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ABSTRACT
For a long time, the point-dipole model was a central and natural approximation in the field of photonics. This approach assumes that the
wavelength is much larger than the size of the emitting atom or molecule so that the emitter can be described as a single or a collection
of elementary dipoles. This approximation no longer holds near plasmonic nanostructures, where the effective wavelength can reach the
nanometer-scale. In that case, deviations arise and high-order transitions, beyond the dipolar ones, are not forbidden anymore. Typically, this
situation requires intensive numerical efforts to compute the photonic response over the spatial extent of the emitter wavefunctions. Here,
we develop an efficient and general model for the multipolar transition rates of a quantum emitter in a photonic environment by computing
Green’s function through an eigen permittivity modal expansion. A major benefit of this approach is that the position of the emitter and the
permittivity of the material can be swept in a rapid way. To illustrate, we apply the method on various forms of graphene nanoislands, and we
demonstrate a local breakdown of the selection rules, with quadrupolar transition rates becoming 100 times larger than dipolar ones.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0053234

I. INTRODUCTION

Usually the quantum emitter is approximated as a point emit-
ting a dipolar electric field. This is a legitimate approximation when
the wavelength of the emitted light is much larger than the size of the
atom or molecule. In that case, high-order transitions (transitions
beyond the dipolar one, such as two-photon processes and elec-
tric and magnetic multipolar transitions) are negligible and termed
forbidden. However, these transitions are of particular importance
in spectroscopy, photochemistry, quantum information, and many
other fields. Here, we develop a numerical method that computes
the multipolar transition rates of a quantum emitter in a general
photonic environment, and we show that graphene nanoislands can
locally break the conventional selection rules of a hydrogen-like
emitter.

The transitions are governed by the coupling between the
charged constituents of the emitter and the electromagnetic field.
In free space, the latter is a plane wave, with expansion exp(ik ⋅ x)
≈ 1 + i(k ⋅ x) − 0.5(k ⋅ x)2 + ⋅ ⋅ ⋅ in the limit of k ⋅ x → 0. Through
Fermi’s golden rule, each term, which corresponds to a num-
ber of gradients of the electromagnetic field (0, 1, 2, . . .), can be

traced back to a particular multipolar transition.1 For visible light,
the wave vector is ∣k∣ = 107 m−1, and for hydrogen-like atoms,
⟨∣x∣⟩ ≈ 10−10 m. It directly shows that the first term in the Tay-
lor expansion, attributed to the dipolar transition, dominates by 3
orders of magnitude compared to the linear order, attributed to
the quadrupolar transition, and by 6 orders of magnitude com-
pared to the quadratic term, attributed to the octupolar transition.2
Therefore, stronger field gradients over the spatial extent of the
wave function of the emitter are necessary to enhance higher-order
transitions.1

One route toward non-negligible higher-order terms is, there-
fore, to consider larger emitters, as shown for quantum dots3 and
Rydberg excitons.4 Another route consists of enhancing the wave
vector magnitude ∣k∣ by confining light in a nanophotonic structure.
The wave vector can be written as k = η0ω/c, with the confinement
factor η0 being the ratio between the vacuum and the effective wave-
length. In this case, higher-order transitions are enhanced by a factor
η0 to the power of the considered order (for example, the octupolar
transition is enhanced by a factor η2

0).5
Under these conditions, plasmonic nanoantennas are ideal can-

didates to enhance higher order transitions. For instance, in noble
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metals, forbidden quadrupolar transitions are enhanced for emit-
ters close to tips,6 interfaces,7 nanowires,8 nanogaps,9 arrays,10 and
gold dimers.2,11,12 The strongly confined graphene plasmons (η0
= 150–300, depending on the absorption losses13,14) form an excel-
lent platform for high-order transitions, which can occur efficiently,
even similar to dipolar transitions.5 In the case of extremely high
confinement (η0 > 500) of plasmons in a two-dimensional mate-
rial sheet, higher-order transition rates can surpass lower order
transitions, hence breaking the conventional selection rules.5,15

