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We study the problem of counting the repairs of an inconsistent database in the case where 
constraints are Functional Dependencies (FDs). A repair is then a maximal independent set 
of the conflict graph, wherein nodes represent facts and edges represent violations. We 
establish a dichotomy in data complexity for the complete space of FDs: when the FD set 
has, up to equivalence, what we call a “left-hand-side chain,” the repairs can be counted in 
polynomial time; otherwise, the problem is �P-complete. Moreover, the property of having 
a left-hand-side chain up to equivalence coincides with the condition that the conflict 
graph of every inconsistent database for the schema is P4-free, and it is polynomial-time 
decidable.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Database inconsistency arises for different reasons and in different applications. For example, in common applications of 
Big Data, information is obtained from imprecise sources (e.g., social encyclopedias, social networks, and sensors attached to 
appliances) via imprecise procedures (e.g., natural-language and signal processing). It may also arise when integrating con-
flicting data from different (possibly consistent) sources. Arenas, Bertossi and Chomicki [1] introduced a principled approach 
to managing inconsistency, via the notions of repairs and consistent query answering. Informally, a repair of an inconsistent 
database I is a consistent database J that differs from I in a “minimal” way, where minimality refers to the symmetric dif-
ference. In the case of anti-monotonic integrity constraints (e.g., functional dependencies), a repair is an inclusion-maximal 
consistent subinstance (not properly contained in any consistent subinstance), and is referred to as a subset repair [2].

Various computational problems around database repairs have been extensively investigated [3]. Most studied is the 
problem of computing the consistent answers of a query on an inconsistent database; these are the tuples that are obtained 
in every possible repair [1,4]. Another well-studied question is that of repair checking [2]: given instances I and J , determine 
whether J is a repair of I . Depending on the type of repairs and the type of integrity constraints, these problems may vary 
from tractable to highly intractable complexity classes.

In this work, we study the complexity of computing the number of subset repairs, when the constraints are Functional 
Dependencies (FDs). Although FDs have been studied for almost five decades and database repairs have been studied for 
over two decades, not much is known about this problem. Maslowski and Wijsen [5,6] and later Calautti et al. [7] have 
studied the problem of counting repairs that satisfy a Boolean Conjunctive Query (CQ), in the case of key constraints. They 
established dichotomy results, classifying CQs into those where counting can be done in polynomial time, and those where 
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counting is �P-complete.1 The challenge in their work is due to the query. If we ignore the query and simply count the 
repairs, then we get the straightforward case of counting subset repairs under key constraints.

Another fundamental problem where repair counting arises is that of measuring database inconsistency, which has been 
studied extensively by the Knowledge Representation (KR) and Logic communities [8–13], and has been recently acknowl-
edged by the database community [14–16]. Inconsistency measures can be used for estimating the extent to which a 
database is trustworthy, and the effort required to clean it. One of the well studied measures is the number of repairs. 
This measure is sometimes denoted as IM [11,12] and sometimes as Imc [13]. In particular, under this measure, the problem 
we study is that of estimating the level of inconsistency of the database.

We study the data complexity of repair counting, where the schema, which is comprised of the relational signature 
and the set of FDs, is considered fixed, and every schema defines a separate computational problem. In particular, the 
complexity of repair counting may be different for different schemas. As we explain below, it suffices to consider single-
relation schemas; our results generalize to multi-relation schemas in a straightforward manner.

The main result of this manuscript is a dichotomy in data complexity that classifies FD sets into those for which the 
number of subset repairs can be computed in polynomial time, and those for which the problem is �P-complete. In partic-
ular, we introduce the definition of a left-hand-side chain (or lhs chain, for short) that captures precisely the tractable cases 
of counting subset repairs. We say that a set of FDs has an lhs chain if the FDs in the set can be arranged in an order 
such that the left-hand side of each FD is contained in the left-hand side of every FD that appears later in the order. Our 
dichotomy is as follows. If the set of FDs is equivalent to an FD set with an lhs chain, then the repairs can be counted 
in polynomial time (and, in fact, even under combined complexity, where both the schema and the database are given as 
input). Conversely, if the set of FDs is not equivalent to any FD set with an lhs chain, then the problem is �P-complete. 
We also show that if an FD set is equivalent to an FD set with an lhs chain, then it has a single minimal cover, and this 
minimal cover has an lhs chain; hence, it is decidable in polynomial time to which side of the dichotomy a given schema 
belongs.

The dichotomy easily generalizes to multi-relation schemas, since we consider only FDs and, hence, conflicts are always 
within the same relation. In particular, the problem is solvable in polynomial time if its restriction to every single relation 
is solvable in polynomial time (and then the number of repairs is the product of the number of repairs of each relation), 
and is �P-complete otherwise. Hence, in the remainder of the manuscript, we continue with the assumption of a single 
relation.

Observe that repair counting is the same as the problem of counting the maximal independent sets of the conflict graph, 
which is the graph that has the facts of the database as nodes and an edge between every inconsistent pair of facts. Counting 
the maximal independent sets of a graph is �P-complete [17]. Special tractable cases include the class of P4-free graphs [18]
(also known as complement reducible graphs or cographs); that is, the graphs that do not have any induced subgraph that is 
a simple path of length four. We prove that the property of being equivalent to an FD schema with an lhs chain coincides 
with the property that every conflict graph over the schema is P4-free. This explains the tractability side of our dichotomy. 
In fact, our dichotomy implies that when a set of FDs allows for polynomial-time repair counting, it is precisely due to the 
tractability of counting independent sets of cographs.

