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ABSTRACT
Consistent Query Answering (CQA) with respect to primary keys

is the following problem. Given a database instance that is possibly

inconsistent with respect to its primary key constraints, define a

repair as an inclusion-maximal consistent subinstance. Given a

Boolean query 𝑞, the problem CERTAINTY(𝑞) takes a database in-
stance as input, and asks whether 𝑞 is true in every repair. For every

Boolean conjunctive query 𝑞, the complement of CERTAINTY(𝑞)
can be straightforwardly implemented in Answer Set Programming

(ASP) by means of a generate-and-test approach: first generate a

repair, and then test whether it falsifies the query.

Theoretical research has recently revealed that for every self-

join-free Boolean conjunctive query 𝑞, the complexity class of

CERTAINTY(𝑞) is one of FO, L-complete, or coNP-complete. Faced

with this complexity trichotomy, one can hypothesize that in prac-

tice, the full power of generate-and-test is a computational overkill

when CERTAINTY(𝑞) is in the low complexity classes FO or L. We

investigate part of this hypothesis within the context of ASP, by ask-

ing the following question: wheneverCERTAINTY(𝑞) is in FO, does
a dedicated first-order algorithm exhibit significant performance

gains compared to a generic generate-and-test implementation?

We first elaborate on the construction of such dedicated first-order

algorithms in ASP, and then empirically address this question.

CCS CONCEPTS
• Information systems→Relational database query languages;
• Theory of computation → Constraint and logic program-
ming.

KEYWORDS
answer set programming; conjunctive queries; consistent query

answering; database repairing; first-order rewriting; primary keys
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1 MOTIVATION
Consistent query answering (CQA) is a principled approach for deal-

ing with inconsistent databases that has gained considerable re-

search attention in the past twenty years [3, 22]. Inconsistency in

databases can be caused, among others, by data integration. For

a running example, consider the database instance of Fig. 1. The

table 𝑟 stores conference locations and should ideally satisfy PRI-
MARY KEY(Conf , Year) because no conference series is organized

twice in a same year. This primary key is currently violated, because

there are two distinct locations for CIKM 2021.

r Conf Year City

CIKM 2020 Galway

- - - - - - - - - - - - - - - - - -

CIKM 2021 Perth

CIKM 2021 Sydney

s City Country

Perth Australia

- - - - - - - - - - - - - - -

Sydney Australia

- - - - - - - - - - - - - - -

Galway Ireland

Figure 1: Running Example

This paper focuses on violations of primary key constraints. A

repair of a (possibly inconsistent) database instance is a maximal

consistent subinstance. The database instance of Fig. 1 has two

repairs, because there are two possible choices for the city of CIKM

2021.

A significant problem is how to answer queries on inconsistent

databases that have multiple repairs. The CQA approach uses a

cautious semantics: the consistent answer to a query is defined as

the intersection of the query answers on all repairs. For example,

the consistent answer to the query “In which city will CIKM 2021 be
organized?” is empty, because the two repairs yield disjoint answers.

On the other hand, Australia is a consistent answer to the query

“In which country will CIKM 2021 be organized?”.
The computational complexity of CQA with respect to primary

keys has been studied in considerable depth. In these studies, one

usually focuses on Boolean queries, which return either “yes” or “no.”
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{ r_repair(Conf,Year,V) : r(Conf,Year,V) } == 1 :- r(Conf,Year,_).
{ s_repair(City,W) : s(City,W) } == 1 :- s(City,_).

:- r_repair(X,Y,Z), s_repair(Z,X).

Figure 2: ASP Program for CERTAINTY(𝑞0).

The consistent answer to a Boolean query 𝑞 is “yes” on a database

instance if𝑞 is true on every repair; otherwise the consistent answer

is “no.” For example, “yes” is the consistent answer to the query

“Will CIKM 2021 be held in Australia?”. For a fixed Boolean query 𝑞,

CERTAINTY(𝑞) is the following decision problem:

Decision problem CERTAINTY(𝑞).
INPUT: A (possibly inconsistent) database instance db.
QUESTION: Is 𝑞 true in every repair?

It is easy to see that CERTAINTY(𝑞) is in coNP for all first-order

queries 𝑞, since a non-deterministic polynomial-time algorithm can

guess a subinstance of db and verify in polynomial time that it has

guessed a repair that falsifies 𝑞. It is known since the early days

of CQA [7] that there are simple conjunctive queries 𝑞 for which

CERTAINTY(𝑞) is coNP-complete. An example of such a query is

𝑞0 := ∃𝑋∃𝑌∃𝑍
(
𝑟 (𝑋,𝑌, 𝑍 ) ∧ 𝑠 (𝑍,𝑋 )

)
,

which on our example database is the (weird) question whether

there is a conference whose name is that of the organizing country.

The focus of this paper is on solvingCERTAINTY(𝑞) bymeans of

Answer Set Programming (ASP), which is a notorious logic program-

ming paradigm tailored toward NP-complete problems. Many ASP

programs can be easily written by directly encoding the guess-and-

check approach that underlies NP. In our approach, the program

has to guess a repair, and then check whether that repair falsifies

the query. In clingo ASP [9, 10], a program for CERTAINTY(𝑞0)
takes only three lines of code, as illustrated by Fig. 2. We briefly

explain this program. The first line says that for every primary-

key value in r, one should select exactly one fact in r with that

primary-key value. The fresh relation name r_repair is used for

repairs of r. The second line operates analogously on s. The last
line of the program does the check: it is a rule with an empty head.

In ASP, an empty-head rule is an integrity constraint which asserts

that the body of the rule must not be satisfied. Thus, the last rule

in Fig. 2 asserts that 𝑞0 must be false in the repair guessed by the

first two lines. If we run this program in clingo ASP on a database

instance, the output is either a repair that falsifies the query 𝑞0, or

the message “UNSATISFIABLE” telling us that no such repair exists.

The guess-and-check solution of Fig. 2 can be used to solve

CERTAINTY(𝑞) for any Boolean conjunctive query 𝑞. Such pro-

grams follow the generate-and-test approach that is typical of many

ASP programs that solve NP-complete problems. The generate-part

of a program for CERTAINTY(𝑞) specifies, for every relation name

in 𝑞, what is a repair of that relation. The test-part checks whether

this leads to a repair that falsifies 𝑞. An advantage is that these

programs are straightforward to write because of their syntactical

simplicity. From a theoretical perspective, however, these programs

exhibit an overkill in complexity whenever CERTAINTY(𝑞) can be

solved in polynomial time, as explained next.

Recent theoretical research has revealed much about the com-

putational complexity of CERTAINTY(𝑞) with 𝑞 ranging over the

negation-free fragment of the relational calculus. In particular, the

complexity landscape is by now well understood for queries in

sjfBCQ , i.e., the class of self-join-free Boolean conjunctive queries,

which will be rigorously defined in Section 3. It is now known

that the set {CERTAINTY(𝑞) | 𝑞 ∈ sjfBCQ} exhibits a complexity

trichotomy between FO, L-complete, and coNP-complete [16, 17].

Here, FO denotes the class of decision problems whose input is a

relational database instance and that are solvable by a single query

in relational calculus, or equivalently, in non-recursive datalog with

negation, which is a sublanguage of ASP.

The preceding tells us that whenever CERTAINTY(𝑞) is in FO,
it can be solved in two different ways in ASP:

(1) by using the generic generate-and-test approach illustrated

in Fig. 2; or

(2) by means of a program in non-recursive datalog with nega-

tion. Such a program is also called a [consistent] first-order
rewriting of 𝑞.