Generally, accessing high-orders allows us to probe a much
larger range of the electronic energy level structure of an emitter,
finding a way to a multiplex and broadband spectroscopy plat-
form.5,11 These higher-order transitions already play an important
role in spectroscopy of many relevant chemical species, from indi-
vidual atoms16,17 to larger molecules with high symmetry, such as
dihydrogen, carbon dioxide, methane, and benzene.18,19 In pho-
tochemistry, enhancing the magnetic dipole transition in oxygen
is interesting for photochemical reactions.20 Finally, interference
effects between multipolar orders can occur: the possibility of com-
plete suppression of a certain transition through interference is
required for many applications in the context of quantum comput-
ing, quantum storage, and quantum communication.3,21

Despite its high potential and these developments, the field
is currently limited by the difficulty in computing the electromag-
netic environment of the emitter. Indeed, computing the sponta-
neous emission rates of a quantum emitter requires the knowl-
edge of the electromagnetic field profile over the spatial extent
of the wavefunctions of the emitter.22 Usually, the problem is
solved for absorption rates: in that case, a plane wave excites a
nanophotonic structure and the near-field is extracted.1,6,9,10 This
is a straightforward routine for conventional numerical methods,
such as the finite-element method23,24 or the finite-difference time-
domain method.25 For spontaneous emission, however, the knowl-
edge of the vacuum field is essential. As a first approximation,
one can resort to symmetric problems26 or consider only the rel-
evant (properly quantized) modes of the structure for the pro-
cess.2,8,11 The complete resolution, however, requires knowledge of
Green’s function, which is analytical only for uniform media and
for simple geometries.5,15 Numerical evaluation is very demanding
with conventional numerical methods, as repeated simulations for
different positions and orientations of a point dipole source are
necessary.12

In order to compute advanced photonic structures, a modal-
based approach is very useful: a single simulation that determines
the modes (e.g., of a cavity) is required to know the full spatial vari-
ation of Green’s function.27 The eigen permittivity modal expansion
is particularly suited for the spontaneous emission of an emitter
for which the emission frequency is fixed. Eigen permittivity modes
have a permittivity eigenvalue that pertains only to a scattering ele-
ment, which spans a finite portion of space. As a result, the nor-
malization is trivial. Furthermore, they are orthogonal and appear
to form a complete set.28,29 Once computed for a scatterer at a fixed
wavelength, they straightforwardly give the optical response for any
material constituting this scatterer. These modes have been derived
during the 1970s in the quasi-static approximation, and were used
to derive bounds for scattering problems,30 to study spasers,31 disor-
dered media,32 and second harmonic generation.33 The formalism
(called GENOME for GEneralized NOrmal Mode Expansion) was

recently extended beyond the quasistatic approximation by comput-
ing the electromagnetic fields and the associated Green’s function
of open and lossy electromagnetic systems, in particular for general
nanoparticle configurations using commercial software (COMSOL
Multiphysics).29

In this paper, we derive a general method to compute the tran-
sition rate of a quantum emitter influenced by its electromagnetic
environment in the weak coupling regime (Sec. II). We apply the
macroscopic QED formalism, which separates the electromagnetic
environment obtained from the classical Maxwell equations (we
use GENOME to determine Green’s function) from the quantum
description of the emitter embodied by its wavefunction, which in
this case is a hydrogen-like emitter. Then, we apply this method to
compute the electric dipolar, quadrupolar, and octupolar transition
rates of the emitter in the vicinity of graphene nanoislands with dif-
ferent geometries (triangle, square, and crescent), showing strong
enhancement of the transition rates (Sec. III A). Afterward, we show
that the graphene doping can be tuned to select particular transitions
in Sec. III B, before demonstrating a local breakdown of the selection
rules in Sec. III C.

II. METHOD
We consider the spontaneous emission of atomic hydrogen-

like emitters into plasmons given by the minimal coupling
Hamiltonian,34,35

H = Ha +Hem +Hint, (1)

Ha =∑
i

p2
i

2me
− e2

4πε0r
+He−e +HSO, (2)

Hem = ∑
j=x,y,z

∫ dr∫ dωh̵ω[ f †
j (r,ω) f j(r,ω) + 1

2
], (3)

Hint =∑
i

e
2me
(pi ⋅ A(ri) + A(ri) ⋅ pi) +

e2

2me
A2(ri) +

eh̵
2me

σi ⋅ B(ri),

(4)
with pi, ri, and σi being the impulsion, position, and spin of the
ith electron, e being the electronic charge, me being the electron
mass, A and B being the vector potential and magnetic field, HSO
being the spin–orbit coupling, and He–e being the electron–electron
interaction. f †

j (r,ω) and f j(r,ω) are the creation and annihilation
operators, respectively.

For the interaction Hamiltonian, we neglect the ponderomotive
potential (A2 term) and the B term as the latter is negligible for non-
magnetic structures.36 Note that in the Coulomb gauge, ∇ ⋅ A = 0
except at an interface: with the atom–interface distance we consider,
and the rapid decay of the atom wavefunctions, the contribution of
this term will be negligible. Writing the vector potential with Green’s
function of the system, and applying the Fermi’s golden rule, one
finds (for details, see Ref. 5)
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Γ = 2π
h̵2

e2h̵3

πε0m2
e c2 ∬ drdr′ψ∗e (r)ψe(r′)∇ψg(r)

× Im ¯̄G(r, r′,ω0) ⋅ ∇ψ∗g (r′), (5)

where ε0 is the vacuum permittivity, c is the speed of light, and ψ g
and ψe are the atomic wavefunctions of the ground and excited states
of the emitter. ¯̄G(r, r′,ω0) is Green’s function of the Maxwell equa-
tions and satisfies ∇× (∇× ¯̄G) − ω2

c2 εr(r,ω) ¯̄G = ¯̄Iδ(r − r′), with εr
being the relative permittivity and δ being the delta function.37

Equation (5) computes the transition rates of any emit-
ter (via the atomic wavefunction) within any photonic envi-
ronment (described by Green’s function) in the weak coupling
regime. As mentioned, the spatial variation of Green’s function
is known analytically for uniform media and for simple geome-
tries. However, more complex structures need to be evaluated
numerically, with high computational cost.38 Equation (5) is also
resource demanding since the integration is performed over six
dimensions (r and r′). In order to resolve these two issues, we
resort to GENOME,29 with the advantage that one modal com-
putation allows the knowledge of the complete spatial Green’s
function.

In GENOME, the problem is written at a fixed frequency, and
the mode-related eigenvalue is the permittivity. This formulation
suits well the determination of spontaneous emission rates since the
emission frequency is determined by the emitter. The modes Em(r)
of the scatterer are solved with a commercial finite-element based
software (COMSOL Multiphysics),38 and Green’s function becomes

¯̄G(r, r′) = ¯̄G0(∣r − r′∣) + 1
k2∑

m

εi − εb

(εm − εi)(εm − εb)
Em(r)⊗ E†

m(r′),

(6)
where m is the mode number, k is the vacuum wave vector, εm is
the eigen permittivity, εi is the permittivity of the scatterer, εb is the
permittivity of the background material, and ¯̄G0(∣r − r′∣) is Green’s
function of vacuum, which has an analytical form.37

Inserting Eq. (6) in Eq. (5), we immediately see that the rate is
the sum of two contributions Γ = Γ0 + Γs, with Γ0 being the decay
rate in vacuum [based on the contribution of ¯̄G0(∣r − r′∣)], and Γs

depending on the modes and, hence, the nanophotonic structure.
Focusing on this Γs contribution, we can write

Γs =
2π
k2

e2h̵
πε0m2

e c2 ∬ drdr′ψ∗e (r)ψe(r′)∇ψg(r)

× (Im∑
m
γmEm(r)⊗ E†

m(r′))∇ψ∗g (r′), (7)

where we defined γm = εi−εb
(εm−εi)(εm−εb) . Note that the adjoint field (E†)

is the transposed vector and there is no complex conjugate.29

Since we can choose the wavefunctions to be real, the com-
plex conjugate for the wavefunctions disappears and we can inte-
grate separately for r and r′. Both integrations give the same value,
leading to

Γs =
2π
k2

e2h̵
πε0m2

e c2∑
m

Im[γm(∫ ψe(r)Em(r)∇ψg(r)dr)
2
]. (8)

Finally, the transition rates are obtained with a three-dimensional
integration over the wavefunctions and the mode profiles, with a
sum that can be truncated once the convergence is sufficient (40
modes in our case, see the supplementary material for more details
on the implementation). Note that when the integral is computed,
the rate can be known for any material constituting the scatterer,
enclosed in the parameter γm. In that regard, graphene is the per-
fect candidate as it can be tuned to match a particular resonance (see
Sec. III B).

In this work, the graphene nanoislands are modeled with an
effective thickness of t = 1 nm. The graphene permittivity (εi) is
deduced from the surface optical conductivity (σ = σ̃intra + σ̃inter)
with εi = 1 + iσ/ωε0t. The optical conductivity is derived within the
local random-phase approximation model39,40 and is the sum of the
following two contributions:

σ̃intra =
2ie2kBT

h̵2π(ω + iτ−1
g )

ln[2 cosh( EF

2kBT
)], (9)

σ̃inter =
e2

4h̵
[1

2
+ 1
π

arctan( h̵ω − 2EF

2kBT
)]

− e2

4h̵
[ i

2π
ln

(h̵ω + 2EF)2

(h̵ω − 2EF)2 + (2kBT)2 ], (10)

with T = 300 K being the temperature, kB being the Boltzmann con-
stant, and EF being the doping level of graphene. The scattering
lifetime of electrons in graphene depends on the doping and is given
by τg = μEF/ev2

F ≈ 10−12 s for EF = 1 eV, with the impurity-limited
DC conductivity μ ≈ 10 000 cm2/(V s) and vF = 106 m/s being the
graphene Fermi velocity.41,42

The integration of Eq. (8) is successfully compared to direct
simulations of dipolar and quadrupolar transitions in the supple-
mentary material, showing great convergence with only 40 modes
(1% relative error). In Sec. III, we implement Eq. (8) to compute
the rate of a H-like atom close to graphene nanoislands of varying
geometry.

III. RESULTS AND DISCUSSION
We apply our method to compute the electric dipolar (E1),

quadrupolar (E2), and octupolar (E3) transition rates of a H-like
atom close to a graphene sheet with triangle, square, and crescent
geometries. We consider the transition series 6p, d, f→ 4s, which are
E1, E2, and E3 transitions, respectively. We suppose that the angu-
lar magnetic number remains m = 0 during the transition, and we
rotate the emitter wavefunctions to match the corresponding classi-
cal point-dipole orientation. The free-space wavelengths of the tran-
sitions are all λ = 2.63 μm, and in the whole paper, the emitter is
situated 5 nm above the graphene surface.

We then discuss the rate dependence on the graphene doping
(Sec. III A) and we demonstrate the advantage of graphene tun-
ability for multipolar transitions (Sec. III B). Finally, we optimize
a configuration where the conventional selection rules break down,
i.e., when the quadrupolar transition rate dominates the dipolar one
(Sec. III C).
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A. Transition rates
Figure 1 shows the dipolar (ΓD), quadrupolar (ΓQ), and octupo-

lar (ΓO) transition rates of a H-like emitter in the vicinity of a
graphene nanoisland for three geometries: square, triangle, and
crescent shape. The rates are normalized by the dipole emission
rate in free space, ΓD0 = 4.484 × 105 s−1. The latter is obtained
by integrating Eq. (5) in free space and is in perfect agreement
with the experimental values43 (for more information, see the
supplementary material). One can see, for example, that the octupo-
lar rate is strongly enhanced with respect to vacuum: it is up to 300
times stronger than the dipolar rate in free space for the triangle
geometry.

One observes that the strongest quadrupolar and octupolar rate
enhancements appear along the edges and corners of the geome-
tries. This is a consequence of the strong field gradients appear-
ing along the graphene edge.1,44 Second, for all geometries, the

maximum quadrupolar rate is two orders of magnitude smaller than
the maximum dipolar rate. This two-order magnitude difference
compares fairly with the rate comparison obtained in Ref. 5 for a H-
like emitter close to a non-structured two-dimensional material sup-
porting plasmons confined with a factor η0 ≈ 35–50 (corresponding
to doping between 0.7 and 1 eV). The four-order magnitude differ-
ence between the dipolar and octupolar transition rates is also in
agreement with the literature.5

With the graphene nanoislands, we break the in-plane trans-
lational symmetry and the conventional dominance of the dipolar
transition rate over the quadrupolar transition rate. From the spa-
tial maps, we observe that the maxima of the quadrupolar rate do
not coincide with the maxima of the dipolar rate: by moving the
emitter, one can find a position where the quadrupolar rate domi-
nates the dipolar rate, breaking the conventional selection rules (see
Sec. III C).

FIG. 1. Dipolar, quadrupolar, and octupolar transition rates of an x-oriented emitter close to graphene nanoislands of various geometries. The dipolar (left), quadrupolar
(center), and octupolar (right) transition (λ = 2.63 = μm) rates as a function of the emitter position, which is 5 nm above the graphene nanoislands: 50 nm side length square
(up), 50 nm side length triangle (middle), and 80 nm height crescent (bottom). The geometry boundaries are represented by a solid white line, and the rates are normalized
by the dipolar emission rate in free space ΓD0. For all geometries, the background permittivity is vacuum but graphene doping varies: for the triangle, EF = 0.98 eV,
for the square, EF = 0.72 eV, and for the crescent, EF = 0.88 eV.
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Note that the z-oriented emitter (out-of-plane direction)
shows stronger rate enhancement, but the dipolar, quadrupo-
lar, and octupolar transition maxima coincide: they all show
the maximum enhancement at the same position (see the
supplementary material). This implies the conservation of selec-
tion rules for the z-oriented emitter, as the dipolar rate always
dominates.

B. Graphene tunability
In a spontaneous emission process the emission wavelength is

fixed via the considered transition. Hence, as the frequency of the
source is not a variable, a tuning knob is offered by the environment,
e.g., the permittivity of the scatterer. The considered mode expan-
sion is particularly well suited for this context as the permittivity is
the eigenvalue of the problem. As a consequence, the permittivity
of the scatterer only appears as a multiplicative constant [γm factor
in Eq. (8)] of the three-dimensional integration over the plasmonic
modes (Em) and the wavefunctions of the emitter. Tuning the per-
mittivity, therefore, allows selecting the mode resonating with the
targeted transition.

Figures 2(a)–2(c) show the transition rates’ dependence on the
permittivity of the material, for a square two-dimensional material
with variable permittivity and with a side length of 50 nm. The emit-
ter is y-oriented at the position (14.4; 24.5) nm, 5 nm above the
material [green arrow in Figs. 2(d)–2(f)] and the transition wave-
length remains λ = 2.63 μm. The transition rate map is characterized
by horizontal lines of enhanced transition rates, appearing at partic-
ular relative permittivities of the material [Re(εr)]. Each line directly
corresponds to a plasmonic mode of the structure, which consti-
tutes the dominant decay route for this transition. For example, the
dipolar transition couples with mode A [represented in Fig. 2(d)]
and the quadrupolar and octupolar transitions couple with modes B
and C [represented in Figs. 2(e) and 2(f)]. Note that modes A and B
are different, but their eigenvalues are close (resp. εm = −15.65 and
εm = −15.45). Their proximity implies that the dipolar rate
(ΓD/ΓD0 = 1.1 × 105) dominates the quadrupolar rate (ΓQ/ΓD0
= 1.5 × 104) for the considered position of the emitter, considered
emission wavelength, and for a material permittivity close to that
particular value [Re(εr) ≈ −15.5].

Mode C is very interesting since it couples strongly with
the quadrupolar transition (ΓQ/ΓD0 = 1.2 × 104) and weakly with

FIG. 2. Choosing the material of the scatterer to enhance particular transition rates. The (a) dipolar, (b) quadrupolar, and (c) octupolar transition (λ = 2.63 μm) rate
enhancement in color scale as a function of the relative permittivity of the scatterer (real and imaginary parts). The imaginary part of the optical conductivity is also
represented for more generality. The rates are normalized by the dipolar emission rate in free space. The white line represents the permittivity range covered by graphene
upon doping (white dots at 0.5, 0.7, and 1 eV doping) for a DC conductivity of 10 000 cm2/(V s), while the dashed line corresponds to 3000 cm2/(V s). The horizontal
green dashed lines indicate the modes contributing the most to the considered transition. Their mode profiles (y component of the electric field) are represented in (d)
εm = −15.65, (e) εm = −15.45, and (f) εm = −23.4. The green dot and arrow represent the position and orientation of the emitter.
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the dipolar transition (ΓD/ΓD0 = 0.6 × 103), as shown in Figs. 2(a)
and 2(b). This conclusion corresponds with the field profile in
Fig. 2(f) at the position of the dipole (green dot). The emitter is
placed at a position where the field has a low value (weak enhance-
ment of dipolar transition), but near the edge, where the field gra-
dient is the strongest (strong enhancement of quadrupolar and
octupolar transitions).

In the horizontal direction of Figs. 2(a)–2(c), the imaginary part
of the permittivity of the material broadens the resonance peaks,
consequently reducing the maximum value of all transition rates.

Therefore, selecting a square two-dimensional material (of this
size, and at λ = 2.63 μm) for a particular permittivity can enhance
a particular transition. For example, in order to produce an electric
octupolar rate 50 times stronger than the dipolar rate in free space,
one can choose a material with real relative permittivity of −23.4
(which corresponds to mode C).

The white lines in Figs. 2(a)–2(c) represent the permittivity
range covered by graphene at this wavelength via doping. A fine
tuning of the doping thus allows us to select the plasmonic mode
that will dominate the transition, and hence the transition order.
Note that in the case of lower quality graphene samples, the scat-
tering is enhanced and consequently the DC conductivity can be
lowered to μ ≈ 3000 cm2/(V s).42 The dashed lines in Figs. 2(a)–2(c)
show the permittivity of graphene in this case. The curve is shifted to
the right [compared to a DC conductivity is μ ≈ 10 000 cm2/(V s)],
which leaves the conclusion unchanged: fine tuning of the doping
allows us to select the transition enhancement rates, even if the dipo-
lar, quadrupolar, and octupolar rates are all equivalently reduced
by 30%.

In Sec. III C, we show a particular doping of graphene where the
quadrupolar rate dominates the dipolar transition rate, consequently
breaking the conventional selection rules.

C. Local breakdown of conventional selection rules
At particular positions of the emitter, the quadrupolar tran-

sition rate overcomes the dipolar transition rate. This breakdown
occurs at ultra-strong plasmon confinement (η0 > 500) for pla-
nar two-dimensional materials,5 which is experimentally achievable
with graphene, but at the cost of considerable absorption losses.13

The shape of the graphene nanoislands provides another degree of
freedom to mold the field profile and break the selection rules.

We focus on the triangular graphene nanoisland of 50 nm
side length, for which we computed the normalized dipolar and
quadrupolar rates of an emitter 5 nm above its surface (Fig. 1). In
Fig. 3(a), we plot the maximum of the ratio ΓQ/ΓD (scanned over all
positions of the emitter), as a function of the doping. This shows that
the quadrupolar transition rate can be up to 100 times stronger than
the dipolar transition rate at particular positions, breaking locally the
conventional selection rules (the value is converged for 40 modes, as
shown in the supplementary material).

In Figs. 3(b) and 3(c), for the x- and y-oriented emitters, respec-
tively, we observe enhancement where the field demonstrates strong
gradients, i.e., at the corner of the triangle or along the edge. On
the contrary, as observed in Fig. 3(a) for the z-oriented emitter, the
dipolar rate always dominates the quadrupolar one (the maximum
rate enhancement of each order appears at the same position, as
discussed in Sec. III A).

Note that the maximum is not a consequence of an inhibited
dipolar transition: the quadrupolar rate is strongly enhanced. For
example, for an x-oriented emitter [Fig. 3(b)] at the left corner of
the triangle, the dipolar transition remains enhanced (ΓD/ΓD0 = 0.51
× 103), but its rate is weaker than the quadrupolar rate, which is
5.3 × 104 times the dipolar transition in free space.

Other areas further away from graphene seem to demonstrate a
strong quadrupolar enhancement [for example, position (−9; 35) nm

FIG. 3. Local breakdown of the selection
rules with the triangle graphene nanois-
land. (a) The maximum of the quadrupo-
lar rate (ΓQ) over the dipolar rate (ΓD)
for a H-like emitter 5 nm above the tri-
angular graphene nanoisland in vacuum,
evaluated for varying graphene doping
and emitter orientation. The z-oriented
emitter does not demonstrate a break-
down of the selection rules (ratio always
smaller than 1). A maximum is obtained
for a graphene doping of EF = 0.98 eV.
At this doping, (b) shows the logarithmic
value of the ratio for an x-oriented emitter
and (c) a y-oriented emitter. The bound-
aries of the triangular graphene nanois-
land are represented by a solid white
line and the transition wavelength is
λ = 2.63 μm.
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in Fig. 3(b)]. However, these are regions where the dipolar transi-
tion is poorly enhanced (ΓD/ΓD0 = 16) as well as the quadrupolar
transition (ΓQ/ΓD0 = 161).