This manuscript contains the full version of a result published in a conference publication of the authors [19]. We have 
added in this manuscript all the proofs and intermediate results that were excluded from the conference paper. In particular, 
Sections 4, 5, and 6 are new and contain the full proof of our main result—the dichotomy in the complexity of counting 
subset repairs (Theorem 3.2).

The rest of the manuscript is organized as follows. In the next section, we introduce some basic terminology that will be 
used throughout the manuscript. In Section 3, we present the problem that we study, as well as our main result. We prove 
the main result in Sections 4, 5, and 6. We summarize our results and discuss directions for future work in Section 7.

2. Preliminaries

We first present some basic terminology and notation that we use throughout the manuscript.

2.1. Relation schemas

We denote by S a relation schema R(A1, . . . , Ak) where R is a relation symbol and (A1, . . . , Ak) is a sequence of distinct 
attributes. We refer to k as the arity of the schema. A relation r over S is a finite set of tuples (c1, . . . , ck) where each ci is 
a constant. We refer to each tuple as a fact of r. For a fact f and an attribute Ai , we denote by f [Ai] the value of f in 
the attribute Ai (i.e., if f = (c1, . . . , ck), then f [Ai] = ci ). We may omit stating the schema S of a relation r when it is clear 
from the context or irrelevant.

1 To be precise, for general key constraints they classified the CQs without self joins, and for key constraints where the key consists of a single attribute 
they classified all CQs.
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Table 1
Specific FD schemas.

FD Schema Relation Schema FDs
(S2k,�2k) R(A, B) A → B , B → A
(Sch,�ch) R(A, B, C) ∅ → A, B → C
(S2fd,�2fd) R(A, B, C, D) A → B , C → D

fact dept time plate state make

f1 HPD 1500 AA11 CA Acura
f2 NYPD 1800 AA11 CA Acura
f3 PPD 1900 AA11 CA Honda
f4 LAPD 2000 AA11 CA Honda
f5 LAPD 1000 AA11 CA Honda
f6 LAPD 1600 AA11 CA Mazda
f7 HPD 1600 AA11 CA Mazda
f8 HPD 1100 AA11 CA Mazda
f9 NYPD 1500 AA11 CA Nissan

Fig. 1. Inconsistent relation over the schema (S,�) of Example 2.1.

2.2. Functional dependencies

A Functional Dependency (FD for short) over a relation schema S is an expression of the form X → Y , where X and Y are 
sets of attributes of S. We may also write X and Y by simply concatenating the attribute symbols; for example, we may 
write AB → C instead of {A, B} → {C} for the relation schema R(A, B, C). An FD X → Y is trivial if Y ⊆ X , and otherwise it 
is nontrivial.

A relation r satisfies an FD X → Y if for every two facts f and g in r, if f and g agree on (i.e., have the same constants 
in the position of) the attributes of X , then they also agree on the attributes of Y . We say that r satisfies a set � of FDs 
if r satisfies every FD in �; otherwise, we say that r violates �. Two FD sets over the same schema are equivalent if every 
relation that satisfies one also satisfies the other. For example, {A → BC, C → A} and {A → C, C → AB} are equivalent. An 
FD X → Y is entailed by � (denoted by � |= X → Y ) if for every relation r over the schema, if r satisfies �, then it also 
satisfies X → Y . The closure of an attribute set X w.r.t. an FD set �, denoted by X+,� , is the set of attributes A such that 
� |= X → A.

Let � be a set of FDs. We say that � is minimal [20] if it satisfies the following properties:

1. FDs in � contain a single attribute on their right-hand side; that is, they have the form X → A with A an attribute.
2. No FD in � is redundant; that is, no X → A in � satisfies (� \ {X → A}) |= X → A.
3. There is no redundant attribute in �; that is, no FD X B → A with B /∈ X in � satisfies � |= X → A.

A minimal cover [21] of an FD set � is a minimal set �m of FDs that is equivalent to �.
An FD schema is a pair (S, �), where S is a relation schema and � is a set of FDs over S. Two FD schemas (S, �) and 

(S′, �′) are equivalent if S = S′ and � is equivalent to �′ . For example, Table 1 depicts specific FD schemas that we refer to 
throughout the paper. In (S2k, �2k) the subscript “2k” stands for “two keys” as it includes two key constraints (one where 
A is the key and one where B is the key). In (Sch, �ch) the subscript “ch” stands for “chain” and we introduce this term 
later in Section 3. In (S2fd, �2fd) the subscript “2fd” refers to simply “two FDs,” and its two FDs are disjoint in the attributes 
they involve.

Example 2.1. Fig. 1 depicts an inconsistent relation that stores information about traffic camera records, as established by 
integrating several data sources. For instance, the fact f1 states that an Acura car with a California plate number New York 
has been recorded by the Huston Police Department at time 1500.

