UTCCS-3

The Third University of Texas Conference on

Carbon Capture and Storage

Austin, Texas February 17-19, 2016

« Study of the post-combustion CO₂ capture applied to cement plant flue gases with high CO₂ contents »

Ir Sinda Laribi, Dr Lionel Dubois, Prof. Guy De Weireld and Prof. Diane Thomas

Ir Sinda Laribi

PhD Student – ECRA Academic Chair

Chemical and Biochemical Engineering Department

Faculty of Engineering - University of Mons (Belgium)

sinda.laribi@umons.ac.be

Partners:

HEIDELBERGCEMENT

Global Environmental Sustainability

Context of this work

\blacktriangleright Cement plants \rightarrow 30% of the industrial CO₂

CO₂ concentrations in industrial flue gases

5-15% for conventional power plants

25-30% for conventional cement kilns

70-90% for oxyfuel cement kilns

What is a hybrid technology?

= Combination of two (or more) different technologies allowing to increase individual performances or reduce the overall energy consumption in comparison with the use of the technologies separately.

Examples in the context of CO₂ capture:

- Combination of membranes gas separation and absorption technologies ;
- Combination of membranes gas separation and cryogenic CO₂ capture technologies ;

▶ ...

In this work:

- Combination of partial oxy-fuel combustion plant with an amine post-combustion technology = Post combustion capture applied to O₂-enriched air combustion (= partial oxy-fuel combustion);
- Combination of chemical and physical solvents in a post-combustion CO₂ capture plant = hybrid solvents.

Purpose & Innovative aspects of this work

Partial oxy-fuel combustion technology: Post-combustion capture applied to O₂-enriched air combustion.

(absorption-regeneration)

 \rightarrow allows increasing the CO₂ content of the flue gas. 20%<Y_{CO2}<70%

Adapted from Smart J P and Riley G S, "Use of oxygen enriched air combustion to enhance combined effectiveness of oxyfuel combustion and post-combustion flue gas cleanup", 2012

✓ Applicability of this technology for power plants proved : European Project ECO SCRUB.

http://cordis.europa.eu/project/rcn/87195_en.htm Main reference articles available in: http://www.maneyonline.com/ & http://iasks.org/

Purpose & Innovative aspects of this work

- Less cost for the ASU (less O₂ needed in comparison with total oxy-fuel).
- Less regeneration energy in the amine plant thanks to a more CO₂-concentrated flue gas.

 \rightarrow ACO₂ loading capacity increases with increasing P_{CO2} \rightarrow Industrial application.

Presentation schedule

Different capture methods including absorption/regeneration using amine(s) based solvents.

Categories of selected chemical solvents:

Methodology of choice: various criteria (from Dubois PhD Thesis, 2013)

Hybrid solvent studied

Experimental schedule

Category	N°	Solvent tested		
Preliminary tests with MEA	1	MEA 30% (Reference)		
	2	MEA 30% (Repeatability)		
	3	MEA 20% (Effect of C _{amine})		
	4	MEA 10% (Effect of C _{amine})		
Other conventional solvents	5	DEA 30%		
	6	MDEA 30%		
	7	AMP 30%		
	8	PZ 10%		
Other simple solvents	9	MMEA 30% (Repeatability)		
	10	TETRA 30%		
	11	AHPD 30%		
Activated solutions: Comparison of PZ and TETRA as absorption activator	12	AMP 30% + PZ 5% (Activated SHA with PZ)		
	13	AMP 30% + TETRA 5% (Activated SHA with TETRA)		
	14	DEA 30% + PZ 5% (Activated secondary amine with PZ)		
	15	DEA 30% + TETRA 5% (Activated secondary amine with PZ)		
	16	MMEA 30% + PZ 5% (Activated SHA with PZ)		
	17	MMEA 30% + TETRA 5% (Activated SHA with TETRA)		
	18	MEA 30% + TOU 35%		
Hybrid solvents	19	DEA 30% + PZ 5% + TOU 35%		
	20	AMP 30% + PZ 5% + TOU 35%		

Experimental device

Continuous tests with simple solvents

 $\alpha_{\text{CO2}}\text{=}0$, $\neq \gamma_{\text{CO2, in}}$

MMEA 30% and PZ 10% give the best absorption performances.

