AMRU5 six-legged robot : Dynamic Simulation and Embedded Control

Q. Bombled, O. Verlinden, Y. Baudoin*

Department of theoretical mechanics, dynamics and vibrations (FPMs) * Department of mechanics (Royal Military Academy)

[body[5]

Introduction and previous work	
Context of the research Six legged robot, initially devoted to dem Developped @ RMA, Belgium Application case for : • Mechatronics integrated system simulation tools	nining q0
 Implementation of a decentralized 	

Control of AMRU5

General scheme of the control loop master : dual core Intel Pentium 4, 3GHz slaves : SBC65EC (PIC18f6627 µc-based) Control loop @ 10ms encoder 1 _____

control with position and force feedback

Characteristics

18 electrical actuators Pantograph leg mechanism = easier for kinematics and control 3 degrees of freedom per leg, driven by a DC motorgear and a screw ball or a simple sprocket chain Bodies are positionned in a global frame by means of homogeneous transformation matrices Each center of mass and inertia tensor is determined with the help of CAD tools Global robot = 49 bodies

Dynamic simulation at present

Ground contact forces (k, c, ffrict) Possibility of taking into account a LuGre friction model PID position control (only) of the dof's Multibody simulation with the EasyDyn C++ open source librairy, developed at FPMs

On-board controller for a leg

udp socket, sending broadcast packet (x.x.x.255) with gref from master

Moving AMRU5 : inverse kinematics

Assumptions are :

Tripod gait, with probable evolution to other type of gait No slip at ground interface : during one step, general coordinates of foot position remain constant (eP = constant) Rigid soil

Motion of the robot : the user gives position and orientation of the main body, modifying the homogeneous transformation matrix Tbody:

 $\vec{e_p} = T_{leg} \star \vec{r_p}$ $\vec{r_p} = T_{leg}^{-1} \star \vec{e_p}$ $\vec{r_p} = (T_{body} \star T_{body/leg})^{-1} \star \vec{e_p}$

Once the new rP is know :

Measure for force feedback

Principle

- No classical sensing at the end of the leg Measure of the current inside the motors Drawback
- needs a motion to have the force information precise friction model is required Advantage

bridg reaction is possible for any location of the perturbation Т on the leg 90W DC no special sensors needed at foot : control more robust because risks of damage at foot are reduced

FURTHER RESEARCHES :

- Generate gait pattern combinated with inverse kinematics calculations to have a complete autonomous robot
- Determine a precise LuGre friction law for the joints, and complete the simulation model
- Implement a force control, thanks to the current measured inside the motor, to have a smooth gait, to fix some consumption objectives, or to walk on unstructured area