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1. Introduction

While the interaction of electromagnetic fields with single mol-
ecules is well understood in vacuum,[1] the situation is much
more complex in condensed phases: the presence of polariza-
ble media considerably alters the quantum fluctuation proper-
ties of the fields.[2] Most approaches consider the electromag-
netic field as a macroscopic field modified by the local field
factor, which takes into account the effect of the nanosur-
rounding of the probe molecule. On the one hand, the validity
of the old but still frequently used Lorentz field factor contin-
ues to be investigated.[3] On the other hand, Glauber et al.[2]

derived an expression (empty cavity factor) for the spontane-
ous emission of an excited probe located within a uniform
medium of dielectric constant e. This expression was also de-
rived and checked experimentally by Yablonovitch et al.[4] Re-
cently, it was shown that the empty cavity factor applies for a
substitutional probe while the Lorentz cavity factor applies for
an interstitial probe (the probe is inserted without displace-
ment of the matrix molecules).[5] However, these approaches
consider a uniform surrounding, such that the influence of the
discrete structure of nearby molecules on the probe molecule
averages out. The local, inhomogeneous nature of the medium
is neglected. The local dielectric properties play an important
role in the structure and functionality of proteins.[6, 7, 8] A more
microscopic picture of the local effects has to be considered.
Due to its intrinsic ability to sense the nanosurrounding of a
probe molecule,[9] single-molecule spectroscopy constitutes
the ideal tool to perform this task. A first step forward has
been accomplished in this respect by Donley et al. , who re-
ported on the observation of radiative lifetime distributions of
single terrylene molecules embedded in polyethylene at a tem-
perature of 30 mK.[10]

In a recent publication,[11] Vall�e et al. reported on the tem-
poral fluorescence lifetime fluctuations of DiD (1,1-dioctadecyl-
3,3,3’,3’-tetramethylindodicarbocyanine) single molecules
(Scheme 1) embedded in diverse polymer matrices frozen in

the glassy state. The lifetime fluctuations were attributed to a
fluctuating density of the polymer segments surrounding the
nanoprobe. A polymer matrix is a highly disordered and inho-
mogeneous system that, according to hole theories,[12, 13] may
be seen as an ensemble of polymer segments and holes al-
lowed to move on a lattice. In the frame of an effective
medium theory, the fluctuating hole configuration was de-
scribed by a fluctuating dielectric constant around each single
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We develop a microscopic model to describe the observed tem-
poral fluctuations of the fluorescence lifetime of single molecules
embedded in a polymer at room temperature. The model repre-
sents the fluorescent probe and the macromolecular matrix on
the sites of a cubic lattice and introduces voids in the matrix to
account for its mobility. We generalize Lorentz’s approach to die-
lectrics by considering three domains of electrostatic interaction
of the probe molecule with its nanoenvironment: 1) the probe
molecule with its elongated shape and its specific polarizability,

2) the first few solvent shells with their discrete structure and
their inhomogeneity, 3) the remainder of the solvent at larger dis-
tances, treated as a continuous dielectric. The model is validated
by comparing its outcome for homogeneous systems with those
of existing theories. When realistic inhomogeneities are intro-
duced, the model correctly explains the observed fluctuations of
the lifetimes of single molecules. Such a comparison is only possi-
ble with single-molecule observations, which provide a new
access to local field effects.

Scheme 1. Chemical structure of a DiD molecule.
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molecule.[14] The asymmetric fluorescence lifetime distribution
for each individual molecule was related in this way to a corre-
sponding distribution of holes surrounding the probe mole-
cule. Consequently, a characteristic number of segments in-
volved in a rearrangement cell around each individual mole-
cule was determined. Interestingly, the shape of the fluores-
cence lifetime distributions, and consequently the number of
segments involved in a rearrangement volume around the
probe molecule, was found to decrease with increasing tem-
perature.

Powerful though this model proved to be in interpreting the
data, it presents several interrelated drawbacks. Firstly, the mi-
croscopic structure of the probe molecule is completely ne-
glected: by using a spherical empty cavity factor[15] in the cal-
culation of the fluorescence lifetime, the probe molecule has
been considered as being of spherical shape and nonpolariza-
ble.[11] In most treatments of local fields in dielectrics, a Lorentz
factor is used. This assumes that a spherical molecule is placed
in a isotropic, homogeneous medium.[3] In addition, the polar-
izability of the probe is taken equal to that of the matrix. In
this work, we wish to go beyond these assumptions. We will
consider 1) the elongated shape of the DiD molecule
(Scheme 1),[16] 2) the actual polarizability of its conjugated
system, which is much larger than that of the surrounding
monomer units, 3) the microscopic structure of the first solvent
shells around the probe, possibly including inhomogeneities.

This paper further explores the previous approach and pro-
vides a full microscopic interpretation of the lifetime fluctua-
tions. The optical and structural properties of the individual
molecule and of the surrounding monomer units are deter-
mined by quantum-chemical calculations. As the interaction
between them is limited to a few nanometers, that is, is much
smaller than the radiative emission wavelength l= 660 nm,
only nonretarded electrostatic interactions will be taken into
account in the description.

2. Local Field in the Continuum Approach

Figure 1 a shows the fluorescence-lifetime time trace of a DiD
single molecule embedded in a poly(styrene) (PS, Mw =

133 000, polydispersity index = 1.06) matrix. While the lifetime
has an average value of t= 2.1 ns, it deviates frequently and
asymetrically towards higher values during the experiment.
The fluorescence lifetime fluctuations of the individual mole-
cule can be as large as 30 % with respect to the average value,
as best represented by the corresponding distribution shown
in Figure 1 b.

The spontaneous emission rate Gr0 of a single fluorescent
molecule in vacuum is given by the Einstein Aeg coefficient for
emission in Equation (1):

G r0 ¼ Aeg

¼ 1
t0

¼ 4
3
j m!egj2
4pe0�h

�
weg

c

�
3

ð1Þ

where m!eg and weg are the transition dipole moment and tran-
sition frequency of the molecule, respectively ; e0 is the dielec-
tric permittivity of vacuum, �h is the reduced Planck constant
and c is the speed of light in vacuum. t0 is the inherent radia-
tive lifetime of the molecule. This observable is an intrinsic
property of the probe molecule. While this is indeed true in
vacuum, the lifetime of the probe molecule strongly depends
on its direct environment, and in particular on the dielectric
properties of the medium in which it is embedded. In a trans-
parent condensed medium of relative dielectric permittivity
(high-frequency part), the energy of the emitted photon is re-
normalized through the substitutions e0!ere0 and c!c/n, such
that the spontaneous emission rate can be written as Equa-
tion (2):

G r ¼ nG r0 ð2Þ

where n =
ffiffiffiffi
er

p
is the refractive index of the considered

medium (n = 1.58 in the case of PS). Nienhuis et al.[17] firstly de-
rived this formula by quantizing the macroscopic Maxwell
equations.

Figure 1. Fluorescence lifetime time trajectory (a) and distribution (b) of a
single DiD molecule embedded in a PS film.
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It is worthwhile to mention here that the actual fluorescence
lifetime of a single molecule embedded in a real medium re-
sults from both radiative (rate Gr) and nonradiative (rate Gnr)
processes [Eq. (3)]:

tf ¼
1

G r þ Gnr
ð3Þ

so that the opening of decay channels other than radiative can
modify the lifetime. The quantum yield h ¼ G r

G rþGnr
of the DiD

molecule has been shown to be very close to unity, which
makes extra—nonradiative—decay channels irrelevant for the
system under consideration.[11] In the remaining of this paper,
we will only consider variations of the radiative rate.

The complex nature of the interaction of the probe mole-
cule-surrounding dielectric, involving discrete and continuous
parts, will be described by considering three separate domains
(Figure 2): 1) the molecule with its elongated shape and specif-

ic polarizability, 2) the first few solvent shells with their discrete
structure and their possible inhomogeneity, 3) the remainder
of the solvent at long distances, treated as a continuum.

The molecule and the first solvent shells will be treated ex-
actly by means of simulations given in Section 3. In this sec-
tion, we replace them by one dipole at the center of a dielec-
tric sphere with the same polarizability as the surroundings.
We then reinsert this sphere into the dielectric, � la Lorentz,
applying the relevant local field factor.

2.1 Lorentz Cavity Factor

We first consider a homogeneous, isotropic medium of identi-
cal molecules. Because of the relatively close proximity of the
atoms or molecules in condensed phases, the local field E

!
l felt

by the probe molecule can be very different from the applied
electric field E

!
ap. Figure 3 shows a two-dimensional represen-

tation of the Lorentz virtual spherical cavity model: a mole-
cule A of the medium is surrounded by an imaginary sphere
(represented by the circle) of such extent that beyond it the di-
electric can be treated as a continuum.

When a field E
!

ap is applied to the sample (represented by
the rectangle), charges accumulate on its surface in response
to E
!

ap. A depolarizing field E
!

dp is established, that opposes to
E
!

ap, thus lowering the net electrostatic field in the sample.
The resultant macroscopic field E

!
m is then simply the sum

E
!

ap + E
!

dp. Taking into account the discontinuous atomic or
molecular nature of the dielectric within the sphere centered
on the probe molecule A (but treating the region outside the
sphere as a continuum), E

!
l can be written as Equation (4):

E
!

l ¼ E
!

m þ E
!

s þ E
!

d
ð4Þ

where E
!

s ¼ e�1
3 E
!

m is the contribution of the charges at the
surface of the sphere. E

!
d is due to the dipoles within the

sphere, near to A, and must be calculated for each particular
site and for each dielectric material as it depends strongly on
the geometrical arrangement and polarizability of the contri-
buting particles. When the molecules surrounding A are neu-
tral, nonpolar molecules, or when they are arranged either in
complete disorder or in a cubic lattice, the assumption (proved
by Lorentz in the case of a cubic arrangement of identical mol-
ecules) is often made that the additional effects of these mole-
cules on the probe molecule mutually cancel, such that E

!
d =

0
!

. The Lorentz local field factor LL, which relates the micro-
scopic local electric field to the macroscopic electric field El =

LL E
!

m, is thus simply given by Equation (5):[18]

LL ¼
eþ 2

3
ð5Þ

2.2 Effect of the Molecular Polarizability—Reaction Field

We now consider a probe molecule with a spherical shape but
a specific polarizability. In a medium of polarizability a and die-
lectric constant e relative to vacuum, a small volume is now re-
placed by the molecule A of interest : we model it by a point
dipole m! with polarizability c, placed at the center of a spheri-
cal cavity. The field of the dipole in such a cavity polarizes the
surrounding molecules, and the resulting inhomogeneous po-
larization of this nanoenvironment gives rise to the reaction
field E

!
r acting at the position of the dipole. For symmetry rea-

sons, the reaction field E
!

r has the same direction as the origi-
nal dipole moment m! and is proportional to m! as long as no
saturation effects occur: E

!
r = f m!.[18] As the molecule is placed

in a spherical cavity of radius R, a simple consideration of the

Figure 2. Description of the system under investigation: the probe molecule A
(1) and its first few solvent shells (2) are considered with their discrete structure
and embedded in the remainder of the matrix treated as a continuum (3).

Figure 3. Two-dimensional representation of the Lorentz model.
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continuity of the fields inside and outside the cavity leads to
Equation (6) for the cavity field E

!
c (local field in the center):

E
!

c ¼
3 e

2eþ 1
E
!

m ð6Þ

The local field felt by the molecule E
!

l = E
!

c + E
!

r is the sum of
the cavity field and the reaction field, such that [Eq. (7)]:

E
!

l ¼ E
!

c

1
1�f c

ð7Þ

where f writes as given in Equation (8):

f ¼ 2
e�1

2eþ 1
1

4pe0R3 ð8Þ

By combining Equations (6–8), the local field factor L that re-
lates the local field effectively felt by the molecule to the mac-
roscopic electric field becomes [Eq. (9)]:

L ¼ 3 e

2eþ 1�2ðe�1Þ c

4pe0 R3

ð9Þ

In the special case where the molecule at the center has the
polarizability a of the medium, we must recover Lorentz’s
theory of dielectrics. Inserting in Equation (9) the well-known
Clausius–Mossotti relation in the slightly modified form
[Eq. (10)]:

V ¼ a

e0

eþ 2
3ðe�1Þ ð10Þ

where V = 4/3 pR3 is the volume occupied by a single spherical
molecule, one indeed finds back the Lorentz local field factor
given by Equation (5). In the general case, c=a+ d, where d is
the polarizability difference of the molecule with respect to
the medium. The local field factor [Eq. (11)]:

L ¼ LL

1

1� 2
9e ðe�1Þ2 d

a

ð11Þ

is enhanced relative to the Lorentz cavity factor if the molecule
is more polarizable than the medium. In particular, for
d >

9ea

2ðe�1Þ2, the theory fails. This regime, known as the Clausius–
Mossotti catastrophe, might describe a ferroelectric transition,
which corresponds to a spontaneous polarization of the
system. The local electric field felt by the probe molecule is en-
hanced, relative to the macroscopic field, by the local field
factor L. The vacuum fluctuations of the electric field, which
are responsible for spontaneous emission, are enhanced by
the same factor. The spontaneous emission rate Gr is thus en-
hanced by a factor L2 with respect to the one given in Equa-
tion (2): Gr = nL2Gr0.

In order to apply these considerations in the case of a DiD
molecule embedded in a PS matrix, we have calculated the po-
larizabilities and volumes of the DiD molecule and those of a
styrene unit. Firstly, an optimization of the respective geome-
tries has been performed in the ground state by using the

semiempirical Hartree–Fock Austin Model 1 (AM1) technique
and in the excited state by coupling the AM1 method to a full
configuration interaction scheme (CI) within a limited active
space, as implemented in the Ampac package.[19] Secondly, the
optical absorption spectra of the optimized geometries have
been computed by means of the semi-empirical Hartree–Fock
intermediate neglect of differential overlap (INDO) method, as
parameterized by Zerner et al. ,[20] combined to a single config-
uration interaction (SCI) technique; the CI space is built here
by promoting one electron from one of the highest sixty occu-
pied levels to one of the lowest sixty unoccupied ones. Finally,
the polarizabilities were determined by a sum over states
(SOS) method over all states involved in the CI space just men-
tioned. Figure 4 shows the optimized geometry of the DiD

molecule (only the most abundant conformer is shown) and of
a section of a PS chain. The atomic transition densities, as well
as the transition dipole moment (j m!j= 4.97 � 10�29 C m) associ-
ated to the transition between the ground state and the
lowest excited state of the molecule are also shown.

The polarizabilities of the DiD molecule c0 = 6.1 �
10�39 C2 m2 J�1 (c0 = 55 � 10�30 4pe0 m3) and of the styrene unit
a= 1.0 � 10�39 C2 m2 J�1 (a= 9 � 10�30 4pe0 m3) have thus been
determined, as well as their volumes V = 399 � 10�30 m3 and
V = 119 � 10�30 m3, respectively. Note that these effective polar-
izabilities have been averaged over the three tensor axes. As a
check, we also deduced the volume V of the styrene unit by
use of the Clausius–Mossotti equation [Eq. (10)] , knowing the
dielectric permittivity of PS (e= 2.5) and the polarizability a of
the unit. The value obtained this way V = 113 � 10�30 m3 is con-
sistent with the volume calculated by quantum chemistry.

