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ABSTRACT: We report three characteristics of ideal thermally
activated delayed fluorescence molecular systems apparent in
carbene−metal−amides: (a) an exceptionally small singlet−triplet
gap that effectively eliminates the thermal activation barrier to
reverse intersystem crossing; (b) significant singlet oscillator
strength promoting fluorescence in the region of this small barrier;
and (c) enlarged spin−orbit coupling driving reverse intersystem
crossing in this region. We carry out highly correlated quantum-
chemical calculations to detail the relative energies of and spin−
orbit couplings between the singlet and triplet states, finding that
they fall closer together in energy and couple more strongly in
going from the singlet ground-state to the triplet optimized
geometry. This structural reorganization is defined not by rotation
of the ligands but by a nontrivial bending of the carbene−metal−amide bond angle. This bending reduces carbene−metal−amide
symmetry and enhances singlet−triplet interaction strength. We clarify that the reverse intersystem crossing triggering delayed
fluorescence occurs around the coplanar triplet geometric optimum.

Organic light-emitting diodes (OLEDs) are evaluated
based on their capacity to convert electricity to light. In

this respect, one state-of-the-art photophysical mechanism has
propagated in the OLED literature: delayed fluorescence (DF).
DF can convert electronically generated singlet and triplet
charge carriers to lightquadrupling the number of photons
generated relative to just singlet-state fluorescence. As such, this
process enhances conversion efficiency by multiplying the
molecular production of light. This process can be realized in
molecular systems by reducing the energy gap between singlet
and triplet electronic excited statesthe exchange energy. The
exchange energy is diminished when the electron density

migrates between orthogonal units in a molecular assembly
following an electronic transition (a charge-transfer excitation),
which may, in turn, be accompanied by intersystem crossing
(ISC) and reverse intersystem crossing (RISC) from singlet to
triplet and triplet to singlet states, respectively. RISC is essential
to the realization of efficient DF emitters, since it permits triplet
states to recombine radiatively with the ground state in a spin-
allowed process.
There have been notable advances in studies of DF recently

that have impacted modern-day OLEDs.1−23 Initially, the
efficiency of first-generation fluorescence-based OLEDs was
surpassed by second-generation phosphorescence-based (PH)-
OLEDs with noble metals, whereby singlet−triplet mixing
wrought by spin−orbit coupling rendered emissive triplet
excitons populated by electrical stimulation.24−28 Then these
expensive organometallics, featuring less effective blue-light
emission,24 were complemented by OLEDs exhibiting dynam-
ics between triplet and singlet states. The dynamical
mechanisms include triplet−triplet annihilation29,30 and
metal−ligand charge-transfer complexes with diminished
singlet−triplet energy gaps.31−36 From these mechanisms,
third-generation OLEDs employing triplet-to-singlet thermally
activated (TA) DF were espoused.37−48 These OLEDs
included donor−acceptor assemblies with localized CT
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Figure 1. (a) Chemical structure of CMA2. (b) Calculated CMA2
LUMO (isovalue = 0.06). Orbital density is concentrated on the
adjacent carbene carbon and nitrogen 2pz orbitals, with an additional
nontrivial contribution from the copper metal center.
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excitons stemming from twisted geometries49,50the exciton
confinement (small relaxation energy) leading to the realization
of efficient blue TADF emitters. Nevertheless, the efficiency of
these metal-free OLEDs is curtailed by large singlet−triplet
gaps and RISC time constants.
Here, we report on the photophysics of highly efficient DF

emitterscarbene−metal−amides (CMA)that minimize the
singlet−triplet gap so as to attenuate the thermal activation
barrier to RISC.51,52 This attenuation, in turn, raises the rate at
which triplet excitons radiatively recombine to the ground state
via DF, thereby averting bimolecular53 and nonradiative52

degradation pathways. There remains the question, however, of
the precise CMA geometry that best promotes RISC and
subsequent DF. Di et al.51 proposed a rotationally accessed
spin-state inversion mechanismclaiming that dynamic relax-
ation in the singlet excited state pulled its energy below that of
the triplet state after passing through a point of intersection. An
ensuing computational study, however, found no such point of
intersection between the statesligand rotation merely
quenches the singlet−triplet exchange energy.52 We expound
upon this computational study by evaluating the effect of the
carbene−metal−amide bond angle on the singlet−triplet gap