We will explain later in this paper how to construct the programs

referred to in item (2). The important thing to note for now is that (1)

and (2) will give us two different (but equivalent) declarative logic

programs, both written in ASP. It is then natural to ask:

Research question: Is there a difference in run-time ef-

ficiency between “generate-and-test” and “first-order

rewriting”?

In theory, programs in non-recursive datalog with negation are less

expressive (and therefore, expectedly, faster) than generate-and-

test programs that use the full expressive power of ASP. However,

there are notorious computational problems, like primality testing

or linear programming, where algorithms of theoretically lower

complexity do not execute faster in practice. Could it be the same

for CERTAINTY(𝑞)?
Some comments are in place here. A main principle in declara-

tive logic programming is that programmers focus on what is to
be computed, not on how it is to be computed, nor on run-time

efficiency. In this paper, we will stick to this principle. Our question

is therefore not whether we can “hack” a logic program to make it

run faster. Likewise, our research goal is not to develop the “fasted

computer program ever” to solve CERTAINTY(𝑞). Instead, using
fairly straightforward encodings for consistent first-order rewriting

and generate-and-test, we want to empirically compare the perfor-

mances of both approaches within existing ASP solvers, like clingo

or DLV [19].

This paper is organized as follows. Section 2 discusses related

work. Section 3 introduces a small number of theoretical concepts

that are needed for the remainder of the paper. Section 4 explains

how to encode CERTAINTY(𝑞) in non-recursive datalog with nega-

tion (and thus in ASP) whenever this is possible. The translation

is tricky and has not yet been described in previous works. In Sec-

tion 5, we ask the question: how many queries admit a first-order
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rewriting? We show that there are database schemas where first-

order rewritability is more a rule than an exception. In Section 6,

we discuss the difference between solving CERTAINTY(𝑞) or its
complement, and why algorithms may perform differently on “yes”-

and “no”-instances of CERTAINTY(𝑞). At that point, we have all
the background that is needed to run some experiments, which are

described in Section 7. Most results in this paper concern Boolean

queries, i.e., queries that ask for a yes/no (or true/false) answer.

In Section 8, we discuss the implications of having non-Boolean

queries with free variables. Finally, Section 9 concludes the paper.

Conquesto. This paper is accompanied by software released

under a 3-clause BSD license at https://github.com/DocSkellington/
Conquesto. This software allows for the construction of first-order

rewritings and generate-and-test programs in both clingo and DLV

syntax, and for the automated experimentation in both systems.

2 RELATEDWORK
Consistent query answering (CQA) started in 1999 with a seminal pa-

per by Arenas, Bertossi and Chomicki [1]. Two decades of research

in CQA have recently been surveyed in [3, 22].

The suitability of Answer Set Programming (ASP) and stable

model semantics for CQA has been recognized since the early days

in theoretical research [2, 11]. In [20], the authors present a proto-

type system for CQA that is theoretically founded in ASP.

In CQA, the existence of consistent first-order rewritings, for

different classes of queries and integrity constraints, is a recurrent

research problem. For self-join-free conjunctive queries and pri-

mary keys, the problem has been studied in depth since 2005 [7, 8],

and was eventually solved in 2015 [13, 14]. Experiments of CQA

with respect to primary keys have been conducted on several proto-

type systems, including ConQuer [6], EQUIP [12], and CAvSAT [5].

The Hippo system [4] can also deal with primary key violations, but

disallows quantifiers in queries. The recent study [5], in particular,

has revealed that discrepancies may exists between the theoretical

computational complexity of CERTAINTY(𝑞) and observed empir-

ical performances. In particular, it was observed that a generic

SAT-based approach to CERTAINTY(𝑞) may outperform solutions

that use first-order rewriting. The main goal of the current paper is

to investigate whether such observations also hold within existing

ASP systems.

3 PRELIMINARIES
We assume a set of relation names. Every relation name 𝑟 is asso-

ciated with a signature, which is a pair [𝜆, 𝑘] of positive integers
with 𝜆 ≥ 𝑘 , where 𝜆 is the arity and {1, . . . , 𝑘} is the primary key.
We write 𝑟 : [𝜆, 𝑘] to indicate that 𝑟 has signature [𝜆, 𝑘]. A data-
base schema is a finite set of relation names. From here on, we

assume that some database schema has been fixed. For example,

the database schema of our running example contains 𝑟 : [3, 2] and
𝑠 : [2, 1].

A term is a constant or a variable. If ®𝑡 is a sequence of terms,

then vars(®𝑡) denotes the set of variables that occur in ®𝑡 . Whenever

a set of variables is used in a context where a list of variables is

expected, we assume that the variables are ordered according to

some prefixed linear order on the set of all variables.

An 𝑟 -atom (or simply atom if 𝑟 is understood) is an expression

𝑟 (𝑡1, . . . , 𝑡𝜆) where each 𝑡𝑖 is a term. An atom without variables is

called a fact. When writing an atom, we will often (but not always)

underline the primary-key positions: 𝑟 (𝑡1, . . . , 𝑡𝑘 , 𝑡𝑘+1, . . . , 𝑡𝜆). A
database instance db is a finite set of facts. A database instance is

consistent if it does not contain two facts with the same relation

name, say 𝑟 ( ®𝑎1, ®𝑏1) and 𝑟 ( ®𝑎2, ®𝑏2), such that ®𝑎1 = ®𝑎2 and ®𝑏1 ≠ ®𝑏2. A
repair of a database instance is an inclusion-maximal consistent

subinstance. A block is a maximal set of facts with the same relation

name that agree on all positions of the primary key. In Fig. 1, blocks

are separated by dashed lines.

A first-order query 𝑞(𝑋1, . . . , 𝑋𝑛) is an expression in (safe) re-

lational calculus with free variables 𝑋1, . . . , 𝑋𝑛 . Such a query can

be written as 𝑞 for short if the free variables are clear from the

context. Satisfaction of a query by a database instance is defined

as usual (and not repeated here). Given a database instance db, a
tuple (𝑐1, . . . , 𝑐𝑛) is a consistent answer if every repair of db satisfies
𝑞(𝑐1, . . . , 𝑐𝑛). For example, the query 𝑞(𝑌 ) := 𝑟 (“CIKM”, 𝑌 , “Perth”)
asks for the years that CIKM was hosted by the city of Perth. The

database of Fig. 1 satisfies 𝑞(“2021”), but 2021 is not a consistent
answer, because there is a repair that falsifies 𝑞(“2021”). A query

without free variables is called Boolean. The consistent answer to a

Boolean query 𝑞 is true (or “yes”) if every repair satisfies 𝑞, and is

false (or “no”) otherwise.
A conjunctive query is a first-order query of the form

∃ ®𝑋
(
𝑟1 (®𝑡1) ∧ · · · ∧ 𝑟𝑛 (®𝑡𝑛)

)
. (1)

Note that each ®𝑡𝑖 can contain both constants and variables. Such

a query is self-join-free if 𝑖 ≠ 𝑗 implies 𝑟𝑖 ≠ 𝑟 𝑗 . The class of self-

join-free Boolean conjunctive queries is denoted sjfBCQ . When we

write a query in sjfBCQ , we often omit quantifiers and replace ∧
with comma (,). We write vars(𝑞) for the set of variables that occur
in 𝑞. We write 𝑞1 ≡ 𝑞2 if queries 𝑞1 and 𝑞2 are equivalent (i.e., if

they yield the same answer on every database instance).

Let 𝑞 be a query in sjfBCQ of the form (1). Assume that the

signature of each 𝑟𝑖 is [𝜆𝑖 , 𝑘𝑖 ]. We now show the construction of

a generate-and-test program for CERTAINTY(𝑞). In clingo and

DLV, variables start with an uppercase letter, and constants with a

lowercase letter. We will follow this convention in this paper. Using

clingo-specific syntax, we specify repairs by adding the following

rules, for every 𝑖 ∈ {1, . . . , 𝑛}:

{ins_𝑟𝑖 (𝑋1, . . . , 𝑋𝜆𝑖 ) : 𝑟𝑖 (𝑋1, . . . , 𝑋𝜆𝑖 )} == 1

← 𝑟𝑖 (𝑋1, . . . , 𝑋𝑘𝑖 , 𝑌𝑘𝑖+1, . . . , 𝑌𝜆𝑖 ) .

Here, ins_𝑟𝑖 is a fresh relation name of arity 𝜆𝑖 that is used for the

facts inserted in a repair. To finish the program, we add a single

empty-head rule that constrains the repairs to those that falsify 𝑞:

← ins_𝑟1 (®𝑡1), . . . , ins_𝑟𝑛 (®𝑡𝑛). (2)

This yields a program with 𝑛 + 1 rules.
Finally, we show how repairs can be specified in ASP without

using clingo-specific syntax. We encode that every 𝑟𝑖 -fact is either

inserted (ins) in a repair or deleted (del). Furthermore, at least one

fact from each block must be inserted in a repair. This is encoded
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in the following four rules (1 ≤ 𝑖 ≤ 𝑛):

del_𝑟𝑖 (𝑋1, . . . , 𝑋𝜆𝑖 ) ← 𝑟𝑖 (𝑋1, . . . , 𝑋𝜆𝑖 ), not ins_𝑟𝑖 (𝑋1, . . . , 𝑋𝜆𝑖 ).
ins_𝑟𝑖 (𝑋1, . . . , 𝑋𝜆𝑖 ) ← 𝑟𝑖 (𝑋1, . . . , 𝑋𝜆𝑖 ), not del_𝑟𝑖 (𝑋1, . . . , 𝑋𝜆𝑖 ) .
block_𝑟𝑖 (𝑋1, . . . , 𝑋𝑘𝑖 ) ← ins_𝑟𝑖 (𝑋1, . . . , 𝑋𝜆𝑖 ) .

← 𝑟𝑖 (𝑋1, . . . , 𝑋𝜆𝑖 ), not block_𝑟𝑖 (𝑋1, . . . , 𝑋𝑘𝑖 ).

Here, ins_𝑟𝑖 and del_𝑟𝑖 are fresh relation names of arity 𝜆𝑖 , and

block_𝑟𝑖 is a fresh relation of arity 𝑘𝑖 . Together with (2), this yields

a program with 4𝑛 + 1 rules. Note incidentally that there is no need

to encode that at most one fact from each block must be inserted

in a repair, because a Boolean conjunctive query that is false in a

database instance, is also false in every subinstance.

4 CONSISTENT FIRST-ORDER REWRITING
In this section, we introduce the approach known as consistent first-
order rewriting. In Section 4.1, we recall a fundamental result from

the literature stating that it is decidable whether a self-join-free

conjunctive query has a consistent first-order rewriting. Our novel

and nontrivial contribution is to translate such a rewriting into

a program that can be executed by an ASP engine. We will first

illustrate this translation in Section 4.2, and then provide a formal

theoretical treatment in Section 4.3.

4.1 Theoretical Background
A consistent first-order rewriting of 𝑞( ®𝑋 ) is another query Υ( ®𝑋 ) in
relational calculus, with the same free variables as 𝑞, such that for

every database instance db and every tuple ®𝑐 of constants (of the
same length as ®𝑋 ) the following are equivalent:

(1) 𝑞(®𝑐) is true on every repair of db.
(2) Υ(®𝑐) is true on db.

A special case is where 𝑞 is Boolean. If a Boolean query 𝑞 has

a consistent first-order rewriting, then, by the definition of FO,
CERTAINTY(𝑞) is in FO. If 𝑞 has a consistent first-order rewriting,

then it can be solved by a single query Υ without the need for

computing any database repair. For example, consider the query

“Did/will CIKM ever take place in Perth?” :

𝑞1 := ∃𝑌
(
𝑟 (“CIKM”, 𝑌 , “Perth")

)
.

It is easy to verify that 𝑞1 is true in every repair if for some year,

Perth was/is the only host city for CIKM stored in the database.

The latter condition can be expressed in relational calculus:

Υ1 := ∃𝑌
(
𝑟 (“CIKM”, 𝑌 , “Perth”)∧
¬∃𝑍

(
𝑟 (“CIKM”, 𝑌 , 𝑍 ) ∧ 𝑍 ≠ “Perth”

) )
.

On the example database of Fig. 1, the query Υ1 is false, and therefore
there is a repair that falsifies 𝑞1. Clearly, the falsifying repair is the

one that chooses Sydney as the host city for CIKM 2021. Since

the focus of this paper is on ASP, we still have to convert Υ1 to

ASP, which yields the ASP program of Fig. 3(b). For comparison,

we also give the generate-and-test program in Fig. 3(a). Note that

these two programs solve the same problem, but are syntactically

and algorithmically very different. The applicability of consistent

first-order rewriting was settled by the following theorem.

Theorem 4.1 ([14]). There exists an algorithm for the following
problem: Given a self-join-free (not necessarily Boolean) conjunctive

query 𝑞, return a consistent first-order rewriting of 𝑞 if it exists; oth-
erwise return the message “there exists no consistent first-order

rewriting.”

We will now explain how to construct a consistent first-order

rewriting in ASP. Details of this construction in relational calculus

and SQL can be found in [14, 21]. After some examples in Section 4.2,

we give a formal treatment in Section 4.3.

4.2 Examples
Roughly, a consistent first-order rewriting Υ of a query 𝑞 is con-

structed by structural induction on 𝑞. The base case is simple: if

𝑞 is the empty query, then it is always true. The induction step

partitions 𝑞 in some head atom 𝑟 (®𝑡) and a tail 𝑞′ := 𝑞 \ {𝑟 (®𝑡)}. The
induction hypothesis gives us a consistent first-order rewriting Υ′

of the tail 𝑞′. The formula Υ then combines a rewriting of 𝑟 (®𝑡) with
Υ′, as illustrated next for the head atom 𝑟 (𝑋,𝑋,𝑌,𝑌 , 𝑐), where 𝑐 is a
constant. This example contains repeated variables and a constant;

it can be easily generalized to queries with more repeated vari-

ables and constants. By induction, there is a consistent first-order

rewriting Υ′(𝑋,𝑌 ) of 𝑞′(𝑋,𝑌 ) := 𝑞 \ {𝑟 (𝑋,𝑋,𝑌,𝑌 , 𝑐)}. A consistent

first-order rewriting of 𝑞 is as follows:

Υ := ∃𝑋

©­­­­­«
∃𝑌𝑟 (𝑋,𝑋,𝑌,𝑌, 𝑐)∧

∀𝑋 ′∀𝑌 ∀𝑌 ′∀𝑍
©­­­«𝑟 (𝑋,𝑋 ′, 𝑌 ,𝑌 ′, 𝑍 ) →

©­­­«
𝑋 ′ = 𝑋∧
𝑌 ′ = 𝑌 ∧
𝑍 = 𝑐 ∧
Υ′ (𝑋,𝑌 )

