Frequently hypercyclic operators, and related notions

Karl-G. Große-Erdmann

In linear dynamics we study the behaviour of orbits $\{x, Tx, T^2x, \ldots\}$ of vectors $x \in X$ under (continuous and linear) operators $T : X \to X$, where X is typically a Banach- or Fréchet-space. An operator is called hypercyclic if it admits a dense orbit. In 2004, Bayart and Grivaux introduced the concept of a frequently hypercyclic operator: it admits a vector whose orbit not only meets any non-empty open set U at least once (and hence infinitely often – like for hypercyclicity) but very often indeed in the sense that $\underline{dens}\{n \geq 0: T^n x \in U\} > 0$. We will start by discussing the fundamental properties of frequently hypercyclic operators.

Now, the definition of Bayart and Grivaux involves the family \mathcal{A}_{ld} of subsets of \mathbb{N}_0 of positive lower density. Recently, researchers have defined the general notion of an \mathcal{A} -hypercyclic operator by replacing the family \mathcal{A}_{ld} by an arbitrary family \mathcal{A} of subsets of \mathbb{N}_0 . We will discuss some of the properties of this new notion. The results obtained help to understand why, in certain respects, frequent hypercyclicity behaves markedly differently from (ordinary) hypercyclicity.