AMRU5 six-legged robot :
 Dynamic Simulation and Embedded Control

Q. Bombled, O. Verlinden, Y. Baudoin*
Department of theoretical mechanics, dynamics and vibrations (FPMs)
* Department of mechanics (Royal Military Academy)

Introduction and previous work

Context of the research Six legged robot, initially devoted to demining Developped @ RMA, Belgium
Application case for :

- Mechatronics integrated system simulation tools
- Implementation of a decentralized control with position and force feedback

Characteristics
18 electrical actuators
Pantograph leg mechanism = easier for kinematics and control 3 degrees of freedom per leg, driven by a DC motorgear and a screw ball or a simple sprocket chain
Bodies are positionned in a global frame by means of homogeneous transformation matrices
Each center of mass and inertia tensor is determined with the help of CAD tools
Global robot $=49$ bodies

Dynamic simulation at present
Ground contact forces (k, c, ffrict)
Possibility of taking into account a LuGre friction model PID position control (only) of the dof's Multibody simulation with the EasyDyn C++ open source librairy, developed at FPMs

Moving AMRU5 : inverse kinematics

Assumptions are :

Tripod gait, with probable evolution to other type of gait
No slip at ground interface : during one step, general coordinates of foot position remain constant (eP = constant)
Rigid soil
Motion of the robot : the user gives position and orientation of the main body, modifying the homogeneous transformation matrix Tbody:

Position of the end of the leg is then

$$
\begin{aligned}
\vec{e}_{p} & =T_{l e g} \star \vec{r}_{p} \\
\vec{r}_{p} & =T_{l e g}^{-1} \star \vec{e}_{p} \\
\vec{r}_{p} & =\left(T_{\text {body }} \star T_{\text {body } / l e g}\right)^{-1} \star \vec{e}_{p}
\end{aligned}
$$

Once the new rP is know: Newton-Raphson algorithm is applied to solve inverse kinematics by leg:

$$
\vec{q}^{(i)}=\vec{q}^{(i-1)}-[J]^{-1}\left(\vec{f}\left(\vec{q}^{(i-1)}\right)-\vec{r}_{P}\right)
$$

$P(x, y, z)$

New references of dof's are then sent to the PID controller

Measure for force feedback

Principle

No classical sensing at the end of the leg Measure of the current inside the motors Drawback

- needs a motion to have the force information - precise friction model is required Advantage
- reaction is possible for any location of the perturbation on the leg

- no special sensors needed at foot : control more robust because risks of damage at foot are reduced

FURTHER RESEARCHES :

- Generate gait pattern combinated with inverse kinematics calculations to have a complete autonomous robot
- Determine a precise LuGre friction law for the joints, and complete the simulation model
- Implement a force control, thanks to the current measured inside the motor, to have a smooth gait, to fix some consumption objectives,
or to walk on unstructured area