In the corresponding FD schema (S, �), the relation schema S is

Image(dept, time,plate, state,make)

and � consists of the two FDs: plate state → make (the brand of the car is determined by the state and plate number), 
and time plate state → dept (a car cannot be recorded by two police departments at the same time). Note, however, that the 
relation of Fig. 1 violates the FDs. In particular, all records mention the same plate and state, but there is no agreement 
on the brand. Moreover, f6 and f7 mention recordings of the same car at the same time in Los Angeles and Huston, 
respectively. �
2.3. Conflict graphs

Conventionally, inconsistent databases are databases that violate integrity constraints [1]. Here, we use the abstraction 
of a conflict graph that can represent inconsistencies for various types of integrity constraints, including FDs. The translation 
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Fig. 2. The conflict graph of the subset { f3, f4, f5, f6, f7, f8} of Fig. 1.

from the logical constraints to the conflict graph for FDs can be done in polynomial time even under combined complexity
(i.e., when the schema, the constraints, and the relation are all given as input).

All graphs used in this paper are finite and undirected. The set of nodes of a graph g is denoted by N(g), and its set of 
edges is denoted by E(g); here, every edge e ∈ E(g) is a pair {u, v} of distinct nodes. Two nodes of a graph g are neighbors
if they are connected by an edge in E(g). An independent set of a graph g is a set U of nodes that does not include any edge; 
that is, U ⊆ N(g) and e � U for all e ∈ E(g). An independent set U of a graph g is maximal if U is not strictly contained in 
any other independent set of g .

For an FD schema (S, �) and a relation r over S, the conflict graph Gr
� is the graph over the facts of r that has an edge 

between every two facts that violate one or more FDs in �. An independent set of Gr
� is also called a consistent subset (of r

w.r.t. Gr
�), and a maximal independent set of Gr

� is also called a subset repair (of r w.r.t. Gr
�) [1,2]. We denote by SRep(Gr

�)

the set of all subset repairs of r w.r.t. Gr
� .

Example 2.2. Fig. 2 depicts the graph Gr′
� , where � is given in Example 2.1, and r′ consists of a subset of the facts of Fig. 1. 

(We do not include all the facts to avoid clutter.) Observe that there is an edge between f3 and f6 since they jointly violate 
the FD plate state → make, and there is an edge between f6 and f7 since they violate the FD time plate state → dept. The 
relation of Fig. 1 has five subset repairs: (a) { f1, f2}, (b) { f3, f4, f5}, (c) { f6, f8}, (d) { f7, f8}, and (e) { f9}. The reader can 
verify that, indeed, each subset repair corresponds to a maximal independent set of the graph, and that no other subset 
repairs exist. �
3. Problem definition and main result

We investigate the problem of counting the subset repairs for fixed FD schemas (S, �). Formally, the problem #SRep〈S, �〉
is that of computing the cardinality |SRep(Gr

�)| for a given relation r over S. For counting problems, a basic tractable class is 
FP (functions computable in polynomial time), and a common measure of intractability is �P-hardness (or �P-completeness). 
�P is the class of functions that count the number of witnesses for an NP problem (e.g., the number of satisfying assignments 
for a given formula in propositional logic). Hardness for �P is defined by means of polynomial-time Turing reductions. Using 
an oracle to a �P-hard function, one can solve in polynomial time every problem in the polynomial hierarchy [22].

Our main result in this manuscript is a dichotomy in data complexity for all problems #SRep〈S, �〉, classifying FD 
schemas into those for which the problem is in FP and those for which the problem is �P-complete. To present our di-
chotomy, we need the following definition.

Definition 3.1 (Left-hand-side chain). An FD schema (S, �) has a left-hand-side chain (lhs chain for short) if for every two FDs 
X1 → Y1 and X2 → Y2 in �, either X1 ⊆ X2 or X2 ⊆ X1. �

Note that if (S, �) has an lhs chain, then the FDs of � can be arranged in an order X1 → Y1, . . . , Xn → Yn such that 
Xi ⊆ X j for all i < j. As an example, every FD schema with at most one FD has an lhs chain. As another example, the FD 
schema (Sch, �ch) of Table 1 has an lhs chain. However, the FD schema (S2k, �2k) in that table does not have an lhs chain, 
since there is no containment among {A} and {B}. Our main result establishes that having an lhs chain captures precisely 
the cases where #SRep〈S, �〉 can be computed in polynomial time.

Theorem 3.2. Let (S, �) be an FD schema. If (S, �) is equivalent to an FD schema with a left-hand-side chain, then #SRep〈S, �〉 is in 
FP. Otherwise, #SRep〈S, �〉 is �P-complete.

We now illustrate the application of Theorem 3.2 for classifying FD schemas into tractable and intractable ones 
(w.r.t. counting repairs).

Example 3.3. Consider again the FD schema (S, �) of Example 2.1, and note that the FD set � has an lhs chain. Con-
sequently, from Theorem 3.2 we conclude that #SRep〈S, �〉 can be solved in polynomial time for the FD schema of our 
running example. Observe that we could equivalently write � with redundancy, as consisting of the following FDs.
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Fig. 3. Illustration of P4-freeness.

plate state → make

time plate state → dept

dept plate state → make

In this case, (S, �) would not have an lhs chain, but would rather be equivalent to an FD schema with an lhs chain.
On the other hand, consider the FD schema (S2k, �2k) of Table 1. Here, the FD set � does not have an lhs chain, and 

it is not equivalent to any FD set with an lhs chain; hence, Theorem 3.2 implies that #SRep〈S2k, �2k〉 cannot be solved 
in polynomial time (under standard complexity assumptions). We get a similar lower bound for the FD schema (S2fd,

�2fd). �
The proof of Theorem 3.2 is based on the following result, providing different characterizations of the classification 

criterion.