and spin−orbit coupling. We find that triplet-state distortion of
this bond anglebeing almost perfectly straight in the ground
stategreatly enlarges the spin−orbit coupling while having a
subtle effect on the singlet−triplet gap. Yet while this gap also
shrinks following ligand rotation, a concomitant decrease in the
spin−orbit coupling lowers the interaction between singlet and
triplet, even as their energies come closer together. This makes
fully rotated singlet-state geometries less accessible than
coplanar conformations. Thus, while we corroborate the idea
of rotationally accessed spin-state intersection (a RASI different
from that presented originally51) due to the asymptotic
convergence of singlet and triplet excitation energies at the
twisted CMA geometry, we assert that the small singlet−triplet
gap at the coplanar triplet geometry, complemented by robust
spin−orbit coupling, leads to RISC at nontwisted geometries.
These structures have larger singlet-state oscillator strength
supporting optimal DF.
We carried out state-averaged CASSCF calculations54−68

with Slater determinants on copper-centered CMA2 (see
Figure 1a)using Gaussian 1669 and the def2-SVP basis
set70,71to evaluate the excitation energies and configurations
of both the first triplet and singlet excited states. An active

Figure 2. (a) The carbene-metal-amide three-center interaction along with the nitrogen adjacent to the carbon are displayed (all other atoms are
omitted for clarity). The two circled atoms represent the carbon−nitrogen bond that is followed along the relaxation pathway from the ground-state
to the singlet excited-state optimized geometry. (b) Relationship between excitation energy and C−N bond distance for both the singlet and triplet
excited states. The points corresponding to the triplet and singlet optimized geometries are labeled “T1” and “S1”, respectively. The dotted and
dashed lines are guides for the eye reflecting the diminished energy gap. The singlet−triplet energy gap decreases from 0.1 to 0.07 to less than 0.01
eV in going from the ground to the triplet to the singlet optimized geometry. (c) Relationship between transition dipole moment (in Debye, D) and
C−N bond distance. The transition dipole moment at the triplet optimized geometry is reduced to 83% of its maximum value, while it drops to 13%
of its maximum value at the singlet optimized geometry. A logarithmic fit illustrating the strongly suppressed transition dipole moment stemming
from reorganization to the S1 optimized geometry from T1 is plotted. (d) Relationship between spin−orbit coupling (in cm−1) and C−N bond
distance. The spin−orbit coupling is maximized at the triplet optimized geometry.
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space of four electrons in four orbitals was utilized due to the
predominant HOMO−LUMO nature of both excited states,52

having confirmed that a marginal difference in excitation
energies results from active-space expansion (Figure S1). This
was verified with active spaces as large as 16 electrons in 16
orbitals using spin-adapted state-specific Density Matrix
Renormalization Group (DMRG)-SCF via the Block pro-
gram.72−99 We computed the approximate excited-state spin−
orbit coupling100 within our state-averaged CASSCF imple-
mentation. These electronic structure calculations are based on
geometries optimized using DFT/TDDFT without51 and with
the Tamm−Dancoff Approximation,101−103 finding negligible

differences in structure and excitation energies with respect to
the methodunderscoring the lack of triplet instability for
TDDFT104−106 on CMA2 (Table S1). Using the successive
iterations along the excited-state optimization paths from the
ground state to the triplet and from the triplet to the singlet, we
construct relative potential-energy curves of the excited states.
The lowest-lying singlet and triplet excited states of CMA2

are charge-transfer in nature. As shown in Figure 1b, the
prominent ligand contribution to the CMA2 lowest unoccupied
molecular orbital (LUMO) is from the carbene carbon and
adjacent nitrogen 2pz orbitals aligned out of phase, which
means that the two atoms are repelled from each other in the
excited state.
This was verified by wave function configuration analysis at

each optimized geometry, with 90% of the singlet wave
function comprised of LUMO one-particle excitation (Figure
S2). As the singlet relaxes, the strength of the antibonding
interaction is mitigated by C−N bond stretching, which, in
turn, pushes the LUMO down in energy. For this reason, the
C−N bond displayed in Figure 2a is followed from the ground
to the relaxed singlet geometry. Relevant normal modes at this
minimum-energy point are enumerated in Table S2. Figures 2b,
2c and 2d detail the change in excitation energy, singlet excited-
state transition dipole moment, and triplet-singlet excited-state
spin−orbit coupling, respectively, with respect to C−N bond
elongation.
While a subtle elongation of the C−N bond from the triplet

