UTCCS-3

The Third University of Texas Conference on

Carbon Capture and Storage

Austin, Texas February 17-19, 2016

 Simulations of various configurations of the post-combustion CO₂ capture process applied to a cement plant flue gas: parametric study with MEA 30 wt.% »

Dr Lionel Dubois, Prof. Guy De Weireld and Prof. Diane Thomas

Dr Lionel Dubois

Research Coordinator CO₂ Capture and Conversion Scientific Coordinator of the ECRA Academic Chair Chemical and Biochemical Engineering Department Faculty of Engineering - University of Mons (Belgium) lionel.dubois@umons.ac.be

Partners:

In 2013, ECRA (European Cement Research Academy) and University of Mons signed an important scientific agreement related to the creation of a privileged partnership and the development, within the University, of an academic Chair financed by ECRA.

The main objective of this academic Chair is to create a centre of scientific expertise in the specific field of "carbon capture in cement production and its re-use", and promote research and innovation.

- Alternative fuel

- Clinker substitution

CO₂ emissions reductions

56% thanks to Carbon Capture Storage/Utilization (CCSU)

CCSU (Carbon Capture Storage Utilization)

Paving the way — A selection of today's carbon capture and utilization pathways

Source: The Pembina Institute with Integrated CO₂ Network (ICO2N)

CO₂ Capture Techniques

Experimental and simulation results

Absorption-regeneration process using amine(s) based solvents

Context of the study: Brevik Project (Norway)

- Acid gas package
- Thermodynamic models: Peng-Robinson (gas) and e-NRTL (liquid)
- Reactions sets included in the package (validated by literature)

→ Simulations for different process configurations

Comparison of Aker's MTU and CASTOR/CESAR pilot

Parameters	MTU from Aker CASTOR/CESAR p tested at Brevik Cement plant used for the simula		
Absorber diameter	0.40 m	1.10 m	
Absorber packing height	max 18.00 m	max 17.00 m (N _{stage} = 17)	
Absorber pressure	-	1.2 bar	
Desorber diameter	0.32 m	1.10 m	
Desorber packing height	8.00 m	10.00 m (N _{stage} = 10)	
Desorber pressure	-	2 bar	
Packing type	MellapakPlus	Random packing IMTP 50	
Gas flow rate	450 m³⁄h	4000 m³⁄h	
Solvent circulation rate	max 4 m³⁄h	max 40 m³⁄h	
CO ₂ capture efficiency	90%	90%	
Captured CO ₂ flow from Brevik flue gas	≈ 0.15 t _{co2} /h	≈ 1.5 t _{co2} /h	
		≈ x 10	

Process configurations

Improvements of the process:

Promoting absorption

thanks to temperature levels adjustments

B

Promoting energy integration

thanks to enhancement of the heat exchanges between the fluids

Promoting heat recovery

thanks to heat quality adjustments

Classification des modifications individuelles de procédés (Le Moullec, Neveux, Hoff, et Chikukwa, 2013)

Alternative configurations:

"Rich Solvent Recycle" (RSR)

Alternative configurations:

Parametric study: parameters considered

Base case	RSR	SSF	LVC	RVC
L/G	L/G	L/G	L/G	L/G
Injection level into the stripper	Re-injected fraction	Split fraction	Flash pressure drop	Flash pressure drop
	Re-injection level into the absorber	Injections level of the cold solution into the stripper		
	Re-injection temperature into the absorber	Injections level of the preheated solution into the stripper		

→ Each parameter varied separately in a first step and then cross variation in a second step

Simulation results

Conventional configuration:

Minimum
$$E_{regen}$$
 for $(L/G)_{vol.} = 5.56 \ 10^{-3}$
 $(L = 22 \ m^{3}/h)$:

E_{regen} = 3.36 GJ/t_{CO2}

Due to the higher CO₂ partial pressure into the absorber: temperature reaches higher values than for power plants

Note: optimum injection level into the stripper is 9/10 (allows a small decrease of E_{condenser})

Simulation results RSR configuration:

in the stripper: cold solution injected at stage 10 hot solution injected at stage 8

Simulation results SSF configuration:

E_{regen} = 3.22 GJ/t_{CO2}

17

10

9

8.E-03

Simulation results LVC configuration:

Minimum E_{regen} for $\Delta p = 100$ kPa and $(L/G)_{vol.} = 5.3 \ 10^{-3}$ (L = 21 m³/h):

Simulation results RVC configuration:

Minimum E_{regen} for $\Delta p = 100$ kPa and $(L/G)_{vol.} = 7.33 \ 10^{-3}$ (L = 29 m³/h):

E_{regen} = 2.95 GJ/t_{CO2}

Simulation results

Global comparison of the simulation results

MEA 30 wt	.%	Base case	RSR	SSF	LVC	RVC		
Operating conditions								
(L/G) _{vol,opt}	(m³/m³)	5.56 10 ⁻³	6.06 10 ⁻³	5.81 10 ⁻³	5.30 10 ⁻³	7.33 10 ⁻³		
Split fraction rich se	ol. (%)	-	35	26	-	-		
Re-injection sol. ter	mp. (°C)	-	40	-	-	-		
Re-injection abs. st	age (N°)	-	4	-	-	-		
Hot sol. stripper sta	age (N°)	-	-	7	-	-		
Cold sol. stripper st	age (N°)	-	-	10	-	-		
Flash pressure drop	o (kPa)	-	-	-	100	100		
α _{CO2,rich} (ι	mol/mol)	0.51	0.51	0.50	0.51	0.47		
α _{CO2,lean} (ι	mol/mol)	0.21	0.24	0.22	0.20	0.25		
Energy consumptions								
Е _{ритр}	(GJ/t _{co2})	1.57 10 ⁻²	1.57 10 ⁻²	1.57 10 ⁻²	1.58 10 ⁻²	1.58 10 ⁻²		
E _{condenser}	(GJ/t _{co2})	-1.94	-1.89	-1.02	-0.91	-1.52		
E _{LVC/RVC.compressor}	(GJ/t _{co2})	-	-	-	8.28 10 ⁻²	13.57 10 ⁻²		
E _{regen}	(GJ/t _{co2})	3.36	3.07	3.22	2.91	2.95		
E _{regen} savings /Base	case (%)	-	8.5	4.2	13.4	12.1		

Conclusions

Global comparison of the simulation results

→ Best results with "heat recovery" modifications (C): RVC and LVC

- $E_{regen} < 3 \text{ GJ/t}_{CO2}$ is possible with MEA 30 wt.% (even if $y_{CO2,cement plants} > y_{CO2,power plants}$)
- Almost 14% energy savings in comparison with the conventional configuration
- Detailed results for MEA 30 wt.% in a forthcoming publication
- <u>Next step:</u> detailed results for both MEA, PZ and aMDEA
 → will be presented at GHGT-13 Conference in November 2016

UTCCS-3

The Third University of Texas Conference on

Carbon Capture and Storage

Austin, Texas February 17-19, 2016

Thanks very much for your attention ! Questions?

Dr Lionel Dubois

Research Coordinator CO₂ Capture and Conversion Scientific Coordinator of the ECRA Academic Chair Chemical and Biochemical Engineering Department Faculty of Engineering - University of Mons (Belgium) <u>lionel.dubois@umons.ac.be</u>

Partners:

