We can view the continuous dynamics of timed automata [AD94] a
an o-minimal dynamical system. In this case, we have that M = (R, <, +,0,1
and the dynamics v : (RT)" x RT — (RT)" is defined by v(x1,...,2n,t)
(x1 4+t .., zpy + 1).

~

We define a transition system associated with the dynamical system, this defini-
tion is an adaptation to our context of the classical continuous transition system
in the case of hybrid systems (see [LPS00] for example).

Definition 3. Given (M,v) a dynamical system, we define a transition system
T, = (Q, X, —,) associated with (M, ) by: the set Q of states is Va; the set X' of

1 'We use these notations in the rest of the paper.
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events is M+ = {m € M | m > 0}; the transition relation y; ., yo is defined by:
Jr e Vi, Jt1,te, €V st t1 <to, v(x,t1) =1, y(x,t2) =y2 and T =12 —t1.

2.3 O-Minimal Hybrid Systems and Games
In this subsection, we define o-minimal hybrid systems and games

Definition 4 (O-minimal hybrid systems). Let M = (M,+,0,1,<,---)
be an o-minimal structure. An M-hybrid system (or simply o-minimal hybrid
system) H is a tuple (Q,X,06,v) where Q is a finite set of locations, X is a
finite set of actions, & consists in a finite number of transitions (q,g,a, R,q') €
Q x 2¥2 x X x 2V2 x QQ where the guard g and the reset R are definable in M,
and vy maps every location q¢ € Q to a dynamic v, : Vi X V. — Vu definable
in M.

An M-hybrid system H = (Q, X, 6,7) defines a mized transition system Ty =
(S, I',—) where:

— the set S of states is Q x Va;

— the set I" of labels is M+ U X;

— the transition relation (¢,y) = (¢/,%’) is defined when:
e ¢ € X and there exists (¢,g,e, R,q') € 6 with y € g and ¢y’ € R(y), or
ecc Mt g=¢q, andy 3% y" where -, is the dynamic in location g.

We will also need more precise notions of transitions. When (q,y) = (q,%’)
with 7 € M, this is due to some choice of (z,t) € V3 x V such that v,(z,t) = y.
We say that (q,z,t,y) — (¢,2',t',y)ifq=¢,z=a',t' =t+71, y(z,t) =y
and v, (z',t') = y'. We say that an action (7,a) € M™ x X is enabled in a state
(q,z,t,y) if there exists (¢/,2',t',y") and (¢",z",t",y") such that (¢, x,t,y) —
(¢ 2t y) S (¢, 2" 1", y"). We then write (¢, z,t,y) —— (¢", =", t",y"). We
note Enb(q, z, ¢, y) the set of actions enabled in (¢, z,t,y).

A runof H is a(n) (in)finite sequence o = (qo, T, to, Yo) —— (q1, 21,11, Y1) - - -
A position 7 along g is a pair (i,7) € N x M™ such that 7 < 7;41. We define
o[(2,7)] = (qisVq: (i, t; + 7)). Let us notice that the positions of a given run are
totally ordered in a natural way. If o is finite we define last(9) = (¢n, Tn, tn, Yn)-
We note Runsy(H) the set of finite runs in H.

An interesting tool to study hybrid systems is the (time-abstract) bisimula-
tion] (see [Hen9%] ). One of the main results concerning o-minimal hybrid systems
is that they admit finite bisimulation quotient. This result has been first proved
in [LPS00], it was reproved in [Dav99| in a more topological way, amongst a lot
of other interesting results. In [BriO6a), the existence of finite bisimulations for
o-minimal hybrid systems is proved by means of the suffiz partition, a technique

initiated in [BMRT04, [BMOS, Bri06h.

2 Two systems are time-abstract bisimilar whenever they can both do the same actions
and wait some delay.
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Theorem 5. ([Bri06a, Theorem 12.6.14])

Let 'H be an o-minimal hybrid system and Py be a finite and definable partition
of Q x V3 respecting the guards and the resets of H. There is a finite and definable
partition, noted Suf (Py), inducing a bisimulation on H.

O-minimal hybrid systems are models for closed systems, where all transitions
are controlled. If we want to consider open systems where we distinguish between
the actions of a controller and of an environment, we need to consider games on
o-minimal hybrid systems. We are now going to define this notion.

Definition 6 (O-minimal game). Let M=(M,+,0,1,<,---) be an o-minimal
structure. An M-game (or simply an o-minimal game ) is a tuple (Q, Goal, X, 8,7)
where Goal C @Q is a subset of winning locations, (Q, X, 6, ) is an M-hybrid system
and X is partitioned into two subsets Y. and X, corresponding to controllable and
uncontrollable actions.

Let ‘H be an o-minimal game. The game is played by two players, the controller
and the environment; the goal of the controller is to reach a winning state what-
ever the environment does. In every state s, the controller picks a delay 7 and
an action a € Y. such that there is a transition s 2% &'. The environment has
two choices:

. . . o T,a
— either it waits 7 and executes a transition s — s’ proposed by the controller,
,
. . .. T, .
— or it waits 7/, 0 < 7/ < 7, and executes a transition s —— s” with u € X,,.

The game then evolves to a new state (according to the choice of the environ-
ment) and the two players proceed to play as before.
We will now formalize the semantic through the concept of strategy.

Definition 7 (Strategy). A (controller) strategyﬁ is a partial function X from
Runsg(H) to MT x X, such that for all runs o in Runsy(H), if A(o) is defined,
then A(o) is enabled in last(p).

Intuitively, the strategy tells what needs to be done for controlling the system:
at each instant it tells how much time we need to wait and which controllable
action needs to be done after this delay. Note that even when the environment
follows the controller’s choice, it has to choose between several edges, each one
labeled by the action given by the strategy (because the original game is not
supposed to be deterministic).
Let 0 = (qo, x0, t), Yo) T, .. be arun, and set for every i, g; the prefix of o
ending at position (¢,0). The run g is said to be consistent with a strategy A\ when
for all 4, if A(g;) = (7,a) then either 7,41 = 7 and a;+1 = a, or 741 < 7 and
ai+1 € X,,. We denote by Outcome(s, A) the set of runs starting from a state s of
the (output) space consistent with the strategy A\. A run o = (qo, 2o, to, o) ——
REZLUN (Gp, Tp, tp, yp) s said winning if ¢; € Goal for some 7. A run p is said
maximal with respect to a strategy A if it is infinite or if A(p) is not defined. A
strategy \ is winning from a state (q,y) if for all (x,t) such that v(x,t) =y, all

maximal runs starting in (g, z, ¢,y) compatible with A are winning.

3 In the context of control problems, a strategy is also called a controller-
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3 Weighted O-Minimal Hybrid Systems and Games

In this section, we define the weighted o-minimal hybrid systems and games,
which extend the two models of the previous section with cost functions. These
cost functions give a quantitative information on the behaviours of the sys-
tems, which allows to give a measure of the performance of the system. These
models are respectively inspired by the model of weighted (resp. priced) timed
automata and the model of weighted (resp. priced) timed

games [ABM04, [BCETL04.

3.1 Definitions

We consider cost functions which are non-negative and time-non-decreasing.
Note that cost functions in weighted timed automata satisfy
these hypotheses.

A non-negative and time-non-decreasing cost function is a definable function
Cost : Q x Vi x V. x MT — MT such that for all ¢ € Q, z € Vi, t € V and
71, To € M with 71 < 75 we have that Cost(q,z,t,71) < Cost(q,z,t, T2).

Definition 8 (Weighted o-minimal hybrid system and game). An M-
weighted hybrid system (resp. game) is an M-hybrid system (resp. game) H =
(Q, X, 6,7) with a definable non-negative and time-non-decreasing cost function
Cost.

The semantics of an o-minimal weighted hybrid system (resp. game) is the
one of the underlying o-minimal hybrid system (resp. game). Hence, the cost
function does not affect the behaviours of the system; it gives for every single
step of the system a non-negative value, which represents the cost of evolv-
ing following that step. It naturally extends to a run in the system: let o =
(q0, 0, to, yo) —=5 ... 2% (g, 2, by, yp) be a finite run in H. The cost of o
is COSt(Q) = le Cost(qi_l, Ti—1,ti—1, Ti).
Let us give an example of weighted o-minimal hybrid system.

Ezample 3 ([BLMU07]). The weighted o-minimal hybrid system of Figure [[lmod-
els a never-ending process of repairing problems. The repair of a problem has
a certain cost, captured in the model by the cost function Cost. As soon as a
problem occurs (modeled by the pb transition) the value of the cost grows with
rate 1, until actual repair is taking place by one of the transitions rp; (cheap
but long repair) or rpy (expensive but quick repair). At most 24 time units after
the occurrence of a problem it will have been repaired one way or another.