IV. CONCLUSIONS AND PERSPECTIVES
We develop a numerical method based on Fermi’s golden

rule that evaluates the multiple transition orders of a molecule.
The molecule is described by its wavefunction, while the photonic
environment is implemented through Green’s function. The lat-
ter is expanded in eigen-permittivity modes leading to a simpli-
fied formula [Eq. (8)] that shows the deep mechanism of strong
multipolar enhancement. Indeed, the following two main terms
play a role in the sum: the global term γm and the local term
∫ ψe(r)Em(r)∇ψ g(r)dr. Together, they show that each mode m
contributes to the transition rate. The global term states that the
permittivity of the material constituting the nano-island (εi) should
match the mode eigen-permittivity (εm) to contribute to the tran-
sition rate. Hence, graphene is an excellent platform to fit εi to εm
owing to its optical parameter tunability. The local term shows the
primordial importance of the mode field profile locally at the posi-
tion of the emitter. If the field profile Em is constant over the spa-
tial extent of the wavefunctions of the emitter (psie and ψ g), we
return to the dipole approximation (or long wavelength approxi-
mation), commonly employed in free space, and the higher-order
transitions are deemed forbidden. In our case, due to the strong
confinement of the field near a graphene nanoisland, the integral
is no longer negligible. The order of magnitude of the maximum
dipolar, quadrupolar, and octupolar rates compares with the rates
obtained for an unstructured graphene sheet5 and is in perfect agree-
ment with direct simulations. Finally, we demonstrate a breakdown
of the selection rules, with the quadrupolar transition rate, forbid-
den in free space, becoming 100 times stronger than the dipolar
transition rate for an H-like emitter in the vicinity of a triangu-
lar graphene nanoisland. These results uncover interesting perspec-
tives for applications in spectroscopy, photochemistry, and quantum
technologies.

Here, we apply the method to a single nano-island in free-space,
but the method has a large flexibility and can be applied to more
realistic structures reachable in experiments. Indeed, GENOME also
allows the determination of Green’s function for more complex
structures. For instance, the method can account for a substrate
or a background permittivity different from 1.29 It can also resolve
Green’s function of non-uniform scatterers.45 Recently, the proce-
dure has been developed to find Green’s function of an assembly
of nano-island (cluster) and finite periodic structures.38 For exper-
imental observations, the coupling of produced photons to the far-
field is important. As an example, combining the near-field results
(e.g., Fig. 2) with the far-field out-coupling efficiency of the domi-
nant mode allows us to select the graphene doping necessary to reach
sufficient far-field emission. Such an analysis was carried out for
two-photon emission processes near graphene nanoislands.26 Other
structures may be envisaged to enhance the coupling of a plane wave
with a quadrupolar transition.46

Since the transition of the emitter fixes the operating wave-
length, the control of the emitted photons goes through the opti-
mization of the structure and the permittivity of the material.
Here, we consider graphene for its tunable properties, already

allowing to target particular transitions (Fig. 2). Strong doping of
1.2 eV has been achieved with electrostatic doping with ionic gel47

or with ionic glass mobility48 and a moderate doping of 0.5 eV
with chemical (N-doped) doping.49 It is challenging to reach high
Fermi level values, as a specific structure considering the gate
and the substrate should be designed. Other materials can also
be considered for their strong plasmonic response, such as thin
gold films,50 or for their strong phononic response, such as hBN
or SiC.

In parallel, our method allows for the computation of larger
atoms and complex molecules by combining GENOME with time-
dependent density functional theory techniques. Hence, controlling
the emission rate of quantum dots3,6 and Rydberg excitons4 in com-
plex electromagnetic environments is within reach. Such emitters
are larger than the H-like atoms considered here, so placing those in
the gaps of clusters should ensure a strong field gradient over their
orbital extent to promote the higher order rate enhancements. Fur-
thermore, since the dipolar and quadrupolar rates compete, destruc-
tive interference effects can be observed and lead to suppression
of particular transition channels,3,21 leading to diverse quantum
applications, such as quantum computing, quantum storage, and
quantum communication.3,21

SUPPLEMENTARY MATERIAL

See the supplementary material for details on the method
implementation. It contains the integration convergence; a verifi-
cation of the dipolar transition rate in free-space; a comparison
with direct simulations; and additional figures that illustrate the per-
mittivity dependence, the quadrupolar transition rate dominance
over the dipolar one for the square graphene nanoisland, and rate
calculations for various emitter orientations.
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