ª®®®¬
ª®®®¬
ª®®®®®¬

Informally, this formula states that there is an 𝑟 -block (indicated

by 𝑋 ) such that every fact 𝑟 (𝑥, 𝑥 ′, 𝑦,𝑦′, 𝑧) in this block satisfies

𝑥 ′ = 𝑥 , 𝑦′ = 𝑦, and 𝑧 = 𝑐 , and therefore every repair satisfies

𝑟 (𝑋,𝑋,𝑌,𝑌 , 𝑐); the subformula Υ′, which exists by induction, ex-

presses that the remainder of the query will also be satisfied by

every repair. We now eliminate ∀ and→, and define some subfor-

mulas:

Υ ≡ ∃𝑋

©­­­­­­­­­­«

∃𝑌𝑟 (𝑋,𝑋,𝑌,𝑌, 𝑐)∧

¬ ∃𝑋 ′∃𝑌 ∃𝑌 ′∃𝑍
©­­­­«
𝑟 (𝑋,𝑋 ′, 𝑌 ,𝑌 ′, 𝑍 ) ∧ ¬

goodfact(𝑋,𝑋 ′,𝑌 ,𝑌 ′,𝑍 )︷       ︸︸       ︷©­­­«
𝑋 ′ = 𝑋∧
𝑌 ′ = 𝑌 ∧
𝑍 = 𝑐 ∧
Υ′ (𝑋,𝑌 )

ª®®®¬
ª®®®®¬︸                                                                           ︷︷                                                                           ︸

badblock(𝑋 )

ª®®®®®®®®®®¬
From here on, whenever a block is fixed, the predicate goodfact
will hold true for facts in that block that satisfy the query under

consideration. The predicate badblock will hold true if goodfact is
false for some fact in the fixed block. In ASP programs, goodfact
and badblock will be abbreviated as gf and bb respectively.

By induction, we can assume an ASP program for a predicate

yes’(𝑋,𝑌 ) that evaluates Υ′(𝑋,𝑌 ). The formula Υ can now be

translated into ASP:

yes :- r(X,X,Y,Y,c), not bb(X).
bb(X) :- r(X,X',Y,Y',Z), not gf(X,X',Y,Y',Z).
gf(X,X',Y,Y',Z) :- X'=X, Y'=Y, Z=c, yes'(X,Y),

r(X,X',Y,Y',Z).

The last atom in the last rule is needed to make that rule safe.

Note that since this is the translation of a first-order formula, the

resulting ASP program is in non-recursive datalog with negation. It

is possible to eliminate the equalities in the last rule, which yields

the following:
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{ r_repair(Conf,Year,V) : r(Conf,Year,V) } == 1 :- r(Conf,Year,_).
:- r_repair("CIKM",Y,"Perth").

(a) Generate-and-test

yes :- r("CIKM",Y,"Perth"), not otherCity(Y).
otherCity(Y) :- r("CIKM",Y,Z), Z!="Perth".

(b) Consistent first-order rewriting

Figure 3: Two ASP Programs for CERTAINTY(𝑞1) with 𝑞1 := ∃𝑌 (𝑟 (“CIKM”, 𝑌 , “Perth")).

yes :- r(X,X,Y,Y,c), not bb(X).
bb(X) :- r(X,X',Y,Y',Z), not gf(X,X',Y,Y',Z).
gf(X,X,Y,Y,c) :- yes'(X,Y), r(X,X,Y,Y,c).

Alternatively, the predicate goodfact can be avoided by equivalently
rewriting Υ as follows:

Υ ≡ ∃𝑋

©­­­­­­­­­«

∃𝑌𝑟 (𝑋,𝑋,𝑌,𝑌, 𝑐)∧

¬ ∃𝑋 ′∃𝑌 ∃𝑌 ′∃𝑍
©­­­«

(
𝑟 (𝑋,𝑋 ′, 𝑌 ,𝑌 ′, 𝑍 ) ∧𝑋 ′ ≠ 𝑋

)
∨
(
𝑟 (𝑋,𝑋 ′, 𝑌 ,𝑌 ′, 𝑍 ) ∧𝑌 ′ ≠ 𝑌

)
∨
(
𝑟 (𝑋,𝑋 ′, 𝑌 ,𝑌 ′, 𝑍 ) ∧ 𝑍 ≠ 𝑐

)
∨
(
𝑟 (𝑋,𝑋 ′, 𝑌 ,𝑌 ′, 𝑍 ) ∧ ¬Υ′ (𝑋,𝑌 )

)
ª®®®¬︸                                                                ︷︷                                                                ︸

badblock(𝑋 )

ª®®®®®®®®®¬
Now the translation in ASP is:

yes :- r(X,X,Y,Y,c), not bb(X).
bb(X) :- r(X,X',Y,Y',Z), X' != X.
bb(X) :- r(X,X',Y,Y',Z), Y' != Y.
bb(X) :- r(X,X',Y,Y',Z), Z != c.
bb(X) :- r(X,X',Y,Y',Z), not yes'(X,Y).

The previous example did not illustrate how to pick the first

atom to rewrite, nor how to deal with free variables. The treatment

of free variables is easy: free variables must be handled as if they

were constants. The choice of the first atom to rewrite is more

complicated and requires a difficult theoretical treatment that is

developed in [14] and summarized in the next subsection.

4.3 Generalization
The proof of Theorem 4.1 in [14] relies on the attack graph of a self-

join-free conjunctive query 𝑞, which is a (unique) directed graph

whose vertices are the atoms of 𝑞. For the understanding of the

current paper, it is sufficient to know that 𝑞 has a consistent first-

order rewriting if and only if its attack graph is acyclic. Moreover,

if the attack graph of 𝑞 is acyclic, then its atoms must be rewritten

in a topological order of this attack graph.

So let 𝑞( ®𝑋 ) be a self-join-free conjunctive query with relation

names 𝑟1, 𝑟2, . . . , 𝑟𝑛 , listed in a topological order of the attack graph

of 𝑞. For 𝑖 ∈ {1, . . . , 𝑛}, define 𝑞𝑖 to be the subquery that contains

all (and only) the atoms with relation names 𝑟𝑖 , 𝑟𝑖+1, . . . , 𝑟𝑛 . In par-

ticular, 𝑞1 = 𝑞.

For every 𝑖 ∈ {1, . . . , 𝑛}, we define a predicate yes𝑖 of appropriate
arity that rewrites𝑞𝑖 . We define yes𝑛+1 as true, which will terminate

the induction. We now give the consistent first-order rewriting

of 𝑞1. Let the 𝑟1-atom of 𝑞1 be 𝑟1 (®𝑢, ®𝑤) with ®𝑢 = 𝑢1, . . . , 𝑢𝑘 and ®𝑤 =

𝑤1, . . . ,𝑤ℓ . Let
®𝑉 = 𝑉1, . . . ,𝑉ℓ be a sequence of distinct variables

such that for every 𝑖 ∈ {1, . . . , ℓ}, if 𝑤𝑖 is a variable that does not

occur in ®𝑋 ®𝑢𝑤1𝑤2 · · ·𝑤𝑖−1, then let 𝑉𝑖 == 𝑤𝑖 ; otherwise 𝑉𝑖 is a

fresh variable. Here, we use == to denote the syntactic identity of

symbols. Thus, we copy the occurrence𝑤𝑖 of a variable, rather than

using a fresh variable, if it is the leftmost occurrence of a non-free

variable in 𝑟1 (®𝑢, ®𝑤). The consistent first-order rewriting in ASP

is given next; this rewriting ensures the correct treatment of free

variables and the safety of rules (i.e., every variable that occurs in a

rule must occur in a non-negated atom of the body).

yes
1
( ®𝑋 ) ← saferange

1
( ®𝑋 ), 𝑟1 (®𝑢, ®𝑤),

¬badblock1 ( ®𝑋, ®𝑢) .
saferange

1
( ®𝑋 ) ← 𝑞1 .