3.2 Related Problems and Results

In this subsection we define the two problems we are interested in: the cost-
optimal control problem and the WCTL model-checking problem.
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Fig. 1. A repair problem example

The Cost-Optimal Control Problem. The cost-optimal reachability control
problem was first considered on weighted timed automata in [ABM04, BCFL04].
However it has been shown in that the cost-optimal reacha-
bility control problem for weighted timed automata is undecidable.

In our context of weighted o-minimal games, the cost-optimal control problem
asks what is the optimal cost for the controller to reach Goal whatever the
environement does. In order to take the cost function into account, we now need
to define the cost of a strategy from a state and the optimal cost from a state.

Definition 9 (Cost of a strategy from a state). Let (H, Cost) be a weighted
o-minimal game, Goal be a subset of winning locations, s be a state of the (output)
space Vo and X be a strategy. The cost Cost(s, \) of A from s is defined by:

Cost(s, \) = sup {Cost(p) | o € Outcome(s,\)}.

Intuitively the presence of the supremum is explained by the fact that the envi-
ronment tries to maximize the cost.

Definition 10 (Optimal cost from a state). Let (H,Cost) be a weighted
o-minimal game, Goal be a subset of winning locations and s be a state of the
(output) space Va. The optimal cost OptCost(q) associated with s is defined by:

OptCost(s) = inf {Cost(s,\) | A is a winning strategy}.
A winning strategy from s is called optimal whenever Cost(s, \) = OptCost(s).

Problem 1 (Cost-optimal control problem). Given a weighted o-minimal game
‘H, a definable state s and a definable constant ¢, decide if there exists a winning
strategy A from ¢ such that Cost(s, \) < c.

Problem 2 (Computation of the optimal cost). Given a weighted o-minimal game
‘H and a definable state s, compute the optimal cost OptCost(s).
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Remark 1. There is an optimal winning strategy from state s iff the infimum can
be replaced by a minimum in the definition of OptCost(s). If we solve problem ]
and 2 we can also determine if there is an optimal winning strategy by asking
if there is a strategy A with Cost(s,A) < OptCost(s). In [BBRO5, BBMOG], it
has been shown that the variant of Problem [I] for weighted timed automata is
undecidable.

The WCTL Model-Checking Problem. The logic WCTLH has been proposed
in the context of (weighted) timed systems as an extension of CTL with cost

constraints on modalities [BBR0O4, [BBM06, [BLMO7]. In our context, we define

for every structure M the logic WCTL4 over X inductively as follows:
WCTLMm 2@ = a | oV | ~¢ | EpUicp | ApUcp

where a € ¥, ~ € {<,<,=,>,>} and ¢ is an M-definable constant.
Let (H, Cost) be an M-hybrid system. The semantics of WCTLy is defined
for every state (¢,y) € @ x Vs of (H, Cost) as follows:

(¢,y) Fa

(,9) B~

(,9) FE¢1V 2
(¢,y) F EpiUcp2

(4,y) = (¢, y) for some (¢, y') € Q x Vo °
(a.y) F e

(a,y) F ¢1 01 (¢,9) F o2

there is an infinite run ¢ in H from (g, y)
s.t. 0 = p1Ucp2

every infinite run ¢ in H from (g, y)
satisfies o = @1 U cip2

0 FE v1U cpa & there exists m > 0 position along o s.t.

o[r] & w2, for all positions 0 < 7’ < 7 on g,
o[7'] = 1V @2, and Cost(o<s) ~ &

teeo

3

(¢,9) E ApiUncpr

We use true for a V —a, and classical “eventually” and “always” operators:
EF_.¢ (resp. AF_.¢) stands for EtrueU..¢ (resp. AtrueU..¢) and A G ¢
(resp. EG.¢) stands for =EF_.—¢ (resp. “AF_.—¢).

Let us give an example of WCTL formulae on the repair problem of Example[3l

Ezample 4. [BLMO07] An example of a property that can be expressed with
WCTL is “ Whenever a problem occurs it can be repaired within a total cost of 55”.
It can be expressed with the following formula:

One can easily check that this formula holds for every state of the weighted
o-minimal hybrid system of Figure [l

Problem 3 (Model-checking of WCTL). Given (H, Cost) an M-weighted hybrid
system, ¢ a WCTL y-formula and (¢,y) € @Q x V2 a definable state of H, decide

whether (¢,y) = ¢.

4 WCTL stands for “Weighted CTL.”
5 This can be viewed equivalently as atomic propositions.
5 Following [Ras99] we use ¢1 V @2 to handle open intervals in timed models.
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Remark 2. Note that classical results on o-minimal hybrid systems cannot be
used to solve the two problems presented above (for instance, weighted o-minimal
hybrid systems do not have a finite bisimulation), and hence, ad-hoc proofs have
to be developed.

4 Solving the Cost-Optimal Control Problem

In this section we prove the decidability of Problem [l

Definition 11. Let (H,Cost) be a weighted o-minimal game. We say that a
run (qo, To, to, Yo) TL8, .. crosses the transition e = (¢,9,a,R,q") at step i if

q4=¢qi-1,q = q, a=a;, Vg, (Ti1,ti1 +7i) € g and y; € R.

We are now going to prove a key proposition: we can restrict to winning strategies
that cross each edge at most once. In order to prove this proposition we use the
fact that the cost functions have non-negative values.

Proposition 12. Let ‘H be a weighted o-minimal game and (q,y) a state of
H. If there exists a winning strategy A from (q,y) then there exists a winning
strateqy Apew with Cost((q,y), Anew) < Cost((q,y), \) such that every run starting
in (q,y) compatible with Ape crosses each transition at most once.

Proof (Sketch). The idea of the proof is the following: for each transition e, we
iteratively ensure that there is a winning strategy (of cost ¢/ < ¢) crossing e at
most once. See Outcome((q,y), A) as a(n infinitely branching) tree: every path in
this tree is finite and reaches Goal, but it may cross e several times. We construct
a new strategy Ape, which short-cuts A in the following sense: it simulates A until
e is crossed for the first time and then switches to a descendant in the tree from
which all paths do not cross e anymore (this is possible as A is winning). Such a
strategy crosses e at most once, its cost is smaller than that of A as its compatible
runs are “shorter” than ones of A and the cost function is non-negative. (I

We now give a backward algorithm which computes the optimal cost, based on
the formulation of the problem given in [LMMO02, [ABM04]. The termination of
the algorithm relies on Proposition[I2 For this, given (¢,y) € Q@ x Vo and n € N
we define ¢,(q,y), the optimal cost of reaching Goal from (¢,y) in at most n
steps. Formally we have that:

— co(q,y)=0if ¢ € Goal, +o0 if ¢ ¢ Goal.

= cnr1(q,y)=
. { Cost; (g, x,t,y)
sup inf max o

g (z,t)=y(T:a) EEnb(q,z,t,y) Sup{COStcn’ (q, z,t, y) | (7—’,u)EEnb(q,x,t,y),r’gr}

where (7,¢) € Enb(q, z,t,y) iff e € Enb(q, z,t + 7,7,4(z,t + 7)), and Cost;*

(2, t,y)=Cost(g, z, t,y, 7)+ sup{e(d’, y') | (a2, £, y) == (¢’ 2’ ', ')}
Definition 13. A strategy X is said n-bounded from (q,y) if every run compat-
ible with X\ starting from (q,y) has length at most n.



78 P. Bouyer, T. Brihaye, and F. Chevalier

Lemma 14. For everye > 0, for every (¢,y) € Q x Va s.t. ¢,(q,y) < 400, there
exists a definable n-bounded strategy A from (q,y) such that Cost((q,y),\) <

cnlq,y) + €.

Lemma 15. If X is an n-bounded strategy from (q,y) then Cost((q,y),\) >
en(4,y)-

Theorem 16. Let M = (M,+,0,1,...) be an o-minimal structure such that
Th(M) is decidable. The cost-optimal control problem over M-weighted hybrid
systems is decidable.

Proof. Let 'H be a weighted o-minimal game and s a state of H. Lemmas [I4] and
imply that cg(s) = inf {Cost(s, A) | Alis a k-bounded strategy strategy}.

Let n be the number of transitions of H. Proposition shows that for
every winning strategy from s there is an (n + 1)-bounded winning strategy
from s with smallest cost. Thus OptCost(s) = inf {Cost(s,A) | Aisan (n+
1)-bounded strategy } = cp41(s). Note that c,41(s) is computable since Th(M)
is decidable.