Theorem 3.4. Let (S, �) be an FD schema. The following statements are equivalent:

1. (S, �) is, up to equivalence, an FD schema with a left-hand-side chain;
2. � has a single minimal cover �m, and �m has a left-hand-side chain;
3. Gr

� is P4-free for every relation r over S.

The following dichotomy is an immediate corollary of Theorems 3.2 and 3.4.

Corollary 3.5. For every FD schema (S, �), the problem #SRep〈S, �〉 is either in FP or �P-complete. Moreover, it is decidable in 
polynomial time in the size of (S, �) which of the two cases applies.

The equivalence between statements 1 and 2 of Theorem 3.4 shows that it is decidable in polynomial time whether a 
given FD schema is equivalent to an FD schema with an lhs chain. The equivalence between statements 1 and 3 proves the 
tractability side of Theorem 3.2, as we explain next.

Recall that #SRep〈S, �〉 is, in fact, the problem of counting the maximal independent sets of the conflict graph. In general, 
computing the number of maximal independent sets of a graph is �P-complete [17]. A known island of tractability is the 
class of P4-free graphs, namely the graphs where no induced subgraph is a four-node path. A P4-free graph is also called 
cograph, and the class of P4-free graphs is characterized as the one generated from single nodes by repeatedly applying 
disjoint unions and complementation [18]. As an example, the graph depicted in Fig. 3a is P4-free. The graph induced by 
{v3, v4, v5, v6}, for example, is not a path of length four. In contrast, the graph of Fig. 3b is not P4-free, since the subgraph 
induced by {v3, v4, v6, v7} is a path of length four.

We now illustrate the equivalence 1 ↔ 3 of Theorem 3.4 in the following example.

Example 3.6. Consider the conflict graph of Fig. 2. The reader can verify that this graph is P4-free, by inspecting every 
four nodes (though there are more efficient ways of verifying P4-freeness [18]). For example, the nodes along the path 
f6— f7— f5— f8 do not induce a P4, since there is an edge between f6 and f5. Theorem 3.4, implies that every conflict graph 
of the FDs of our running example (Example 2.1) is P4-free.

Next, consider the FD schema (S2k, �2k) of Table 1. Recall that Theorem 3.2 implies that #SRep〈S2k, �2k〉 is �P-complete. 
And, indeed, this can be evidenced by the relation {R(0, 1), R(0, 2), R(1, 2), R(1, 3)} that has a P4 conflict graph. As for the 
FD schema (S2fd, �2fd), the reader can easily verify that the relation {R(0, 0, 0, 0), R(0, 1, 1, 1), R(1, 1, 1, 2), R(1, 2, 2, 2)} has 
a P4 conflict graph. �

Corneil et al. [18] have shown the following.

Proposition 3.7. [18] The maximal independent sets can be counted in polynomial time for P4-free graphs.
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The tractability side of Theorem 3.2 immediately follows from Proposition 3.7 and the implication 1 → 3 of Theorem 3.4. 
Moreover, the fact that the translation from FDs to a conflict graph can be done in polynomial time under combined com-
plexity implies that if the classification criterion of Theorem 3.2 is satisfied, the number of subset repairs can be computed 
in polynomial time even under combined complexity.

In the remainder of this manuscript, we prove the rest of Theorem 3.2. In particular, in Section 4, we prove that the 
classification criterion can be checked in polynomial time, by showing the equivalence 1 ↔ 2 of Theorem 3.4. Then, in 
Section 5, we prove the tractable side of the theorem, by showing the equivalence 1 ↔ 3 of Theorem 3.4. Finally, we prove 
the hardness side of Theorem 3.2 in Section 6.

4. Minimal covers of lhs-chain schemas

In this section, we prove the equivalence 1 ↔ 2 of Theorem 3.4, which implies that we can decide in polynomial time 
whether a given FD schema (S, �) belongs to the tractable or intractable side of Theorem 3.2.

Our proof consists of two parts. First, we prove that a minimal set � of FDs with an lhs chain has a unique representation 
(that is, the only minimal cover of � is � itself). Then, we prove that an FD set � that is equivalent to an FD set with 
an lhs chain has a minimal cover with an lhs chain. The combination of these two results implies that an FD set � that is 
equivalent to an FD set with an lhs chain has a single minimal cover �m , and this minimal cover has an lhs chain.

In the proof, we use the standard decision procedure for logical implication of FDs [23]. According to this decision 
procedure, a set � of FD entails an FD X → A if and only if there exists a sequence X1 → Y1, . . . , Xn → Yn of FDs in �
such that:

• A ∈ Yn ,

• for every i ∈ {1, . . . , n} we have that Xi ⊆
[

X ∪
(⋃i−1

j=1(X j ∪ Y j)
)]

.

Hereon, we refer to a sequence of FDs that is used by this decision procedure to decide � |= X → A simply as a sequence of 
FDs that implies � |= X → A.

We start by proving the following simple lemma.

Lemma 4.1. Let � be an FD set with an lhs chain and let X → A be an FD entailed by �. Then, there is a sequence X1 → Y1, . . . , Xn →
Yn of FDs in � that implies � |= X → A, such that X1 ⊆ · · · ⊆ Xn.

Proof. Let X1 → Y1, . . . , Xn → Yn be a sequence of FDs in � that implies � |= X → A and has a maximal lhs-chain prefix. 
That is, for some 1 ≤ k ≤ n, it holds that X1 ⊆ X2 ⊆ · · · ⊆ Xk , and there is no sequence Z1 → W1, . . . , Zm → Wm of FDs in 
� that also implies � |= X → A such that Z1 ⊆ Z2 ⊆ · · · ⊆ Zk+1. We claim that k = n; that is, there exists a sequence of FDs 
in � that implies � |= X → A and forms an lhs chain.

Assume, towards a contradiction, that for some 1 ≤ i ≤ n, it holds that Xi � Xi+1. Then, since � has an lhs 
chain, we have that Xi+1 ⊆ Xi , which, combined with the fact that Xi ⊆

[
X ∪

(⋃i−1
j=1(X j ∪ Y j)

)]
, implies that Xi+1 ⊆[

X ∪
(⋃i−1

j=1(X j ∪ Y j)
)]

; hence, we can swap the FDs Xi → Yi and Xi+1 → Yi+1 in the sequence, and obtain a different 
sequence that satisfies all the conditions required by the standard decision procedure for logical implication of FDs. More-
over, this new sequence has a longer lhs-chain prefix X1 ⊆ X2 ⊆ · · · ⊆ Xi+1 ⊆ Xi , which is a contradiction to our assumption. 
Note that if i = n − 1, then after swapping Xn−1 → Yn−1 and Xn → Yn we can simply remove the FD Xn−1 → Yn−1 from the 
sequence, as we have that A ∈ Yn . �

Next, we prove that a minimal set of FDs with an lhs chain has a single representation.

Lemma 4.2. Let � be a minimal set of FDs with an lhs chain. Every minimal cover �m of � satisfies �m = �.

Proof. Let �m be a minimal cover of �. We will prove that �m ⊆ �, and since it cannot be the case that �m � � (as � is 
minimal), we will conclude that �m = �.

Let X → A be an FD in �m . Clearly, A /∈ X . Since � and �m are equivalent, we have that � |= X → A. Let X1 →
A1, . . . , Xn → An be a sequence of FDs in � that implies � |= X → A, such that X1 ⊆ · · · ⊆ Xn . Such a sequence exists 
according to Lemma 4.1. We now show that Xn = X and An = A (thus, X → A ∈ �), which will conclude our proof.

Assume, by way of contradiction, that there is B ∈ X such that B /∈ Xn . Since the sequence X1 → A1, . . . , Xn → An is 
an lhs chain, it holds that B /∈ Xi for every 1 ≤ i ≤ n. Thus, this sequence actually shows that � |= (X \ {B}) → A, and a 
minimal cover of � cannot contain the FD X → A, which is a contradiction to the fact that X → A ∈ �m; hence, we have 
that X ⊆ Xn . Finally, we have that Xn → A ∈ � and � |= X → A, and because � is minimal (hence, does not have redundant 
attributes), we conclude that Xn = X and X → A ∈ �. �
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Finally, we prove that an FD set � that is equivalent to an FD set with an lhs chain has a minimal cover with an lhs 
chain.

Lemma 4.3. Let � be an FD set that is equivalent to an FD set with an lhs chain. Then, � has a minimal cover with an lhs chain.

Proof. It is easily verified that we can assume, without loss of generality, that (1) � itself has an lhs chain, and that (2) all 
FDs in � have a single attribute on the right-hand side. We can also assume, without loss of generality, that all redundant 
FDs have been removed from �, because a set of FDs with an lhs chain still has an lhs chain after removal of one or more 
FDs. Let X1 → A1, . . . , Xn → An be an lhs chain of �. Let Y = {A1, . . . , An}. Let �m = {X1 \ Y → A1, . . . , Xn \ Y → An}, which 
clearly has an lhs chain. It suffices to show that �m is a minimal cover of �. It is obvious that for all 1 ≤ j ≤ n, we have 
�m |= X j → A j . Conversely, for any integer j such that 1 ≤ j ≤ n, we claim that X1 → A1, . . . , X j → A j is a sequence of 
FDs that implies � |= X j \ Y → A j . To prove this claim, it clearly suffices to show that for every i ∈ {1, . . . j}, we have that 
Xi ⊆ (X j \Y ) ∪{A1, . . . , Ai−1}. Assume for the sake of contradiction that Xi � (X j \Y ) ∪{A1, . . . , Ai−1} for some i ∈ {1, . . . , j}. 
Since Xi ⊆ X j , there must be some k > i such that Ak ∈ Xi . But then, since Xi ⊆ Xk , we have that Ak ∈ Xk , contradicting 
that the FD Xk → Ak is not trivial.