In order to determine quantitatively the influence of the po-
larizability and the spatial extent of the DiD molecule on the
spontaneous emission rate of the probe Gr = nL2Gr0 = nLL

2 L̂2Gr0,
the ratio L̂2 ¼ ð L

LL
Þ2 was calculated in different cases. This ratio

given by Equation (11) in the case of a spherical, polarizable

Figure 4. Schematic structures of the DiD molecule (a) and of a section of the
poly(styrene) chain (b). The atomic transition densities and the transition dipole
moment associated to the HOMO–LUMO transition are also shown.
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probe, expresses the departure from the ideal Lorentz behav-
ior, for which L̂2 = 1. Table 1 (fourth column, first two lines)
shows the calculated ratios L̂2 in the case where the probe
molecule is represented by a point dipole, which occupies the
same volume V = 113 � 10�30 m3 as the molecules of the

medium (styrene units). Only the polarizability of the molecule
changes, and takes, respectively, the values 0 and a, as indicat-
ed in the second column of the table. These two cases corre-
spond to the empty and Lorentz cavity factors, respectively.
The third line of the table pertains to the case where the
probe molecule, with its actual polarizability c0, is represented
by a point dipole occupying its actual volume V = 399 �
10�30 m3.

Table 1 shows clearly that the ratio L̂2 increases as the polar-
izability of the probe molecule is increased, ranging from a
value lower than 1 in the case of the empty cavity model, to 1
in the case of the Lorentz cavity model, and higher than 1 in
case the polarizability of the probe molecule is enhanced with
respect to the surrounding medium molecules. If the actual
polarizability c0 of a DiD molecule would have been confined
to the small volume of a styrene unit, a Clausius–Mossotti cat-
astrophe would have been generated.

2.3 Effect of the Elongated Shape

In the three cases just mentioned, the probe molecule has
been sized to an idealized spherical volume. However, a DiD
molecule has an elongated shape (Scheme 1) and occupies a
volume V = 399 10�30 m3, which is a bit more than three times
the volume of a styrene unit. We thus propose to replace a
small volume of the medium by an extended dipole in an ellip-
soidal cavity with principal semi-axes aR, bR and cR (a = 1, b =

1 and c = 3) along the x, y and z axes of a Cartesian coordinate
system, respectively. In this case the local field factor is given
by Equation (12):[18]

L ¼ e

eþ ð1�eÞAc�3Acð1�AcÞðe�1Þ c

4pe0 abcR3
ð12Þ

where [Eq. (13)]:

Ac ¼
abc

2

Z1

0

1

ðsþ c2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ a2Þðsþ b2Þðsþ c2Þ

p ds ð13Þ

In the case of a spherical cavity (a = b = c = 1), Ac = 1/3, Equa-
tion (12) converts back to Equation (9). The calculated values
[Eq. (12)] of the ratios L̂2 are given in Table 1 (last three lines)
for the three polarizabilities of the probe molecule previously
considered: 0, a and c0. By using such an extended dipole to

represent the single molecule,
no catastrophe is generated, as
the “real” polarizability of the
molecule is confined in a “real”
volume. Table 1 shows that a
probe molecule represented by
an extended dipole has a spon-
taneous emission rate, which is
enhanced as its polarizability is
increased. Interestingly, the cal-
culated ratios in the case of the
molecule represented by either
a point dipole of polarizability

c= 0 or a dipole in a ellipsoidal cavity of polarizability c=c0

are similar, which justifies the approach adopted earlier in the
literature.[11]

So far, although the described models are very relevant to
calculate the spontaneous emission rate and thus the fluores-
cence lifetime of a DiD molecule embedded in the PS matrix,
none of them is able to explain the lifetime fluctuations ob-
served experimentally. We now consider inhomogeneities of
the solvent shells in a microscopic approach, using numerical
simulations.

3. Microscopic Lattice Model

An amorphous polymer matrix is a frozen disordered medium
that consists of polymer chains and holes. Even 80 K below the
glass transition temperature (Tg = 373 K for PS), the glassy state
relaxes as a result of local configuration rearrangements of
chain segments, which are described by the hole motion and
bond rotation.[21]

3.1 Description of the Model

The probe molecule is represented by a charge distribution
1( r!) oscillating (for the considered HOMO–LUMO transition)
at the transition frequency weg. The charge distribution 1( r!) is
related to the transition dipole moment m! of the molecule by
the relation m!¼

R
r!1ð r!Þd r!. Figure 4 a shows an illustration

of the atomic transition densities associated with the transition
between the ground state and the lowest excited state of the
DiD dye (predominantly described as a HOMO to LUMO transi-
tion). The arrow describes the orientation of the transition
dipole moment m! of the molecule; j m!j= 4.97 � 10�29 C m. The
probe molecule is placed at the origin of a three-dimensional
cubic lattice and is surrounded by N polarizable monomers
(Figure 5). In order to mimic the motion of the styrene units
around the fixed probe molecule, a given fraction of holes is
introduced in the lattice. Figure 4 b shows the styrene units of
a portion of a poly(styrene) chain that constitutes the matrix.
To determine the lattice constant, D, the van der Waals volume

Table 1. Ratio L̂2 for the considered three polarizabilities and two spatial extensions of the probe molecule.
“Extended” means ellipsoidal cavity in the theory and extended dipole in the simulations.

Dipole Polarizability Shape theory L̂2 theory Shape simulation L̂2 simulation

point 0 spherical 0.694 1 cubic cell 0.814
point a spherical 1 1 cubic cell 1
point c spherical 1.369 - -
“extended” 0 ellipsoidal 0.509 3 aligned cubic cells 0.512
“extended” 3 a ellipsoidal 0.578 3 aligned cubic cells 0.579
“extended” c ellipsoidal 0.667 3 aligned cubic cells 0.771
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of a styryl unit V =D3 is simply attributed to the volume of a
cell of the cubic lattice.

In the study, we represent the probe molecule as an extend-
ed dipole of length l = 8.9 � 10�10 m (distance between

N atoms) with point charge q ¼ j m!j
l . This extended dipole,

which closely mimics the transition density distribution in
Figure 4, occupies three cells of the cubic lattice (Figure 5). The
electric field created by this source dipole on the surrounding
polarizable monomers situated at positions r!k is E

!
( r!k) =

�r!V( r!k), with [Eq. (14)]:

Vð r!kÞ ¼
q

4pe0

�
1

j r!k� r!þj
� 1

j r!k� r!�j

�
ð14Þ

where r!+ = (0,0, l
2) and r!�= (0,0,� l

2) are the positions of the
plus and minus charges of the source dipole, respectively. The
case of a point source dipole will also be considered as a spe-
cial case of the extended dipole with l!0. In this case, the
source dipole only occupies the cell at the origin of the cubic
lattice. The dipoles m!k induced by the electric field on the sur-
rounding monomers, considered as point dipoles, are obtained
from the set of coupled Equations (15) and (16):

m!k ¼ ak

�
E
!ð r!kÞ þ

XN

j¼1

T̂ kj m!jÞ
�

ð15Þ

where T̂kj is the dipole–dipole interaction tensor:

T̂ kj ¼
1

r3
kj

�̂
I� 3 r!kj r!kj

r!2
kj

�
ð16Þ

where � is the identity tensor and r!kj = r!k� r!j. The second
term in the set of coupled equations [Eq. (15)] also includes
the interactions between the monomers once they have been
polarized (polarizabilities ak = a) by the electric field E

!
( r!k) =

�r!V( r!k) [Eq. (14)] . Interactions between polarized monomers
and the polarizable probe molecule (polarizability ak = c),
placed at the origin of the lattice and source of this electric
field are also considered in this expression. The local electric
field, felt by the probe molecule, is thus the sum of all electric
fields experienced by the surrounding monomers and of the

reaction field induced by all these polarized monomers that
act back on the probe molecule.

We now have treated all interactions within the first solvent
shells [see Figure 2, (1) + (2)]). This system has an effective tran-
sition dipole moment m!tot, which is the sum of the molecular
dipole moment (source dipole) m! and of the induced dipoles
m!k of the cubic array representing the solvent shells [Eq. (17)]:

m!tot ¼ m!þ
X

k

m!k ð17Þ

with m!k given by Equation (15).

We now embed our system into the continuous dielectric
[see Figure 2, (3)] using Lorentz’s procedure, which amounts to
multiplying by the Lorentz local field factor. The spontaneous
emission rate Gr of the probe molecule embedded in a hetero-
geneous disordered medium can thus be written as Equa-
tion (18):

G r ¼ nL2
Lj

m!tot

m!
j2G r0 ð18Þ

with Gr0 given by Equation (1). The near-field effect of the dis-
ordered heterogeneous medium on the radiative lifetime can
thus be evaluated completely on the base of electrostatic cal-

culations of the ratio r ¼ j m!tot

m! j
2 between the total dipole in

the cavity and the source dipole associated with the probe
molecular charge distribution. It is worthwhile to note here the
equivalence between the ratio L̂2, defined in Sections 2.2–2.3
and expressing the dependence of the polarizability and spa-
tial extent of the probe molecule on its spontaneous emission

rate (Table 1) and the ratio r ¼ j m!tot

m! j
2 just defined in Equa-

tion (18). Liver et al. first showed that a first-order quantum-
mechanical perturbation theory of the solvent effect on molec-
ular oscillator strengths is equivalent to the classical electro-

static approach.[22] The ratio j m!tot

m! j
2 can be easily evaluated nu-

merically for a disordered system. The results of this investiga-
tion are presented in the next subsection.

3.2 Numerical Evaluation of the Oscillator Strengths Ratio—
Comparison with the Continuum Approach

As a first step, we consider the interaction of the probe mole-
cule, represented as a point dipole located at the center of a
cubic array in vacuum, and a monomer (styrene unit) placed
either transversally or longitudinally with respect to the dipole
axis of the single probe molecule. Figure 6 shows the comput-

ed ratio r ¼ j m!tot

m! j
2 as a function of the probe molecule—mon-

omer distance, expressed in units of D= 4.8 10�10 m. If the
monomer is placed at a large distance with respect to the
probe molecule, the ratio is obviously equal to unity (very
weak electrostatic interactions). As the distance separating the
interacting species is reduced, the ratio is increased (de-

Figure 5. Two-dimensional representation of a cubic lattice having the probe
molecule at the center(black sites), surrounded by the styrene units (gray sites)
and some holes (white sites).
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creased) in the case of a longitudinally (transversally) located
monomer. The increased (decreased) value of the ratio ob-
tained by placing the monomer longitudinally (transversally)
with respect to the dipole axis simply results from the vector
addition of the induced dipole moment m!k of the polarizable
monomer to the source dipole moment to give the total
dipole moment m!tot = m!+ m!k.

Three cases are reported in Figure 6, corresponding to three
different polarizabilities attributed to the probe molecule: zero
for a nonpolarizable molecule (solid lines; c), a for a probe
molecule with the polarizability of a styrene unit (dashed lines;
a) and c0 for a molecule with the polarizability of DiD con-
fined to a small volume (dotted lines; g). Figure 6 clearly
shows that an increase in the polarizability of the probe mole-
cule is accompanied by a corresponding increase in the ratio r.
As the fluorescence lifetime of a single molecule is the recipro-
cal of the spontaneous emission rate, the effect of placing a
monomer close to the molecule, along the dipole axis, is thus
to reduce its lifetime by a factor r. This effect can be as drastic
as a modification of 35 to 70 % of the lifetime, depending on
the polarizability of the probe molecule. It is also worth noting
that the variation induced by placing a monomer longitudinal-
ly with respect to the dipole axis is significantly larger than the
one induced by placing the monomer transversally.

In case the probe molecule, placed at the origin of the cubic
lattice, is represented by the extended dipole, the effect of the
molecule–monomer interaction on the ratio r, as a function of
the separating distance, is very similar, but attenuated with re-
spect to the case of the point dipole. Figure 7 shows that, in
this case, the fluorescence lifetime variations can only reach 6
to 9 % of the natural lifetime of the molecule, in the best case
that of a longitudinally positioned monomer. The three polariz-
abilities attributed per cell occupied by the probe molecule
are 0, a and c0

3 , respectively. The polarizability of the DiD mole-
cule has been split equally into three parts, in the last case, as-
suming it fulfills the additivity property. In each of the three

cases, the monomer, which occupies one cell of the lattice, in-
teracts with the three cells occupied by the probe molecule.
These three cells occupied by the probe molecule also interact
with each other.

Figure 8 shows the computed ratio r ¼ j m!tot

m! j
2 as a function

of the number of added polarization shells of monomers
around the probe molecule on the cubic lattice. Both results
for the point dipole and the extended dipole are shown in this
Figure. The minimum radiative lifetime (maximum oscillator
strength j m!tot j 2) is observed with the completion of a full first
solvation layer of styrene units around the probe molecule.[23]

Adding a second or third layer lengthens the lifetime. The sat-
uration of the probe molecule’s lifetime with larger number of
styrene units in its vicinity is associated with an approximate
continuum dielectric behavior, where Equations (9) and (12)
apply in the case of a point dipole and an extended dipole, re-

Figure 6. Ratio r ¼ j mtot

m j2 calculated in the case of a monomer placed transver-
sally (curves 1, 3, 5) or longitudinally (curves 2, 4, 6) with respect to the axis of
a point dipole located at the origin of the lattice. The molecule–monomer dis-
tance is expressed in units of cell interdistance D = 4.8 10�10 m. Curves 1 and 2,
3 and 4, and 5 and 6, pertain to a point dipole with polarizability 0, a, and c,
respectively.

Figure 7. Ratio r ¼ j mtot

m j2 calculated in the case of a monomer placed transver-
sally (curves 1, 3, 5) or longitudinally (curves 2, 4, 6) with respect to the axis of
an extended dipole located at the origin of the lattice. The molecule–monomer
distance is expressed in units of cell interdistance D= 4.8 10�10 m. Curves 1 and
2, 3 and 4, and 5 and 6, pertain to a point dipole with polarizability 0, 3 a, and
c, respectively.

Figure 8. Ratio r ¼ j mtot

m j2 calculated in case the cubic lattice is filled with sever-
al shells of monomers around the probe molecule located at the origin of the
lattice. Curves 1 and 2 pertain to the probe molecule represented as a point
dipole with polarizability 0 and a, respectively. Curves 3, 4 and 5 pertain to the
probe molecule represented as an extended dipole with polarizability 0, 3 a

and c, respectively.
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spectively. It is remarkable that the approximate continuum
behavior is reached only after a few (actually six) solvation
shells have been added to the probe molecule. Very interest-
ingly, Figure 6 and Figure 7 show that curves 2, 4 and 6
(curves 1, 3, 5) join already as an interdistance of 2 D separates
the molecule from the monomer placed longitudinally (trans-
versally) with respect to the dipole axis of the molecule: the in-
fluence of the molecular polarizability vanishes rapidly with an
increase of the molecule–monomer interdistance. In both
cases, two terms can be considered to contribute to the effec-
tive dipole moment [Eq. 17)]: 1) The source dipole of the mole-
cule polarizes the surrounding monomer (direct mechanism), a
process that scales as the reciprocal of the third power of the
distance separating the source dipole and the dipole induced
on the monomer [Eq. (16)] ; 2) Due to the reaction field of the
monomer on the probe molecule, a consecutive forwards (mol-
ecule!monomer)–backwards (monomer!molecule) dipole–
dipole interaction mechanism leads to a weak interaction (scal-
ing as the reciprocal of the sixth power) for long interdistances
between the two species. This forwards–backwards mechanism
can thus not compete with the direct mechanism for long in-
terdistances between the molecule and the considered mono-
mer. On the contrary, Figure 8 shows well separated curves, as
shells of monomers are added around the probe molecule. In
this case, a number of terms, growing as the third power of
the cluster radius (each term being proportional to the inverse
of the sixth power of the interdistance between the molecule
and the monomer of a given shell), sum to give a significant
contribution of the forwards–backwards mechanism to the ef-
fective dipole moment m!tot [Eq. (17)] .