badblock1 ( ®𝑋, ®𝑢) ← saferange
1
( ®𝑋 ), 𝑟1 (®𝑢, ®𝑉 ),

¬goodfact
1
( ®𝑋, ®𝑢, ®𝑉 ) .

goodfact
1
( ®𝑋, ®𝑢, ®𝑉 ) ← saferange

1
( ®𝑋 ), 𝑟1 (®𝑢, ®𝑉 ),𝐶= ( ®𝑋, ®𝑢, ®𝑉 ),

yes
2
(vars( ®𝑋 ®𝑢 ®𝑤) ∩ vars(𝑞2)) .

where 𝐶= ( ®𝑋, ®𝑢, ®𝑉 ) is a set of equalities defined as follows:

(1) for 𝑖 ∈ {1, . . . , ℓ}, if𝑤𝑖 is either a variable in
®𝑋 ®𝑢 or a constant,

then 𝐶= ( ®𝑋, ®𝑢, ®𝑉 ) contains 𝑉𝑖 = 𝑤𝑖 . Note that 𝑉𝑖 and𝑤𝑖 will

never be identical variables in this case; and

(2) for 1 ≤ 𝑖 < 𝑗 ≤ ℓ , if𝑤𝑖 is a variable not in
®𝑋 ®𝑢 and𝑤𝑖 == 𝑤 𝑗 ,

then 𝐶= ( ®𝑋, ®𝑢, ®𝑉 ) contains 𝑉𝑖 = 𝑉𝑗 .

The predicates saferange
1
are needed to make the rules safe. Finally,

by induction, the program for the predicate yes
2
is constructed in

the same way. The following example illustrates several technical

aspects.

Example 4.2. Let 𝑞(𝑋1, 𝑋2) := 𝑟1 (𝑏,𝑈 ,𝑈 ,𝑌,𝑌 , 𝑋1), 𝑟2 (𝑌,𝑋2, 𝑐).
The rewriting of 𝑞1 (𝑋1, 𝑋2) goes as follows. Note that the first

occurrence of 𝑌 is preserved in the following rewriting; the second

occurrence of 𝑌 is replaced with 𝑉3, and leads to the equality 𝑉3 =

𝑌 . Since the free variable 𝑋2 does not occur in the 𝑟1-atom, the

predicate sr_1 is needed to make the first rule safe.

yes_1(X1,X2) :- sr_1(X1,X2), r_1(b,U,U,Y,Y,X1),
not bb_1(X1,X2,b,U).

sr_1(X1,X2) :- r_1(b,U,U,Y,Y,X1), r_2(Y,X2,c).
bb_1(X1,X2,b,U) :- sr_1(X1,X2), r_1(b,U,V1,Y,V3,V4),

not gf_1(X1,X2,b,U,V1,Y,V3,V4).
gf_1(X1,X2,b,U,V1,Y,V3,V4) :- sr_1(X1,X2),

r_1(b,U,V1,Y,V3,V4),
V1=U, V3=Y, V4=X1,
yes_2(X2,Y).

We next give the first-order rewriting of 𝑞2 (𝑋2, 𝑌 ) := 𝑟2 (𝑌,𝑋2, 𝑐),
in which the equalities 𝑉1 = 𝑋2 and 𝑉2 = 𝑐 originate from item (1)

in the definition of 𝐶= ( ®𝑋, ®𝑢, ®𝑉 ).
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yes_2(X2,Y) :- sr_2(X2,Y), r_2(Y,X2,c),
not bb_2(X2,Y,Y).

sr_2(X2,Y) :- r_2(Y,X2,c).
bb_2(X2,Y,Y) :- sr_2(X2,Y), r_2(Y,V1,V2),

not gf_2(X2,Y,Y,V1,V2).
gf_2(X2,Y,Y,V1,V2) :- sr_2(X2,Y), r_2(Y,V1,V2),

V1=X2, V2=c.

This terminates Example 4.2. □

The previous rewriting of 𝑟1 (®𝑢, ®𝑤) uses 4 rules. It is easy to

eliminate the rule for saferange
1
( ®𝑋 ), by substituting 𝑞1 for every

occurrence of saferange
1
( ®𝑋 ). We thus obtain the following result.

Proposition 4.3. For every query 𝑞 in sjfBCQ with 𝑛 atoms, if
CERTAINTY(𝑞) is in FO, then it can be solved by a program with at
most 3𝑛 rules in non-recursive datalog with negation.

As we have seen in Section 4.2, we can also eliminate the predi-

cate goodfact
1
, but this will generally not decrease the number of

rules. Technically, the elimination of goodfact
1
proceeds as follows.

yes
1
( ®𝑋 ) ← saferange

1
( ®𝑋 ), 𝑟1 (®𝑢, ®𝑤),

¬badblock1 ( ®𝑋, ®𝑢).
saferange

1
( ®𝑋 ) ← 𝑞1 .

badblock1 ( ®𝑋, ®𝑢) ← saferange
1
( ®𝑋 ), 𝑟1 (®𝑢, ®𝑉 ),

¬yes
2
(vars( ®𝑋 ®𝑢 ®𝑤) ∩ vars(𝑞2)) .

In addition, for every equality 𝑉𝑖 = 𝑡 in 𝐶= ( ®𝑋, ®𝑢, ®𝑉 ), we add the

following rule:

badblock1 ( ®𝑋, ®𝑢) ← saferange
1
( ®𝑋 ), 𝑟1 (®𝑢, ®𝑉 ),𝑉𝑖 ≠ 𝑡 .

The latter rewriting style has been used in the experiments of

Section 7.

5 HOWMANY QUERIES ARE REWRITABLE?
Theorem 4.1 does not tell us anything about the number of queries

in sjfBCQ that have a consistent first-order rewriting. When study-

ing first-order rewriting as an optimization technique, a significant

question is what fraction of queries in sjfBCQ have a consistent

first-order rewriting. To make this question meaningful, we must

first determine how we count queries in sjfBCQ . It seems natural

to count modulo equivalence. For example, ∃𝑋 (𝑠 (𝑋, “Ireland”))
and ∃𝑌 (𝑠 (𝑌, “Ireland”)) are syntactically distinct but semantically

equivalent, and will therefore be counted only once. It easily follows

from the theory of conjunctive queries that two queries in sjfBCQ
are equivalent if and only if they are the same up to a renaming of

variables.

Next, we will also count modulo a change of constants. For exam-

ple, even though ∃𝑋 (𝑠 (𝑋, “Ireland”)) and ∃𝑋 (𝑠 (𝑋, “Australia”))
are not equivalent, they will count for only one query. This is mo-

tivated by the fact that the existence of a consistent first-order

rewriting for a query 𝑞 in sjfBCQ does not depend on the actual

values of the constants, nor on the eventuality of repeated constants.

For example, if 𝑞 is a query in sjfBCQ that does not contain relation

name 𝑟 , then 𝑞 ∪ {𝑟 ( ®𝑥, 𝑎, 𝑏)} has a consistent first-order rewriting
if and only if 𝑞 ∪ {𝑟 ( ®𝑥, 𝑐, 𝑐)} has a consistent first-order rewriting,
where 𝑎, 𝑏, 𝑐 are constants. In view of this, we will fix one constant 𝑐

from here on, and define sjfBCQ [𝑐] as the set of queries in sjfBCQ

Database schema

Number of

non-equivalent

queries in

sjfBCQ [𝑐]

How many have a

consistent first-order

rewriting?