We can moreover decide if the optimal cost can be achieved by a strategy: by
Proposition [[2] it is sufficient to enumerate all (n + 1)-bounded strategies using
7;’s as parameters and check if the cost of one of them is equal to ¢, 11(s). O

Remark 3. Let us notice that Theorem [[0] encompasses the decidability of the
time-bounded reachability problem considered in [Gen05]. Moreover, a conse-
quence of Theorem [I0lis the decidability of the (cost-)optimal reachability prob-
lem formulated in [ALPOI, [BEHT01] for weighted timed automata.

5 Solving the WCTL Model-Checking Problem

The aim of this section is to prove the following decidability theorem. The tech-
niques that we will develop for proving this result are partly inspired by the recent
decidability proof for WCTL over one-clock weighted timed automata [BLMOT].

Theorem 17. Let M = (M,+,0,1,<,...) be an o-minimal structure such that

M is Archimedial] and Th(M) is decidable. The model-checking of WCTL
over M-weighted hybrid systems is decidable.

If P and P’ are two partitions, we write P M P’ for the joint partition,i.e. the
smallest partition that refines both P and P’. Let us notice that if P and P’ are
both finite and definable the joint partition P M P’ is also finite and definable.

Let H = (Q, Goal, X, §,7v) be an M-weighted hybrid system. On each location
q € @, let us denote by P, the partition induced by the guards and the resets
associated with location g. We denote by Py the partition of state space S
= @ x V3 induced by the P,’s. Py is a finite definable partition of S.

T A structure is Archimedian whenever for every pair (a,b) € M? such that a # 0,
there exists some integer n such that n-a > b.
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Two states of the same piece P of Py agree on all atomic formulae a € X.
We will now inductively construct for every WCTL y-formula ¢ a refined (finite
and definable) partition P, of Py such that two states of a piece of P, agree on
formula ¢. We will proceed in three steps: from partitions for ¢ and ¢ we will
successively construct a partition for E ¢U1y and A ¢U, then for E U .0 and
finally for A ¢U. 1.

The first step is achieved using the following lemma, which applies the con-
struction of a finite and definable partition (the so-called suffix-partition) cor-
rect w.r.t. bisimulation (see Theorem [H), and thus for CTL-formulae [AHLPO0L

[HMRO5].

Lemma 18. Let Py (resp. Py) be a partition for ¢ (resp. ). The partition
Suf(PyMPy) is a time-abstract bisimulation and is a partition for formula E pUp.
That is, if P is a piece of Suf(Pg M Py), then all states (q,y) with y € P either
satisfy E U or do not satisfy this formula. The same holds for A pUv.

The second step, the construction of a (finite and definable) partition respecting
E ¢pU ., is more involved.

Let us denote by P the partition Suf(Py M Py). Let ¢ and ¢’ be two locations
of H. Let P and P’ be two pieces of P. We give formulae which define the set
of possible costs of paths from a state (or a piece of P) to another one:

— quvﬁ)_)(q, P,)(c7 y) expresses that it is possible to go from some (¢,y) with

y € P to some (¢’,y’) with 4y’ € P’ by a continuous step followed by a
discrete action, with cost ¢, and always satisfying ¢ V 1.

— G?qv)ﬁwp,)(c, y) expresses that it is possible to go from (¢,y) with y € P to
some (q,y’) with ¢’ € P’ by a continuous step (and no discrete action), with
cost ¢, and always satisfying ¢ V .

From the two previous formulae, we define the following definable sets:

Koy by oy =1c €M™ | Sy e Pss 0078 o (ey)}
Kby = {e€ MY | By e Pst 0070 b (e)} s
b)) = {e € M7 100 py (e} s

A?qvgwpf (y) ={ce M* | Q?qvgwp’)(c’ )}

We then construct a finite graph which abstracts away all dynamical parts
of H and which will be restricted to parts of H which satisfy formula E ¢Uq.
Each edge of this graph will be labeled with a weight (indeed a definable set)
which will represent the set of costs of all paths in H witnessing formula E ¢pU1.
More formally, we construct a (definable) weighted finite graph Gy, = (V, E) as
follows:

— its set of vertices V is

{(@. P), (¢, Pinit) | (. P)EoVvel U {(g Pfinal) | (¢.P)F v}
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— its set of edges FE is

(0t~ 21y W) (a by ) -
{(q, Pjinit) —————— (¢, P")} U{(q, P, init) (g, P" final)}
LSV
U {(a. Puinit) 2 (g, P.final) U {(q, P) =20 (g, P}
¢vw dVY

U {(q, P) 22D (o P final)} U {(g, P) —“220 (g, P final)}
Let 0 = (qo, Py, init) — M), (q1, P1) =5 £ (gn, Py, final) be a finite path of
Gg,p- Then we define K,(y) to be the set of all possible costs of the path o
Ko(y) ={My) t 2+ +cn|ci €Ki}
The following proposition shows that the graph G, , can be used to model-
check the formula E ¢pU ...