Once the saturation value of the ratio r is reached, after
having filled the lattice with successive polarization shells, an
approximate continuum dielectric behavior is attained
(Figure 2). The numerical calculation of the ratios L̂2 ¼ L2

LL
2 may

then be compared with the results of the continuum theories
[Eqs. (9) and (12)] . At this point, note that curve 2 in Figure 8
reaches a ratio r = 1.23 instead of the ratio r = 1 which is ex-
pected in the case of the ideal Lorentz behavior. We attribute
this discrepancy to several possible factors: 1) We use polariza-
bilities averaged on the three tensor axes. While being very
satisfactory in the case of a styrene unit, this approximation is
probably not fully appropriate in the case of the elongated
DiD molecule; 2) The lattice constant D is defined in our micro-
scopic model as D= V1/3 (cubic cells), while continuum theories
consider spherical molecules, with V =

4
3pR3 such that D= 2R.

For obvious packing reasons, we preferred to choose cubic
cells instead of spherical ones. Doing so, we have reduced the
lattice constant and thus enhanced the dipole–dipole interac-
tions between neighboring cells. This in turn increases the
ratio r.

Prior to perform the comparison between our microscopic
results and the continuum theories, we thus normalized the
different curves shown in Figure 8 with respect to the ideal
Lorentz behavior. Table 1 provides the comparisons for each of
the considered cases, obtained after renormalization of the
curves by a factor 1.23. The matching of the values obtained
by theory and by numerical calculations is very good.

3.3 Numerical Evaluation of the Oscillator Strengths Ratio—
Effects of the Holes

In order to simulate the mobility of the chain segments sur-
rounding the probe molecule, holes are introduced in the lat-

tice. Figure 9 shows the influence on the ratio r ¼ j m!tot

m! j
2 of a

void (site of polarizability zero) that approaches the point
dipole transversally with respect to its axis, from the continu-
um to the position just on the right of the source dipole
(curves 1 and 3). If this void is added far away from the dipole,
its presence has no effect on the radiative lifetime of the
probe molecule. The ratio is identical to the one in the ab-
sence of the void. On the contrary, as the void approaches the
molecule, the ratio r is considerably enhanced. A simple ex-
planation of this effect is the following: the dipole moments
induced on the monomer placed transversally with respect to
the dipole axis of the probe molecule are opposite to the in-
ducing molecular dipole, and thus add destructively to it. Re-
placing a monomer by a void at those positions reduces this
negative contribution and thus increases the total dipole
moment.

Conversely, by putting such a void in a lattice site along the
dipole axis of the probe molecule, and approaching it step by
step till it reaches the top of the positive charge of the source
dipole, the spontaneous emission rate is decreased (curves 2
and 4). These effects are further enhanced if the polarizability
of the probe molecule is increased from zero (curves 1 and 2)
to a (curves 3 and 4).

Similar effects are observed in case an extended dipole is
placed at the origin of the cubic lattice. In this case however,
the variations of the ratios are attenuated with respect to the
previous case of the point dipole (Figure 10). The maximum
lifetime increase, obtained by placing a void close to the mole-
cule with polarizability c0 and along its dipole axis, is 11.5 %

Figure 9. The cubic lattice is filled with seven shells of polarizable monomers,
surrounding the point dipole located at the origin. The ratio r ¼ j mtot

m j2 is calcu-
lated in the case of a void placed transversally (curves 1, 3) or longitudinally
(curves 2, 4) with respect to the axis of the point dipole. The molecule–void dis-
tance is expressed in units of cell interdistance D = 4.8 10�10 m. Curves 1 and 2,
3 and 4, pertain to a point dipole with polarizability 0, a, respectively.
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(curve 6). In case the void is placed close to the molecule on
an axis perpendicular to the dipole axis, the maximum lifetime
decrease is 4.4 % of the natural lifetime of the probe molecule
(curve 5).

It is interesting here to compare the results obtained in
Figure 10 with those displayed in Figure 7. Figure 7 indeed
shows that, not only by placing a monomer longitudinally
(curves 2, 4, 6) but also (although less significantly) transversal-
ly (curves 1, 3, 5) with respect to the dipole axis of the mole-
cule, the ratio r is increased as the polarizability of the mole-
cule is increased from 0 to c0, at short molecule–monomer in-
terdistances. The forwards–backwards mechanism always give
a positive contribution to the sum in Equation (17). On the
contrary, the direct polarization mechanism gives a positive
(negative) contribution to the right hand side of Equation (17),
in case the monomer is placed longitudinally (transversally)
with respect to the dipole axis of the molecule. As a conse-
quence, the two terms add constructively (destructively), in-
creasing significantly (slightly) the ratio r, in case a monomer is
placed longitudinally (transversally).