𝑟1 : [2, 1], 𝑟2 : [2, 1] 52 50

𝑟1 : [3, 2], 𝑟2 : [2, 1] 203 194

Table 1: Counts for non-equivalent queries in sjfBCQ [𝑐] for
two database schemas. More than 95% have a consistent first-
order rewriting.

that use no constant other than 𝑐 . We write sjfBCQ [𝑐]/≡ for the set
sjfBCQ [𝑐] modulo equivalence. Finally, we will count for a fixed

database schema, which leads to the following problem.

Counting problem.
INPUT: Database schema 𝑟1 : [𝜆1, 𝑘1], . . . , 𝑟𝑛 : [𝜆𝑛, 𝑘𝑛].
QUESTIONS:
(1) What is the number of queries in sjfBCQ [𝑐]/≡ of the form

𝑟1 (®𝑡1), . . . , 𝑟𝑛 (®𝑡𝑛); and
(2) how many of these queries have a consistent first-order

rewriting?

Proposition 5.1. For the preceding counting problem, the answer
to question (1) is 𝐵𝑚 with𝑚 = 1 +∑𝑛

𝑖=1 𝜆𝑖 , where 𝐵0, 𝐵1, . . . are the
Bell numbers.

The proof of the preceding proposition is easy and omitted. We

have no analytic solution for question (2) in the preceding counting

problem. Nevertheless, Table 1 gives empirically obtained solutions

for two schemas that often occur in theoretical studies because

these are the smallest schemas that exhibit the full complexity

landscape of CERTAINTY(𝑞). The second schema was also used in

our running example (cf. Fig. 1). Interestingly, most queries (more

than 95%) turn out to have a consistent first-order rewriting.

6 ASYMMETRY IN YES- AND NO-INSTANCES
The claim that the two programs of Fig. 3 solve the same prob-

lem deserves some nuance. Indeed, a generate-and-test program for

CERTAINTY(𝑞) can halt as soon as it finds a solution (called a stable
model in ASP terminology); such a solution is a repair that falsifies

the query. If the clingo system executes an ASP program that has

no stable model, it returns the message “UNSATISFIABLE”. So the

generate-and-test program actually computes the complement of

CERTAINTY(𝑞): if the answer to CERTAINTY(𝑞) is “no,” then a fal-

sifying repair will be returned; if the the answer to CERTAINTY(𝑞)
is “yes,” then the message “UNSATISFIABLE” will be returned. On
the other hand, the consistent first-order rewriting of Fig. 3(b) de-

rives “yes” if and only if the the answer to CERTAINTY(𝑞) is “yes.”
For the experiments, given a query 𝑞 in sjfBCQ , it seems there-

fore significant to distinguish between “yes”-instances and “no”-

instances of the problem CERTAINTY(𝑞). Indeed, since an ASP

program that uses generate-and-test solves the complement of

CERTAINTY(𝑞), it is halted as soon as a repair is found that fal-

sifies 𝑞 (which will be the first stable model found by the ASP

engine). It is to be expected that generate-and-test takes longer

on “yes”-instances, which by definition have no repair falsifying 𝑞

and therefore do not admit early halting. Informally, every possible

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

30



repair of a “yes”-instance has to be considered before it can be

decided that no repair falsifies the query. For first-order rewriting,

the situation is exactly the opposite, in the following sense. A con-

sistent first-order rewriting Υ of a query 𝑞 is implemented in an

ASP program with a “principal” rule (cf. Section 4.3; we assume no

free variables here):

yes
1
← 𝑟1 (®𝑢, ®𝑤),¬badblock1 (®𝑢).

such that the input database instance is a “yes”-instance if (and

only if) yes
1
can be inferred. Such an ASP program can halt as

soon as yes
1
is derived, which always happens on (and only on)

“yes”-instances.

To conclude, “no”-instances are, expectedly, the “easiest” inputs

for generate-and-test, and may be the “hardest” inputs for first-

order rewriting. Therefore, if first-order rewriting is faster than

generate-and-test on “no”-instances, then it is likely to be faster

also on “yes”-instances. For this reason, we will focus in the first

place on “no”-instances in our experiments.

A caveat is in place here, however: it remains speculative to

contemplate on easy and hard instances forCERTAINTY(𝑞). Indeed,
programs written in ASP and datalog are declarative, which means

that the control flow of their execution is not part of the program,

but left to the ASP engine that executes them. The time that an

ASP program uses to solve an instance of CERTAINTY(𝑞) therefore
depends on which amount of optimization is implemented in this

engine. Also, efficiency may be gained by downsizing the inputs

of CERTAINTY(𝑞), without changing the answer to the problem.

For example, it is easily verified that if 𝑞 contains 𝑟 (𝑋, “c”), then
the answer to CERTAINTY(𝑞) does not change if one prunes the
input by deleting all 𝑟 -blocks with cardinality ≥ 2. However, it is

outside the aim of the current paper to look into the ASP engine or

to help it with some preprocessing.

7 EXPERIMENTS
In this section, we first describe the experimental environment that

was designed and implemented based on the theory of the previous

sections, and then report on some experiments.

7.1 Queries
In the description of our experiments, we assume queries that use

relation names 𝑟1, 𝑟2, . . . , 𝑟𝑛 (𝑛 ≥ 1). The arity of 𝑟𝑖 will be denoted

by 𝜆𝑖 . We will assume that the atoms of a query 𝑞 are listed in the

following form:

𝑞 = 𝑟1 (𝑡11, . . . , 𝑡1𝜆1 ), . . . , 𝑟𝑛 (𝑡𝑛1, . . . , 𝑡𝑛𝜆𝑛 ) . (3)

Thus, 𝑡𝑖 𝑗 is the term that occurs at the 𝑗th position of the 𝑖th atom.

We will also say that 𝑡𝑖 𝑗 occurs in column (𝑖, 𝑗). For example, if

𝑞 = 𝑟1 (𝑥,𝑦), 𝑟2 (𝑦, 𝑐), then 𝑦 occurs in columns (1, 2) and (2, 1). We

also say that in the fact 𝑟2 (𝑎, 𝑏), the constant 𝑎 occurs in column

(2, 1), and the constant 𝑏 in column (2, 2). Like in Section 5, we

will consider queries in sjfBCQ [𝑐], i.e., 𝑐 is the only constant that

can be used in queries. Since all queries are self-join-free, fixing a

single constant does not lose generality. Indeed, if 𝑡𝑖 𝑗 would be a

different constant, say 𝑡𝑖 𝑗 == 𝑏, then the problem CERTAINTY(𝑞)
does not change if we change 𝑡𝑖 𝑗 into 𝑐 , and, accordingly, switch

𝑏 and 𝑐 in column (𝑖, 𝑗) of the database instances that are given as

inputs to CERTAINTY(𝑞).

As a special case, we define the emptiness query as a query of the

form (3) such that every 𝑡𝑖 𝑗 is a variable that occurs only once in the

query. For example, 𝑞 = 𝑟1 (𝑥,𝑦), 𝑟2 (𝑧,𝑤). Clearly, the emptiness

query is false in some repair of a database instance db if and only

if for some 𝑖 ∈ {1, . . . , 𝑛}, the set of 𝑟𝑖 -facts in db is empty.

The experimental setup is to fix 𝑟1, . . . , 𝑟𝑛 and their signatures,

and to consider all (modulo equivalence) queries in sjfBCQ [𝑐] of
the form (3). This is different from experiments in the literature

that typically use a limited sample of queries.

7.2 Generating Database Instances
The database generator takes a positive integer parameter, de-

noted 𝜋 , called the parametric database size from here on. We de-

scribe next our non-randomized generation of “no”-instances for

CERTAINTY(𝑞), where 𝑞 is of the form (3). After that, we describe

how this generation procedure is changed to yield “yes”-instances

and randomized instances. The motivation for distinguishing be-

tween “no”- and “yes”-instances was given in Section 6; their gen-

eration is deterministic. Randomized instances were added to allow

for some non-determinism in the experiments.