to the singlet optimized geometries leads to near-degeneracy of
the excited states, the oscillator strength and spin−orbit
coupling become significantly suppressed at the singlet
optimized geometry. The transition dipole moment and
spin−orbit coupling decrease by factors of seven and 20,
respectively, in going from T1 to S1. Moreover, the reduction in
the singlet−triplet gap is just 0.06 eV, from 0.07 eV at T1 to
0.01 eV at S1. These results suggest that the geometries leading
to DF hover around the T1 optimum as originally suggested by
Di et al.51 The small energy gap from triplet to singlet at this
geometry, along with enhanced spin−orbit coupling, help to
facilitate RISC, and the planarity of the ligands helps to sustain
oscillator strength close to that of the ground state.
Given the likelihood of DF occurring near the minimum of

the T1 potential-energy surface, we resolve this surface in Figure
3a by considering the change in carbene−metal−amide bond
angle over the course of the T1 geometry optimization.
Like the carbon−nitrogen bond, the carbon−copper−

nitrogen bond angle distorts during excited-state relaxation
due to the antibonding interaction between the metal dxz
orbital and the carbon 2pz orbital. This symmetry breaking of
the carbene-metal-amide bond axis leads to greater spin−orbit
coupling and, in turn, greater interaction between the singlet
and triplet states. While almost perfectly flat (177 degrees) in
the ground state, an apparent “kink” at the T1 optimized
geometry lowers the bond angle to 163 degrees. This “kink”
decouples the ligands appended to each side of the metal,
thereby serving to lower the singlet−triplet gap as displayed in
Figure 3a. Nonetheless, both excited states are stabilized
significantly by this structural distortion. The singlet state is less
significantly stabilized by ligand rotation to an orthogonal
orientation at the singlet excited-state geometry, which further
decouples the ligands and collapses the singlet−triplet gap
(Figure 3b). This collapse, but not inversion, was further
verified by carrying out state-averaged CASSCF with scalar
relativistic effects using the X2C module in PySCF.107−109 An

Figure 3. (a) Evolution of the triplet and singlet energies with respect
to the carbene−metal−amide bond angle in copper-centered CMA2
along the optimization path from the ground state to the triplet
minimum geometry. (b) Evolution of the singlet−triplet energy gap
(ΔEST) in copper-centered CMA2 along the optimization path from
the triplet state to the singlet minimum geometry. (c) Evolution of the
singlet transition dipole moment along the optimization path from the
triplet state to the singlet minimum geometry, fitted sinusoidally as in
the work of Di et al.51
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energy gap of 4 meV was obtained, compared to 4.6 meV
without relativistic effects (Table S3). As this gap asymptoti-
cally converges to zero when the ligands are rotated
perpendicular to each other, we describe this phenomenon as
rotationally accessed spin-state intersection that counterintui-
tively limits DF, as Figures 2d and 3c reveal. For one, RISC
depends directly on spin−orbit couplingwhich returns to the
ground-state value at S1 as the carbon, copper, and nitrogen
atoms realign (bond angle of 175 degrees)and not ΔEST.
Moreover, RISC is followed by fluorescence with efficiency
directly dependent on oscillator strength. Since the singlet
potential-energy surface is relatively flat in the region from T1
to S1,

52 there does not appear to be a strong thermodynamic
driving force inducing rotation and, in turn, delayed-
fluorescence quenching, in CMA2. On the other hand, the
excited singlet is driven toward the near-resonant excited triplet
minimum-energy geometry by enlarged spin−orbit coupling
mediating intersystem crossing, meaning that singlet-state
population should be concentrated around this seam. As
such, the thermodynamic accessibility of the triplet optimized
geometry should serve to hinder full ligand rotation in the
singlet excited state, which itself hinders delayed-fluorescence
efficacy (see Supporting Information).
In conclusion, coplanar carbene−metal−amide structures

achieve the trifecta of small singlet−triplet gaps, large oscillator
strengths, and large spin−orbit couplings. The rotationally
accessed point of intersection between the singlet and triplet
excited states is a moot point, since ligand rotation only
marginally affects the singlet−triplet gap and is deleterious to
DF in the context of spin−orbit coupling and singlet oscillator
strength. Rather, carbene−metal−amide bond deformation,
accompanied by carbene carbon−nitrogen bond stretching, are
shown to be the crucial coordinates leading to an optimized
triplet geometry with maximal spin−orbit coupling and over
80% of the ground-state oscillator strength. This is explained by
the fact that the lowest triplet excitation in CMA2 primarily
involves the LUMO, characterized by carbon−nitrogen and
carbon−copper antibonding interactions. DF is predicted to
occur efficiently in CMA2 because, while the driving force for
these distortions is large, the driving force for ligand rotation is
small. Increasing sterics and solvent viscosityeffectively
emulating the hindered ligand rotation in the solid state
should further increase the efficiency of CMA DF in solution.
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