Proposition 19. Let qo € Q, Py € P and yo € Py. Then, (qo,y0) E EoU v

iff there exists a path o = (qo, Po, init) — M), (q1, P1) =5 ... 25 (g, P, final) in
Go.p, there exists ¢ € M such that ¢ € K,y(yo) and ¢ ~ c.

We prove that, under the Archimedian hypothesis, we can bound the length of
witnessing paths in the graph Gy . This hypothesis has not been used yet, as
everything holds without it, but is required by the next proposition. For every
(m,c) € M? such that m # 0, we note | ¢ ] the smallest integer k such that
k-m>c.

Proposition 20. We assume that (qo,yo) = EoU. ., and we define N =2 +
(1Q- Pl +1)- ([ 5] +2) where m is the smallest positive constant defining an
interval of some weight labelling the transitions of Gy .. Then there exists a

path o = (qo, Po, init) —= 2@, (1, P) =5 ... 2% (qn, Py, final) in Gy, such that
yo € Py, n < N, and there exists ( € M such that ¢ € K,(yo) and ¢ ~ c.

Proof (Sketch). By Proposition [[9] there exists a path o = (qo, P, init) 2,
(q1,P1) =5 ... £ (gp, P, final) in Go.p st. 3¢ € Kyp(yo), ¢ ~ c. From p, we
will construct a run of length smaller than N which witnesses the formula.

By o-minimality, each x; is a finite union of intervals. We first choose accu-
rately one such interval per k; and obtain a realisation of g noted o[Z], so that
the accumulated union of all intervals along p[Z] contains ¢ such that ¢ ~ c. We
call [0]-cycle a cycle labeled only by the interval [0]. We can suppose that there
is no [0]-cycle in p[Z] otherwise we can remove this cycle and get a shorter path
also witnessing the formula.

If the length of g[Z] is shorter than N then we are done. Otherwise ¢ contains
at least ( [ C] + 2) simple cycles (see Fig. ), each of which is labeled by an
(accumulated) interval whose right bound is greater than m. Thus, K ,7)(y0) =

(a,b) A with b > ¢ + 2m. By hypothesis, there exists ¢ € (a,b) buch that ¢ ~ c.

8 This is a notation misuse, but (¢, P) = ¢ V ¥ means that for ally € P, (q,y) = ¢ V1,
which is equivalent to the property that (¢,y) = ¢ V ¢ for some y € P.
9 (a,b) stands for either [a,b] or [a,b) or (a,b] or (a,b).
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|Q|-|P|+1 states

fo—it b ! ! ! b | o)

there maybe [b]—cycles

| b - | | | b - e

[o]-cycles have been removed

Fig. 2. The construction in the proof of Proposition

We then remove the first cycle of the run and remove [0]-cycles that can have
been potentially created (see Fig.[2]). We obtain ¢”[Z] a strictly smaller run. Note
that K,7](yo) might be different from K ,7)(yo); nevertheless ¢”[Z] still has at
least [ ¢ ] simple cycles so Ky (zj(yo) = (a/,b') with b’ > ¢ (as previously). It
proves that there exists ¢ € Ky 77(yo) with ¢ ~ ¢ (since ¢ <V’ < b and o’ < a).
We iterate this process until we find a run smaller than N with this property.

(]

Applying the previous proposition, we can build a first-order formula which
checks if a given state (q,y) satisfies the WCTL formula E ¢U..¢, and we thus
get the following corollary.

Corollary 21. Let M = (M,+,0,1,<,...) be an o-minimal structure such that
M is Archimedian and Th(M) is decidable. Let H be an M-weighted hybrid
system and ¢ and ¢ be two WCTL formulae. Assume we have built two finite
and definable partitions Py and Py for ¢ and ), then we can compute a definable
finite partition correct for the formula E U ).

We do not enter into the details of the third step. However, the construction of
the partition respecting A U9 (from the partition Py and Py) shares ideas
with the construction of the partition respecting E U .1 that we have described.
In particular, the idea exploited in the proof of Proposition 20 plays an important
role.
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