Generation of “no”-instances. To generate “no”-instances for the

problem CERTAINTY(𝑞), we first associate a domain to every col-

umn (𝑖, 𝑗), and then exhaustively add all facts 𝑟𝑖 (𝑎𝑖1, . . . , 𝑎𝑖𝜆𝑖 ) that
can be formed under the restriction that 𝑎𝑖 𝑗 must belong to the

domain associated with column (𝑖, 𝑗). The domains are as follows.

If 𝑡𝑖 𝑗 is the constant 𝑐 , then the domain of (𝑖, 𝑗) is a singleton {𝑏}
with 𝑏 ≠ 𝑐 . If 𝑡𝑖 𝑗 is a variable, say 𝑋 , and 𝑡𝑖 𝑗 is the ℓth occurrence of

𝑋 in 𝑞 (counting from the left), then the domain of (𝑖, 𝑗) is the set
{𝜋 · (ℓ − 1) + 1, . . . , 𝜋 · ℓ}, whose cardinality is 𝜋 . Thus, if the same

variable𝑋 occurs more than once in 𝑞, then the columns at which𝑋

occurs have disjoint domains. It can be easily verified that if 𝑞 is not

the emptiness query (which was defined in Section 7.1), then all gen-

erated database instances are “no”-instances for CERTAINTY(𝑞).
For the emptiness query, the “no”-instance used in the experiments

is the empty database instance. From here on, for parametric data-

base size 𝜋 and query 𝑞, we write size(𝜋, 𝑞) for the number of

database facts generated by the method just described. Note that

for a given value of 𝜋 , the value of size(𝜋, 𝑞) varies in function of

the number of occurrences of the constant 𝑐 in 𝑞. In particular, for a

query of the form (3) that is not the emptiness query, we have that

size(𝜋, 𝑞) =
𝑛∑
𝑖=1

©­«
𝜆𝑖∏
𝑗=1

𝜋 𝑓 (𝑖, 𝑗)ª®¬ , (4)

where 𝑓 (𝑖, 𝑗) = 1 if 𝑡𝑖 𝑗 is a variable, and 𝑓 (𝑖, 𝑗) = 0 otherwise.

Generation of “yes”-instances. “Yes”-instances are generated ac-

cording to the same lines as “no”-instances, but using different

domains. If 𝑡𝑖 𝑗 is the constant 𝑐 , then the domain associated to

column (𝑖, 𝑗) is {𝑐}. If 𝑡𝑖 𝑗 is a variable and (𝑖, 𝑗) is a primary-key po-

sition, then the values in column (𝑖, 𝑗) are restricted to the domain

{1, . . . , 𝜋}. Finally, if 𝑡𝑖 𝑗 is a variable and (𝑖, 𝑗) is a non-primary-

key position, then the values in column (𝑖, 𝑗) are restricted to the

singleton domain {1}. By exhaustively inserting all facts that can

be constructed under these domain restrictions, we obviously ob-

tain a “yes”-instance for CERTAINTY(𝑞). This “yes”-instance is

then extended, until its number of facts is equal to size(𝜋, 𝑞), by
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Algorithm 1 Experimental Run

Require: database schema 𝑟1 : [𝜆1, 𝑘1 ], . . . , 𝑟𝑛 : [𝜆𝑛, 𝑘𝑛 ]
Require: time-out time

Require: upper value 𝜋max for parametric database size

count ← 0

for each 𝑞 ∈ sjfBCQ [𝑐 ]/≡ of the form 𝑟1 ( ®𝑡1), . . . , 𝑟𝑛 ( ®𝑡𝑛) do
if 𝑞 has a consistent first-order rewriting then

count ← count + 1
Υ← consistent first-order rewriting of 𝑞

𝑃 ← generate-and-test program for CERTAINTY(𝑞)
for parametric database size 𝜋 from 1 to 𝜋max do

generate a “no”-instance of size size(𝜋,𝑞)
execute Υ until it finishes or is timed-out

execute 𝑃 until it finishes or is timed-out

generate a “yes”-instance of size size(𝜋,𝑞)
execute Υ until it finishes or is timed-out

execute 𝑃 until it finishes or is timed-out

generate a randomized instance of size size(𝜋,𝑞)
execute Υ until it finishes or is timed-out

execute 𝑃 until it finishes or is timed-out

end for
end if

end for

allowing the values in primary-key columns to take also values in

{𝜋 + 1, 𝜋 + 2, . . . }. Thus, for a given parametric database size 𝜋 and

query 𝑞, the generated “yes”- and “no”-instances have the same

number of facts; this number is equal to size(𝜋, 𝑞).

Generation of “randomized” instances. For a given parametric

database size 𝜋 and query 𝑞 of the form (3), let 𝑁 := size(𝜋, 𝑞). We

first generate 𝑛 positive integers 𝑁1, . . . , 𝑁𝑛 , each one close to 𝑁 /𝑛,
that sum up to 𝑁 . Then, for every 𝑖 ∈ {1, . . . , 𝑛}, we generate 𝑁𝑖

facts of the form 𝑟𝑖 (𝑎𝑖1, . . . , 𝑎𝑖𝜆𝑖 ). If the constant 𝑐 occurs in 𝑞, then
each 𝑎𝑖 𝑗 is chosen by a coin flip between 𝑐 and a value selected

uniformly at random in {1, 2, . . . , 𝑁 }. Otherwise 𝑎𝑖 𝑗 is a value se-
lected uniformly at random in {1, 2, . . . , 𝑁 }. For our settings, we
get the following desirable property: unless 𝑟𝑖 is unary, there is

only a small probability of generating a same 𝑟𝑖 -fact twice, whereas

many 𝑟𝑖 -facts will agree on some position. As can be expected, most

database instances generated in this way are “no”-instances for the

problem CERTAINTY(𝑞).

7.3 Experimental Run
Our experimental environment allows executing experimental

runs described in Algorithm 1. For every execution of Υ or 𝑃 in an

experimental run, CPU times are recorded. The main algorithmic

difficulty is in testing whether a query has a consistent first-order

rewriting, and in constructing such a rewriting in ASP if it exists

(cf. Section 4.3).

7.4 Empirical Findings
Our software system, released under a 3-clause BSD license at https:
//github.com/DocSkellington/Conquesto, allows for the automated

experimentation with both clingo [9, 10] and DLV [19]. For reasons

of space limitation, we will focus on the clingo experiments here;

experiments with DLV can be found at the preceding URL.

We will discuss here our findings for an experimental run with

schema 𝑟1 : [3, 2], 𝑟2 : [2, 1], whose length is 3 + 2 = 5. This

schema often appears in theoretical studies because it is a small

schema that nevertheless exhibits the full complexity landscape

of CERTAINTY(𝑞). It is also the schema of our running example

in Fig. 1. Even though our experimental environment described in

Algorithm 1 can take as input any database schema, one should

remind from Proposition 5.1 that the number of non-equivalent

queries is exponential in the length of the schema. Consequently,

experimental runs are unfeasible for schemas of great length. Fur-

thermore, unlike most existing studies, we did not want to sample

the query space sjfBCQ [𝑐]/≡, because it is not clear what would
be a representative sample.