These effects are similarly responsible for the rather high in-
crease of the lifetime (11.5 %) once a void is placed close to
the molecule with polarizability c0 and along its dipole axis
(Figure 10) as compared to the transversal case (4.4 %) and
give a clear explanation to the observation of signicant posi-
tive excursions in the fluorescence-lifetime time trace of a
single molecule embedded in a PS matrix (Figure 1) as due to
the presence of hole(s) positioned close to the molecule and
along its dipole axis.

3.4 Numerical Evaluation of the Fluorescence Lifetimes—
Monte Carlo Simulations

As a last step, in order to build a distribution of the ratios r or,
equivalently, a distribution of the fluorescence lifetimes of a

DiD molecule embedded in a PS matrix, we have finally per-
formed a Monte Carlo simulation of the actual configuration of
the molecule with polarizability c= 6.1 � 10�39 C2 m2 J�1 and
volume V = 399 � 10�30 m3 spread over three cubic cells of the
lattice and surrounded by styrene units and holes. A Monte
Carlo run is implemented in the following way: 1) We specify
the fraction of holes (threshold value) that will be present in
the system; 2) For each cell on the lattice, a uniformly distrib-
uted (between zero and one) random number is chosen; 3) If
the random number falls below the threshold value, then the
given cell is occupied by a hole, else the cell is occupied by a
monomer. The complete Monte Carlo simulation involves
1000 runs for each given threshold value.

Figure 11 a shows the result of such a Monte Carlo simula-
tion in the case of a hole fraction h = 6 %. Remarkably the fluo-
rescence lifetime shows peaks towards higher values, which re-
sults from configurations with holes localized longitudinally
with respect to the source dipole axis. The histogram of the
calculated fluorescence lifetimes is asymmetric and shows de-

Figure 10. The cubic lattice is filled with seven shells of polarizable monomers,
surrounding the extended dipole located at the origin. The ratio is calculated in
the case of a void placed transversally (curves 1, 3, 5) or longitudinally
(curves 2, 4, 6) with respect to the axis of the extended dipole. The molecule–
void distance is expressed in units of cell interdistance D = 4.8 10�10 m. Curves 1
and 2, 3 and 4, and 5 and 6 pertain to an extended dipole with polarizability
0, 3 a, and c, respectively.

Figure 11. Fluorescence lifetime calculations (a) and corresponding distribution
for a Monte Carlo run of 1000 steps. The cubic lattice is here filled with six
shells of polarizable monomers surrounding the extended dipole of polarizabili-
ty c, located at the origin. Holes are placed at random positions on the lattice
with a fraction h = 6 %.
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viations reaching 30 % of the average lifetime, in a very similar
way as the experimental results shown in Figure 1. The two
maxima in the histogram (Figure 11 b) for long lifetimes are
due to the discreteness of the lattice and correspond to voids
positioned against the molecule for the bunch observed
around 2.7, one site away from it for the bunch at 2.35.

Figure 12 shows the same results in case a fraction h = 1 %
(a), h = 10 % (b), h = 20 % (c) and h = 40 % (d) of holes is intro-

duced in the system. Figure 12 clearly shows that, by increas-
ing the fraction of holes present in the system, the fluores-
cence lifetime distribution gets broadened and asymmetric.
For a hole fraction h = 1 %, the lifetime distribution is very
narrow and mainly symmetrical. If the local environment of the
probe molecule is composed of a h = 10 % fraction of holes
(which is a typical amount in a polymer matrix[24]), the distribu-
tion gets asymmetric towards higher lifetimes. This result is in
very good agreement with the experimental results, reported
by Vallee et al. ,[11] that the asymmetry of the fluorescence life-
time distributions increases as the temperature of the PS
matrix is raised: the fraction of holes present in a matrix is
indeed an increasing function of the temperature.

As the hole fraction still increases above h = 10 %, the life-
time distribution becomes mainly broadened, while keeping its
asymmetry (Figures 12 c and 12 d).

4. Conclusions

A microscopic model has been developed to account for the
observed temporal lifetime fluctuations of a single DiD mole-

cule embedded in a poly(styrene) matrix at room temperature.
The model is based on the description of the system as a
cubic lattice with sites that can accommodate the repeating
units of a macromolecule, the probe molecule, and some voids
to account for the mobility of the matrix. The probe molecule
has been represented as a point dipole or as an extended
dipole with different values of the polarizability. Firstly, the
model has been validated, by comparing its approximate con-

tinuum dielectric behavior to ex-
isting theories. Secondly, we
have shown that the observed
asymmetry of lifetime variations
towards higher values very prob-
ably results from positional fluc-
tuations of voids close to the ex-
tremities of the extended dipole
representing the probe mole-
cule. Thirdly, Monte Carlo simula-
tions have been performed suc-
cessively to describe such sys-
tems possessing a different but
fixed fraction h of holes. The cal-
culated radiative lifetime distri-
butions have been shown to be
more and more broadened and
asymmetric as the fraction h of
holes present in the system is in-
creased. This behavior is in ex-
cellent agreement with the one
experimentally observed by
Vall�e et al.[11] As such, the ap-
proach considered in this paper
is a first attempt to describe the
effect of the local, near field on
the behavior of a probe mole-
cule. This type of approach is

only possible with the advent of single-molecule spectroscopy
that allows to perform such detailed investigations.
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