Continuous tests with activated solvents

 $\alpha_{\text{CO2}}\text{=}0$, $\neq\gamma_{\text{CO2, in}}$

Semi-continuous tests with simple solvents

 $\alpha_{CO2} \neq 0$, $\gamma_{CO2, in} = 40\%$

After 20 minutes of recirculation, TETRA is more performant than MMEA 30% and MEA 30%.

$$\succ$$
 G_{CO2} $\backslash \alpha_{CO2}$ /

Semi-continuous tests with simple solvents

 $\alpha_{\text{CO2}} \neq 0$, $\gamma_{\text{CO2, in}}$ = 40%

➢ Absorption performances of CO₂ loaded solutions (recirculation tests to measure absorption capacity) → TETRA allows absorbing more CO₂.

Semi-continuous tests with activated solvents

 $\alpha_{CO2} \neq 0$, $\gamma_{CO2, in} = 40\%$

Hybrid solvents

Continuous tests

Semi-continuous tests

Phase change solvents: Energy savings!

Demixing solvents

MEA 30% + TOU 35% DEA 30% + PZ 5% + TOU 35%

MEA 30% + TOU 35% (after 45 minutes)

Precipitating solvent

AMP 30% + PZ 5% + TOU 35%

➤ Demixing phenomenon: use of hybrid solvent → Great potential for reducing the energy regeneration by regenerating only the CO₂-rich phase.

Purpose of simulations

Modeling Characteristics:

- Aspen Hysys V8.6
- Acid gas package
- Thermodynamic models: Peng-Robinson (gas) and e-NRTL (liquid)
- Reactions sets included in the package (validated by literature)

Simulations for different CO₂ contents in the gas to treat:

- Base case: flue gas from Brevik
- Other cases: simulations of partial oxyfuel combustion for high Y_{CO2} (compositions provided by ECRA).

General principles of the simulations

 $\mathbf{E}_{\text{regen}} = \mathbf{f}(\mathbf{y}_{\text{CO}_2,\text{in}})$

Results for the tested cases:

		Base case	Intermediate	Hybrid 1	Hybrid 2	Hybrid 3	
L			case				P _{co}
L	у _{со2,in} (%)	20.4	31	44.1	51.44	62.03	
	E_{regen} (GJ/ t CO ₂)	3.39	2.96	2.56	2.48	2.30	
	E _{regen} saving / bas	se case	12.61%	24.31%	26.79%	31.99%	
	$\alpha_{CO_2, rich}$	0.508	0.536	0.562	0.557	0.590	
	$lpha_{CO_2, lean}$	0.198	0.232	0.264	0.259	0.285	

Interest of partial oxy-fuel combustion conditions is confirmed (ECO-Scrub project)

Conclusions

Hybrid process: Post combustion CO_2 capture applied to O_2 -enriched air combustion conditions leading to **high CO₂ content** (up to 60 vol.%).

> Screening of solvents:

- Continuous tests (unloaded solutions):

MMEA: best absorption performances, no necessity of activator PZ: best activation effect.

- Semi-continuous tests (loaded solutions):

TETRA: best absorption capacity.

Activated AMP and DEA interesting absorption capacities.

> Energy regeneration: When $y_{CO_2,in} \nearrow E_{regen}$

Prospects

- > Evaluation of the impact of partial oxy-fuel combustion conditions on the global chain (from O_2 production to CO_2 conversion).
- Absorption-regeneration tests using the micro-pilot unit for the best solvents screened: internship starting in March 2016.
- Micro-pilot unit for investigations to test demixing solvents (addition of a decanter): new PhD thesis of the ECRA CHAIR started in February 2016.

UTCCS-3

The Third University of Texas Conference on

Carbon Capture and Storage

Austin, Texas February 17-19, 2016

Thank you for your attention. Questions?

Ir Sinda Laribi

PhD Student – ECRA Academic Chair

Chemical and Biochemical Engineering Department

Faculty of Engineering - University of Mons (Belgium)

sinda.laribi@umons.ac.be

Partners:

