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ABSTRACT  

 Self-injection locking to an external fiber cavity is an efficient technique enabling drastic linewidth narrowing and self-

stabilization of semiconductor lasers. We introduce a simple dual-frequency laser that employs the same external ring 

fiber cavity for self-injection locking of a standard semiconductor DFB laser and for the generation of the Stokes light 

via stimulated Brillouin scattering. In contrast to the previous Brillouin laser configurations, the system spliced from 

standard telecom components is supplied by a low-bandwidth active optoelectronic feedback that helps to maintain the 

self-injection locking to provide both the DFB laser line narrowing and permanent coupling between the DFB laser and 

the fiber ring cavity thus enabling the dual-frequency laser operation. The laser performance characteristics are well 

superior to the on-board laser modules commonly used with BOTDA. In particular, the configuration reduces the natural 

Lorentzian linewidth of the light emitted by the laser at pump and Stokes frequencies down to 270 Hz and 110 Hz, 

respectively, and features a stable 300-Hz-width RF spectrum characterizing beating between two laser outputs. In a 

direct comparison with the commercial BOTDA, we explore the utilization of our low-cost solution for the BOTDA 

sensing demonstrating distributed measurements of the Brillouin frequency shift in 10-km sensing fiber with 1.5m 

spatial resolution. 
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1. INTRODUCTION  

A global market of fiber optic monitoring systems is booming. A significant part of this market is accounted for by 

distributed monitoring systems based on the Rayleigh and Brillouin scatterings [1-19]. A key and most expensive part of 

such a system is the master-oscillator modules producing interrogating optical signals with rather specific performance 

characteristics and stringent requirements to the laser stability. Too high cost and complexity of such laser modules 

hinder many potential applications of the distributed fiber sensors in a large volume market, where highly performed, but 

cost-efficient sensors are urgently demanded. Therefore, new technical solutions reducing the cost of the interrogating 

lasers [20-35] while maintaining their full functionality is of great practical importance for new sensor applications, in 

particular, in distributed sensor networks for utility service implementing the smart city concept. Although current 

progress in the field of low-noise lasers is associated with the use of microcavities, the robust and compact laser sources 

based on the whispering gallery modes are still very complicated in fabrication and, therefore, too expensive for 

widespread use. In this context, their cheaper alternatives represented by simple fiber-optics spliced configurations are of 

strong demand.  

In 2012 we have demonstrated a kHz-linewidth laser just combining a standard DFB laser diode and a few passive 

telecommunication components [36-43]. The principle of operation employs the mechanism of self-injection locking that 

significantly improves the DFB laser performance [43-47]. While a typical linewidth of free-running DFB 

semiconductor lasers ranges from a few to tens MHz, self-injection locking of the DFB laser through an external fiber 
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ring cavity causes a drastic reduction of the laser linewidth down to a few kHz making it attractive for applications in 

distributed sensing. Once getting locking to the ring cavity mode, the laser starts to generate the cavity resonant 

frequency. Then any slow change of the ring mode frequency (due to environment temperature fluctuations, for 

example) causes the same change of the laser frequency. However, the main drawback of this technique is high 

sensitivity of the lasing to fluctuations of the configuration parameters and surroundings that causes rare mode-hopping 

events. In the experiment, a stable laser operation is commonly observed for a few seconds making laser applications for 

distributed sensing rather questionable. Nevertheless, the applicability of the proposed laser solution for phase-OTDR 

sensing has been verified experimentally. In our testing experiments the standard on-board ∼100-Hz-linewidth laser 

module in the phase-OTDR analyzer has been replaced by our low-cost self-injection locked laser demonstrating no 

degradation of the system performance for detection and localization of the vibrations in 10-km-long fiber and for 

restoration of the vibration spectrum (300-5600 Hz) in 4-km fiber [48-51].  

 

In this paper we explore the potential of the low-cost self-injection locked laser solution for operation with BOTDA 

sensing [52-64] highlighting its ability to replace the standard on-board laser module in the Brillouin analyzer. In our 

laser configuration the same ring fiber cavity is used to generate narrow-band light at the pump frequency (through self-

injection locking mechanism) and narrow-band laser light at Stokes frequency (through stimulated Brillouin scattering). 

Although the fiber ring cavity is commonly used to generate Brillouin wave from an external laser diode [65-69], the 

maintaining coupling between the DFB laser and a high-Q ring fiber cavity always remains a technically complicated 

and cost consuming task. In our approach, the implementation of the self-injection locking mechanism into the Brillouin 

ring fiber laser helps to maintain coupling between the DFB laser and the external fiber cavity enabling dual-frequency 

laser operation [70, 71]. The laser system is supplied by a simplest low-bandwidth active optoelectronic feedback circuit 

controlled by a low-cost USB-DAQ card. Importantly, a stable operation of two frequencies mutually locked to the 

Brillouin resonance is provided by the self-injection locking mechanism, while the active feedback loop is used just to 

support this regime. Therefore, in terms of feedback circuit bandwidth, complexity, and allocated memory, the used 

electronics is much less consuming than optoelectronic systems commonly used with fiber lasers [72, 73]. We present 

results of the testing experiments characterizing the use of the self-injection locked Brillouin laser configuration for 

distributed measurements of the Brillouin frequency shifts over 10 km with the spatial resolution of 1.5 m. Importantly, 

the same measurements have been performed with the use of the commercial BOTDA (OZ-optics, Inc.) at the same 

settings and applied to the same testing line. A direct comparison of the results highlights no degradation of the BOTDA 

system performance associated with the use of its low-cost home-made analogue.  
 

 
Fig. 1. (a) The experimental laser configuration; (b) Brillouin output power (port D) as a function of the DFB laser power.  

 

2. DUAL-FREQUENCY LASER 

We have evaluated the performance of a BOTDA system using the low-cost self-injection locked DFB laser as a dual-

frequency master oscillator [71]. The experimental configuration of the a dual-frequency master oscillator is shown in 

Fig.1. The principle of the laser operation is explained in our recent publications.  The dual-frequency laser performance 

is quite impressive considering that no significant attempt has been made to temperature stabilize the set-up. It emits two 

narrow-band laser lines at pump and Stokes frequencies spaced by ~11 GHz and delivered through two linear polarized 

fiber outputs. The laser operation frequencies are strongly locked to the ring cavity resonances and their drift measured 
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in the experiment (∼8.8 MHz/min) is mainly determined by environmental temperature variations. The laser output 

powers are ~ 9 mW  and ~100 W  for pump and Stokes outputs, respectively. Further power scaling is provided with 

external EDFA amplifiers. The laser performance characteristics measured with methods [74-77] are summarized in 

Fig.2.  

 

Fig. 2. Dual-frequency laser performance: self-heterodyne spectra (a, b), phase noise (c), relative intensity noise (d) and RF pump-to-

Stokes beating spectrum (e). 
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The pump and Stokes laser outputs are characterized by the power of 10mW and 50µW and natural Lorenz linewidths of 

~270 Hz and ~110 Hz, respectively. The laser noise characteristics are on the level of more expensive laser counterparts. 

The beating between two laser outputs features a stable RF spectrum with 300-Hz-linewidth and peak strongly locked to 

the Brillouin resonance in the laser cavity fiber [Fig.2] ( 0 0P S SBS − =  , where SBS  is the Brillouin frequency shift). 

The demonstrated laser performance is well superior to the specifications of on-board laser modules commonly used 

with commercial BOTDAs.  

 

 

Fig. 3. The configuration of the lost-efficient BOTDA system 
 

 

Fig. 4. The used fiber-optics testing line. 

 

3. LASER OPERATION WITH BOTDA 

The BOTDA experimental configuration depicted in Fig. 3 is based on a simple modification of the classical pump and 

probe set-up. It employs two counter-propagating optical waves, a pump pulsed light and a continuous probe wave. The 

laser generates highly coherent light at pump ( 0P ) and Stokes ( 0S ) frequencies delivered through pump and probe 

channels, respectively. The laser radiation emitted at the pump frequency 0P  is passed through the electro-optical 

intensity modulators (EOM) and Erbium-doped fiber amplifier (EDFA) forming a periodic train of rectangular pump 

pulses with the peak power of ∼300 mW, pulse duration of ∼15 ns and repetition rate of ~10 kHz. The laser radiation at 
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the Stokes frequency 0S  passes the single-side band electro-optic modulator (EOM) driven at the frequency S , 

electrically controllable optical attenuator and polarization scrambler forming a ~10µW cw probe signal with sidebands 

at frequencies 
0S S S  = −  tunable over the whole EOM bandwidth with change of S  ( 1.5GHz ). The pump 

pulses at 0L and cw probe signal at 
S  are introduced into the sensing fiber line from opposite fiber ends. Brillouin 

interaction of contra-propagating optical fields inside the fiber causes an energy transfer from the pump pulse to the 

Stokes signal leading to a specific modulation of the probe signal recorded by the fast photodetector and PC acquisition 

card at the fiber output. The modulation amplitude (typically <100nW) is proportional to the local Brillouin gain at the 

fiber point, where interaction of the probe signal with the pump pulse has occurred. The recorded traces of the probe 

signal averaged over 4096 realizations (pump pulses) are used to restore distribution of the Brillouin gain along the fiber. 

The traces recorded at different S  are used to map the Brillouin gain spectrum in each fiber point with a spatial 

resolution of ~1.5m corresponding to the pump pulse duration of ~15 ns. 

 

 

Fig. 5. BOTDA traces at the fixed frequency difference (a) and distribution of the Brillouin frequency shift (b) obtained with the 

commercial (black) and home (red) analyzers. 
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To evaluate the BOTDA performance, we built a special fiber testing line similar to that commonly used for 

specification and calibration of commercial BOTDAs. The testing line of 10 km length has been built from the SMF-28 

Corning fiber (9.1 km) spliced with OFS (G.657) fiber and comprises several altered coiled fiber segments of different 

length (0.5-4.0 m) kept at different temperatures. Even coils are placed into a heat chamber thermostabilized at 60 ºC, 

while odd are rested at room temperature (~20 ºC) as well as almost the whole length of the fiber [see, Fig.4]. The same 

testing experiments have been performed simultaneously with the tested BOTDA and with the commercial BOTDA 

system (OZ-optics). The results of the experiments are presented in Fig.5. 

 

First, we have adjusted the frequency difference between the pump and probe signal to the Brillouin frequency shift 

corresponding to the standard SMS-28 fiber at room temperature. Fig.5(a) compares the averaged probe signal trace with 

the similar trace obtained with the commercial BOTDA. Both traces possess similar behavior, including features of the 

signal modulation pronounced in points with a different Brillouin frequency shift. The distribution of the peak spectrum 

frequency along the fiber segments possessing different temperatures is shown in Fig.5 (b) with a step of ~2 MHz. One 

can see that the quality of restoration is rather high. Although the restored spectrum is slightly noisier than one obtained 

with the commercial BOTDA, it well reproduces all specific features of the real spectrum and allows perfect 

determination of its peak position and amplitude both important for Brillouin sensing. Both devices give almost the same 

distribution providing a good agreement in absolute peak frequencies and its position, all peaks are well resolved. The 

spatial resolution corresponds to the value of 1.5 m determined by the pulse duration. One can see, that our experimental 

device provides even better spatial resolution than the commercial BOTDA with the same pulse duration.  

 

4. CONCLUSION 

 

In conclusion, we have introduced a simple dual-frequency laser based on a DFB laser coupled to an all-fiber ring cavity 

and working in self-injection-locking regime. In our laser configuration, the same ring fiber cavity is exploited both for 

self-injection locking of the DFB laser and for generation of Stokes light via stimulated Brillouin scattering. A low-cost 

USB-DAQ is used to stabilize the system preventing mode-hopping. Importantly, a stable laser operation at two 

mutually locked frequencies is provided by the self-injection locking mechanism, while the active feedback loop just 

helps the laser to operate in this regime. Besides, the self-injection locking mechanism maintains permanent coupling 

between the DFB laser and the external fiber ring cavity enabling perfect resonant pumping for low-noise Brillouin 

lasing. The reported laser characteristics are well superior to the requirements to the laser modules commonly used with 

Brillouin Optical Time Domain Analyzer (BOTDA). In a direct comparison with the commercial BOTDA, we have 

explored the utilization of our low-cost solution for the BOTDA sensing demonstrating distributed measurements of the 

Brillouin frequency shift in 10-km sensing fiber with 1.5m spatial resolution. No degradation of the system performance 

characteristics associated with the use of the low-cost laser module instead of the on-board solution is found.  
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