Since �m has a single attribute on the right-hand side of every FD and does not contain redundant FDs, it is only left 
to prove that �m has no redundant attributes. Assume towards a contradiction that there is 1 ≤ j ≤ n and B ∈ X j \ Y such 
that �m |= X j \ Y B → A j . Then, there exists a shortest sequence of FDs (call it σ ) that implies �m |= X j \ Y B → A j . Since 
�m contains X j \ Y → A j , we can assume, without loss of generality, that this sequence σ contains no FD that comes after 
X j \ Y → A j in the lhs chain of �m . Therefore, the last FD in σ must be equal to Xi \ Y → Ai for some i ∈ {1, . . . , j} such 
that Ai = A j . Since B /∈ Y , there is no FD in �m whose right-hand side is B . Therefore, since B ∈ X j \ Y , the FD X j \ Y → A j
cannot occur in σ . It follows i < j. Then, since Xi ⊆ X j and � contains Xi → A j , the FD X j → A j is redundant in �, 
contradicting our assumption that � contains no redundant FDs. This concludes the proof. �

Lemmas 4.2 and 4.3 imply that an FD set � that has an lhs chain (up to equivalence) has a single minimal cover that 
has an lhs chain; hence, in the remainder of this manuscript, we refer to the minimal cover of �.

5. Conflict graphs of lhs-chain schemas

In this section, we prove the equivalence 1 ↔ 3 of Theorem 3.4. Note that we use only the implication 1 → 3 in the 
proof of Theorem 3.2; however, the result shown in this section is stronger, as it implies that P4-free graphs are, in fact, a 
characterization of FD schemas with an lhs chain, that does not depend on any complexity assumptions.

We start by proving the implication 1 → 3, and then we prove the implication 3 → 1.

5.1. Left-hand-side chain implies P4-freeness

We start by proving that if (S, �) is equivalent to some FD schema with an lhs chain, then Gr
� is P4-free for every 

relation r of S. Let �m be the minimal cover of �. According to the result of the previous section, the FD set �m has an lhs 
chain. Let r be a relation over S. Clearly, it holds that Gr

� and Gr
�m

are the same graph; thus, it is sufficient to prove that 
Gr

�m
is P4-free. To show this, we will assume that Gr

�m
is not P4-free and derive a contradiction.

If Gr
�m

is not P4-free, then there are four nodes v1, v2, v3, v4 in the graph, such that {v1, v2}, {v2, v3}, {v3, v4} ∈ E(Gr
�m

), 
but {v1, v3}, {v1, v4}, {v2, v4} /∈ E(Gr

�m
). Hence, there are four facts f1, f2, f3, f4 in r, such that { f1, f2}, { f2, f3} and { f3, f4}

violate �m , but { f1, f3}, { f1, f4} and { f2, f4} do not violate �m .
Let us assume that { f1, f2} violates the FD X → A, { f2, f3} violates the FD X ′ → A′ and { f3, f4} violates the FD X ′′ → A′′ . 

Since �m has an lhs chain, one set among X, X ′, X ′′ is included in the other two, which leads to three possibilities:

• X ⊆ X ′ and X ⊆ X ′′ . In this case, all of these facts agree on the attributes of X . However, f1 and f2 do not agree on A. 
Then, f4 cannot agree with both f1 and f2 on this attribute; thus, it holds that either { f1, f4} or { f2, f4} violates the 
FD X → A.

• X ′ ⊆ X and X ′ ⊆ X ′′ . In this case, all of these facts agree on the attributes of X ′ . However, f2 and f3 do not agree on 
A′ . Since { f1, f3} does not violate �m , it holds that f1 and f3 agree on A′ . Moreover, since { f2, f4} does not violate 
�m , we have that f2 and f4 agree on A′ . Thus, f1 and f4 do not agree on A′ , and { f1, f4} violates the FD X ′ → A′ .

• X ′′ ⊆ X and X ′′ ⊆ X ′ . This case and the first one are symmetrical.

Note that in all three cases we get a contradiction (as v1, v2, v3, v4 do not induce a path of length four), and this concludes 
our proof.

5.2. P4-freeness implies left-hand-side chain

Now, we prove that if (S, �) is not equivalent to any FD schema with an lhs chain, then there exists a relation r of S, 
such that Gr is not P4-free. Clearly, since (S, �) is not equivalent to any FD schema with an lhs chain, a minimal cover of 
�
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fact A B C D

f1 a c c c
f2 a d d d
f3 f g d g
f4 f h h h

Fig. 4. The relation r constructed for the schema (S2fd,�2fd) in the proof of Lemma 5.1.

� cannot have an lhs chain. Moreover, if we look at a minimal cover �m of �, then for each relation r of S the graphs Gr
�

and Gr
�m

are the same. Thus, it is sufficient to prove that there exists a relation r for which Gr
�m

is not P4-free.

Lemma 5.1. Let (S, �) be an FD schema, such that � is a minimal set of FDs that does not have an lhs chain. Then, there exists a 
relation r of S, such that Gr

� is not P4-free.

Proof. Since � does not have an lhs chain, there exist two FDs, X → B and X ′ → B ′ , in �, such that X � X ′ and X ′ � X . 
We build a relation r over S, such that Gr

� is not P4-free in the following way. The relation r will contain the following four 
facts f1, f2, f3, f4, defined using the constants a, b, c, d, e, f, g, h.

• f1[A] = a for all A ∈ X \ (X ∩ X ′)+,� , f1[A] = b for all A ∈ (X ∩ X ′)+,� , and f1[A] = c otherwise.
• f2[A] = a for all A ∈ X \ (X ∩ X ′)+,� , f2[A] = b for all A ∈ (X ∩ X ′)+,� , f2[A] = d for all A ∈ X ′ \ (X ∩ X ′)+,� , and 

f2[A] = e otherwise.
• f3[A] = f for all A ∈ X \ (X ∩ X ′)+,� , f3[A] = b for all A ∈ (X ∩ X ′)+,� , f3[A] = d for all A ∈ X ′ \ (X ∩ X ′)+,� , and 

f3[A] = g otherwise.
• f4[A] = f for all A ∈ X \ (X ∩ X ′)+,� , f4[A] = b for all A ∈ (X ∩ X ′)+,� , and f4[A] = h otherwise.

Since � is minimal we have that B /∈ X . Moreover, since X � X ′ , we have that (X ∩ X ′) � X , and, again, because � is 
minimal, it holds that � �|= (X ∩ X ′ → B). It follows that B /∈ X ∪ (X ∩ X ′)+,�; hence, { f1, f2} �|= (X → B), and similarly, 
{ f3, f4} �|= (X → B). By symmetrical reasoning, we have that B ′ /∈ X ′ ∪ (X ∩ X ′)+,�; thus, { f2, f3} �|= (X ′ → B ′).

Finally, the facts f1 and f3 only agree on the attributes of (X ∩ X ′)+,� . Assume, by way of contradiction, that { f1, f3}
violates an FD Y → C in �. Hence, it holds that Y ⊆ (X ∩ X ′)+,� , but C /∈ (X ∩ X ′)+,� . Then, since � |= (X ∩ X ′) → Y and 
� |= Y → C , we have that � |= (X ∩ X ′) → C , and C ∈ (X ∩ X ′)+,� , which is a contradiction. We can similarly show that 
{ f1, f4} |= � and { f2, f4} |= �, and that concludes our proof. �

The relation constructed in the proof of Lemma 5.1 for the FD schema (S2fd, �2fd) is illustrated in Fig. 4 (note that �2fd
is minimal). The reader can verify that, indeed, the conflict graph Gr

�2fd
is not P4-free.

6. Proof of hardness

Finally, we prove the hardness side of Theorem 3.2. We begin with the simplest FD schema that does not have an lhs 
chain, namely (S2k, �2k) of Table 1. Consider a relation r over S2k. If r is viewed as the set of edges of a bipartite graph g
(where the constants of r correspond to the nodes of g , assuming, without the loss of generality, that the sets of constants 
of each attribute are disjoint), then counting the subset repairs of r is the problem of counting the maximal matchings of g , 
which is �P-complete [24]. Hence, we get the following.

Proposition 6.1. The problem #SRep〈S2k, �2k〉 is �P-complete.

Next, we use the concept of a fact-wise reduction [25]. Let (S, �) and (S′, �′) be two FD schemas. A mapping from S to S′
is a function μ that maps facts over S to facts over S′ . (We say that f is a fact over S if f is a fact of some relation r over 
S.) We extend a mapping μ to map relations r over S to relations over S′ by defining μ(r) to be {μ( f ) | f ∈ r}. A fact-wise 
reduction from (S, �) to (S′, �′) is a mapping � from S to S′ with the following properties.

1. � is injective; that is, for all facts f and g over S, if �( f ) = �(g) then f = g .
2. � preserves consistency and inconsistency; that is, for all facts f and g over S, { f , g} satisfies � if and only if 

{�( f ), �(g)} satisfies �′ .
3. � is computable in polynomial time.

The following lemma is straightforward.

Lemma 6.2. Let (S, �) and (S′, �′) be FD schemas, and suppose that there is a fact-wise reduction from (S, �) to (S′, �′). If 
#SRep〈S, �〉 is �P-hard, then #SRep〈S′, �′〉 is �P-hard as well.
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Hence, we complete the proof by showing that there is a fact-wise reduction from (S2k, �2k) to any FD schema (S, �)

that is not equivalent to an FD schema with an lhs chain. Then, Proposition 6.1 and Lemma 6.2 imply that computing 
#SRep〈S, �〉 is �P-complete for all such schemas. Note that the existence of a fact-wise reduction from (S2k, �2k) to any FD 
schema (S, �) that is not equivalent to an FD schema with an lhs chain is a stronger result than what we need to prove 
the hardness side of Theorem 3.2 (instead, we could construct a reduction from #SRep〈S2k, �2k〉 to #SRep〈S, �〉), but it is 
of independent interest, since fact-wise reductions constitute general tools for proving dichotomy results.

We start by proving the claim for minimal sets of FDs.

Lemma 6.3. Let (S, �) be an FD schema, such that � is a minimal set of FDs that does not have an lhs chain. Then, there is a fact-wise 
reduction from (S2k, �2k) to (S, �).

Proof. Since � does not have an lhs chain, there are two FDs X → A and X ′ → A′ , in �, such that X � X ′ and X ′ � X . We 
define a fact-wise reduction � : S2k → S, using the FDs X → A and X ′ → A′ and the constant � ∈ Const. Let f = (a, b) be a 
fact over S2k and let {A1, . . . , An} be the set of attributes in S. We define � as follows:

�( f )[Ak] def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� Ak ∈ (X ∩ X ′)+,�

a Ak ∈ X \ (X ∩ X ′)+,�

b Ak ∈ X ′ \ (X ∩ X ′)+,�

〈a,b〉 otherwise

It is left to show that � is a fact-wise reduction. To do so, we prove that � is well defined, injective and preserves 
consistency and inconsistency.

� is well defined. This is straightforward from the definition.

� is injective. Let f , f ′ be two facts, such that f = (a, b) and f ′ = (a′, b′). Let us denote �( f ) = (x1, . . . , xn) and �( f ′) =
(x′

1, . . . , x
′
n), and assume that �( f ) = �( f ′). Note that X \ (X ∩ X ′)+,� is not empty, as otherwise, the fact that � |=

(X ∩ X ′) → X and � |= X → A would imply that � |= (X ∩ X ′) → A, which is a contradiction to the fact that � is minimal 
(recall that (X ∩ X ′) � X since X � X ′). Similarly, we have that X ′ \ (X ∩ X ′)+,� is not empty. Therefore, there are l and 
p such that xl = a, xp = b. Hence, �( f ) = �( f ′) implies that xl = x′

l and xp = x′
p . We obtain that a = a′ and b = b′ , which 

implies f = f ′ .

� preserves consistency. Let f = (a, b) and f ′ = (a′, b′) be two distinct facts. We contend that the set { f , f ′} is consistent 
w.r.t. �2k if and only if the set {�( f ), �( f ′)} is consistent w.r.t. �.

The “if” direction. Assume { f , f ′} is inconsistent w.r.t. �2k. We prove that {�( f ), �( f ′)} is inconsistent w.r.t. �. Let us 
denote �( f ) = (x1, . . . , xn) and �( f ′) = (x′

1, . . . , x
′
n). If { f , f ′} is inconsistent w.r.t. �2k, then either a = a′ and b �= b′ or 

a �= a′ and b = b′ . By the definition of �, for every attribute Ak ∈ X it either holds that xk = a or xk = �. It also holds that 
xk = b or xk = 〈a, b〉 for Ak = A since � is minimal and does not contain trivial FDs X → A or redundant attributes (thus, 
� �|= (X ∩ X ′) → A). Therefore, in the first case (a = a′ and b �= b′), �( f ) and �( f ′) agree on the attributes of X , but do 
not agree on the value of A, and X → A does not hold. Similarly, for every attribute Ak ∈ X ′ it either holds that xk = b
or xk = �, and for Ak = A′ it either holds that xk = a or xk = 〈a, b〉. Thus, in the second case (a �= a′ and b = b′), the FD 
X ′ → A′ does not hold. This leads us to the conclusion that {�( f ), �( f ′)} is inconsistent w.r.t. �.

The “only if” direction. Assume that { f , f ′} is consistent w.r.t. �2k. We prove that {�( f ), �( f ′)} is consistent w.r.t. �. Note 
that a �= a′ since otherwise the FD A → B implies that b = b′ and thus f = f ′ . Similarly, b �= b′ due to the FD B → A. 
Thus, �( f ) and �( f ′) do not agree on the attributes on the left-hand side of any FD in � that contains an attribute 
Ak /∈ (X ∩ X ′)+,� . Hence, all these FDs are satisfied. Now, assume, by way of contradiction, that there is an FD Y → B in �
such that Y ⊆ (X ∩ X ′)+,� and {�( f ), �( f ′)} �|= Y → B . It holds that � |= (X ∩ X ′) → Y and � |= Y → B; hence, we have 
that � |= (X ∩ X ′) → B . It follows that B ∈ (X ∩ X ′)+,� and �( f )[B] = �( f ′)[B], which is a contradiction to the fact that 
�( f ) and �( f ′) jointly violate Y → B . �

At this point, we know that for an FD schema (S, �) where � is a minimal FD set that does not have an lhs chain, there 
is a fact-wise reduction from (S2k, �2k) to (S, �). It is left to show that this also holds for � that is not a minimal FD set 
and is not equivalent to an FD set with an lhs chain.

Lemma 6.4. Let (S, �) be an FD schema that is not equivalent to any FD schema with an lhs chain. Then, there is a fact-wise reduction 
from (S2k, �2k) to (S, �).
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Proof. Let �m be a minimal cover of �. Clearly, �m does not have an lhs chain. Moreover, it is straightforward that if 
there exists a fact-wise reduction from (S2k, �2k) to (S, �m), there exists a fact-wise reduction from (S2k, �2k) to (S, �)

(the exact same reduction). Thus, it is sufficient to prove that there exists a fact-wise reduction from (S2k, �2k) to (S, �m). 
Lemma 6.3 implies that this is indeed the case. �
7. Conclusions

We investigated the complexity of the problem of counting subset repairs. We focused on FD constraints and established 
a dichotomy in data complexity, partitioning FD schemas into polynomial-time counting and �P-complete counting. We 
showed that the tractable FD schemas are the ones having an lhs chain, or equivalently, those guaranteeing P4-free conflict 
graphs. Moreover, we showed that it is possible to decide in polynomial time whether or not an FD schema is on the 
tractable side of the dichotomy.

For future work, we highlight two main directions. The first is approximate counting of repairs. In particular, does the 
classification hold if we allow for approximate rather than exact repair counting? The second is that of counting repairs in 
more general repair frameworks that support additional types of integrity constraints (e.g., conditional FDs [26], equality-
generating dependencies, and denial constraints [27]) and repairing operations (e.g., tuple addition and cell updates [28–
30]).
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