Mean and median execution times are taken over all queries

in sjfBCQ [𝑐]/≡ of the form 𝑟1 (𝑡11, 𝑡12, 𝑡13), 𝑟2 (𝑡21, 𝑡22) that have a
consistent-first-order rewriting. As mentioned in Table 1, there

are 203 non-equivalent queries of this form, of which 194 have

a consistent first-order rewriting (the final value of count in Al-

gorithm 1). All mean and median values are thus computed over

194 non-equivalent queries, which is a high number compared to

related past studies (for comparison, the experiments in [5, 12]

consider 7 first-order rewritable queries).

The experimental results for clingo on “no”-, “yes”-, and random-

ized instances are shown, respectively, in Fig. 4(a), 4(b), and 4(c).

Note that these figures use a different scale for the ordinate axis.

The time-out time was set to 10
5
ms = 100s. In the computation of

the mean execution time, we used this time of 100s whenever the

first-order rewriting or the generate-and-test program was timed-

out. The legend “lower bound for the mean,” rather than “mean,” is
used in figures to indicate that time-out times were used in the

computation of the mean. The median is not affected by time-outs,

since on all instances, less than 50% of the queries were timed-out.

Some time-outs were due to memory issues when running clingo.

Concerning the actual database size, Equation (4) tells us that the

𝑟1-relation contains 10
6
tuples when the parametric database size

equals 100 (for comparison, Dixit and Kolaitis [5] also report on

first-order rewriting experiments on databases with 10
6
tuples per

relation).

The following findings hold for all instances, no matter whether

they are “yes”-, “no”-, or randomized instances.

• The median values (+-line) are systematically below the

mean values (•-line), indicating a right-skewed distribution

(i.e., skewed to higher values). Informally, a majority of the

194 programs finish in a short time, while some programs

take a considerably longer time (or are even timed-out).

• The mean values for first-order rewriting (red •-line) are
systematically below the mean values for generate-and-test

(blue •-line). The median values for first-order rewriting

(red +-line) are systematically below the median values for

generate-and-test (blue +-line). This means that the opti-

mization by means of first-order rewriting is effective.

When we compare “yes”- and “no”-instances, we observe the fol-

lowing.

• The experiments confirm our hypothesis that the speedup of

first-order rewriting compared to generate-and-test is more

pronounced on “yes”-instances than on “no”-instances. On
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(a) “No”-instances

(b) “Yes”-instances

(c) Randomized instances

Figure 4: Experimental results for clingo

“yes”-instances the mean values for first-order rewriting (red

•-line) are below the median values for generate-and-test

(blue +-line). This is no longer true for “no”-instances, nor
for randomized instances (which are mostly “no”-instances).

• Generate-and-test takes considerably more time on “yes”-

instances than on “no”-instances, which was to be expected.

Overall, our experiments systematically show performance gains of

first-order rewriting compared to generate-and-test. Nonetheless,

in view of the big gap between FO and NP-complete, one could

have expected that these gains would have been more pronounced

than what is empirically observed.

Finally, we note that the generate-and-test results in Fig. 4 were

obtained by using clingo-specific syntaxwith cardinality constraints

in the head, illustrated in Fig. 2. The conclusions, however, did not

change when we used the standard ASP encoding given in Section 3.

Experiments with DLV also showed systematic performance gains

of first-order rewriting compared to generate-and-test.

8 FREE VARIABLES
Our experiments have focused on consistent query answering for

Boolean queries. We now examine how to move to queries with

free variables, which can return sets of tuples. We will argue that

this extension is obvious in consistent first-order rewriting, but

needs some work in generate-and-test.

In Section 4.3, we showed the construction of a consistent first-

order rewriting in the presence of free variables. For example, for the

query𝑞(𝑌 ) := 𝑟 (“CIKM”, 𝑌 , “Perth"), in which𝑌 is free, a consistent

first-order rewriting is obtained by changing, in the program of

Fig. 3(b), the head of the first rule from yes into yes(Y) (but more

work would be needed if𝑌 occurred at a non-primary-key position).

The situation is different for the generate-and-test program of

Fig. 3(a). Indeed, the last rule of this program requires an empty

head, which means that the variable Y is inherently not free. The

solution we envisage is to create, for every possible value for Y, a
new program in which this value is substituted for Y. For our exam-

ple database of Fig. 1, there will be two such programs: one ending

with the rule :- r_repair("CIKM","2020","Perth"), and the

other with the rule :- r_repair("CIKM","2021","Perth"). In
general, consider that we ask for all consistent answers to 𝑞( ®𝑋 )
on a database instance db. We can first compute {®𝑐 | db |= 𝑞(®𝑐)},
which is the standard answer to 𝑞( ®𝑋 ) on db. From here on, assume

that this answer is equal to {®𝑐1, . . . , ®𝑐𝑚}. Since it is easily verified

that every consistent answer must belong to this set, it suffices now

to compute which ®𝑐𝑖 is a consistent answer. To this end, for each

𝑖 ∈ {1, . . . ,𝑚}, we solve CERTAINTY(𝑞 [ ®𝑋 ↦→®𝑐𝑖 ] ), where 𝑞 [ ®𝑋 ↦→®𝑐𝑖 ] is
the Boolean query obtained from 𝑞( ®𝑋 ) by substituting ®𝑐𝑖 for ®𝑋 .
This boils down to executing𝑚 slightly distinct generate-and-test

programs. Although 𝑚 is polynomial in the size of db, this may

significantly slow down generate-and-test compared to consistent

first-order rewriting. Indeed, as explained before, in the consistent

first-order rewriting approach, the rewriting Υ( ®𝑋 ) is computed

once, does not depend on db, yet returns consistent answers on any

database instance db.
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9 CONCLUDING REMARKS
We studied consistent query answering for self-join-free conjunc-

tive queries with respect to primary keys, within the paradigm of

Answer Set Programming. In summary, contributions of our work

are as follows:

• We showed how to construct programs in non-recursive

datalog with negation for problems CERTAINTY(𝑞) that are
in FO. These programs have lower complexity upper bounds

than ASP programs that use the generate-and-test approach.

• Experiments in clingo ASP show that these theoretical dif-

ferences in complexity also reveal themselves, at least mod-

erately, in practice. As we argued in the previous section,

even a constant factor speedup on Boolean queries will give

us a polynomial speedup on queries with free variables.

• Interestingly, we showed that CERTAINTY(𝑞) is in FO for

95% of the queries over two common database schemas.

Therefore, we conclude that first-order rewriting is an advantageous

alternative to generate-and-test.

We conclude by listing three issues for future research. First,

the FO-boundary of CERTAINTY(𝑞) has recently been revealed

for queries 𝑞 with negation [15], and for multiple keys per re-

lation [18]. It is interesting to extend the results of the current

paper to these more general settings. Second, although ASP is

declarative by design, there exist nevertheless some good prac-

tices and tricks for achieving performance gains. The current paper

stayed away from such tricks. In the future, we aim to investi-

gate the optimization of ASP programs obtained from first-order

rewriting. For example, if a query 𝑞 in sjfBCQ can be split into

two subqueries, say 𝑞1 and 𝑞2, that have no variables in common,

thenCERTAINTY(𝑞) can be solved by solvingCERTAINTY(𝑞1) and
CERTAINTY(𝑞2) independently. Some preliminary experiments

(not reported here) indicate that such splitting is an effective op-

timization step. Third, our experiments supported our hypothesis

that “yes”- and “no”-instances pose different challenges to generate-

and-test and first-order rewriting. For either approach, it remains an

open question to more precisely identify and generate the hardest

instances of CERTAINTY(𝑞). Another perspective is to look at “typ-
ical” instances in particular real-world settings. In database systems

environments, for example, almost consistent database instances

(i.e., “almost yes”-instances) should be more common than highly

inconsistent instances.
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