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Abstract

Peter P. Wakker has forcefully shown the importance for decision theory of a condition that he

called ‘‘Cardinal Coordinate Independence’’ (CCI). Indeed, when the outcome space is rich, he

proved that, for continuous weak orders, this condition fully characterizes the Subjective Expected

Utility (SEU) model with a finite number of states. He has furthermore explored in depth how this

condition can be weakened in order to arrive at characterizations of Choquet Expected Utility and

Cumulative Prospect Theory. This note studies the consequences of this condition in the absence of

any transitivity assumption. Complete preference relations satisfying Cardinal Coordinate

Independence are shown to be already rather well-behaved. Under a suitable necessary order

denseness assumption, they may always be represented using a simple numerical model.
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1. Introduction and motivation
The work of Peter P. Wakker on the foundations of decision theory has forcefully

shown how the consideration of induced relations comparing preference differences
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between outcomes may illuminate the analysis of models of decision making under

uncertainty.2 In order to characterize the Subjective Expected Utility (SEU) model with a

finite number of states, he introduced a condition called ‘‘Cardinal Coordinate Indepen-

dence’’ (CCI)3. This condition requires that the comparisons of preference differences

between outcomes revealed in different states and using different reference outcomes do

not exhibit contradictory information. Using topological assumptions to ensure that the set

of outcomes is ‘‘rich’’, Wakker showed that CCI fully characterizes SEU for continuous

weak orders (see Wakker, 1984, 1988b, 1989a). This striking result can be extended to

more general outcome sets in the algebraic approach (see Wakker, 1991).

This condition, when appropriately weakened (e.g. requiring it only for comonotonic

acts), may also be used to characterize non-EU models such as Choquet Expected Utility

(see Wakker, 1989a,b, 1994) and Cumulative Prospect Theory (Wakker and Tversky,

1993). Indeed, CCI and its variants may be seen as a powerful unifying tool to analyze

many models in decision making under risk and uncertainty (see Wakker and Zank, 1999).

Furthermore, this condition is intimately related to empirical assessment techniques of

utility functions and has served as an inspiring principle for the development of such

techniques (see Abdellaoui, 2000; Bleichrodt and Pinto, 2000; Wakker and Deneffe, 1996).

In all the above-mentioned papers, it is supposed that the set of outcomes is rich and that

the complete and transitive preferences behave consistently in this rich structure. This is

done either requiring a ‘‘solvability’’ assumption (see Wakker, 1988a, 1991) or continuity

w.r.t. a connected topology (seeWakker, 1988a, 1991). Clearly, these structural assumptions

interact with the necessary conditions and it is well-known that this may contribute to

obscure their interpretation (see Furkhen and Richter, 1991; Krantz et al., 1971, ch. 9,

Wakker, 1989a, pages 75–76, or Köbberling andWakker, 2003, Appendix A). Furthermore,

the weak order assumption is quite powerful: transitivity clearly plays a vital role in the

definition of ‘‘standard sequences’’ or ‘‘grids’’ (see, e.g. Krantz et al., 1971;Wakker, 1989a).

In view of the importance of CCI, it seems worth investigating its ‘‘pure consequences’’, i.e.

its consequences in the absence of any transitivity requirement and of any unnecessary

structural assumption on the set of outcomes. This is the purpose of this note.

Rather surprisingly, it turns out that, when coupled with completeness, CCI already

implies that preferences are rather well-behaved. Under a suitable necessary order

denseness assumption, such preferences may be represented numerically using a simple

model that generalizes the Skew Symmetric Additive (SSA) model studied by Fishburn

(1990), replacing additivity by a mere decomposability requirement. Technically (so to

speak, since in our poor framework, the reader should not expect anything that is much

involved), our results extend to the case of decision making under uncertainty the results

obtained by Bouyssou and Pirlot (2002) in the case of conjoint measurement.

In this note, models tolerating intransitive preferences are simply used as a framework

allowing to understand the pure consequences of some well-known conditions. They may

nevertheless have some interest in themselves. Indeed, as shown by the famous experiment
2A similar idea is already used by Pfanzagl (1971, ch. 9); we thank Peter Wakker for bringing this point to our

attention.
3We use here the terminology of Wakker (1984). This condition is often called ‘‘tradeoff consistency’’ in

Wakker’s later texts, e.g. Wakker (1988b, 1989a).
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in Tversky (1969), nontransitive preferences may be observed in quite a predictable way in

decision making under risk (see, however, Iveson and Falmagne (1985), for a critical

analysis of this experiment). Furthermore, Fishburn (1991) has challenged, quite con-

vincingly in our opinion, the usual arguments used to dismiss such models (for classical

and less classical counterarguments, see Luce, 2000; Raiffa, 1968).

This note is organized as follows. Section 2 briefly introduces our setting and notation.

Our main results appear in Section 3. A final section discusses our findings.
2. The setting

2.1. Outcomes, states and acts

We adopt a classical setting for decision under uncertainty with a finite number of states.

Let C={a, b, c,. . .} be the set of outcomes and N={1, 2,. . ., n} be the set of states. It is

understood that the elements of N are exhaustive and mutually exclusive: one and only one

state will turn out to be true. An act is a function fromN toC. The set of all acts is denoted by
A =CN. Acts will always be denoted by lowercase letters a, b, c, d, . . .An act aaA therefore

associates to each state iaN an outcome a(i)aC.We often abuse notation andwrite ai instead

of a(i). Among the elements of A are constant acts, i.e. acts giving the same outcome in all

states. We denote by ā the constant act giving the outcome aaC in all states iaN.

Let EpN and a, baA. We denote by aEb the act ca A such that ci = ai, for all iaE and

ci = bi, for all iaN\E. Similarly aEb will denote the act daA such that di = a, for all iaE

and di= bi, for all iaN\E. When E={i}, we write aib and aib instead of a{i}b and a{i}b.

2.2. Preferences on acts

In this note, c will always denote a reflexive binary relation on the set A. The binary

relation c is interpreted as an ‘‘at least as good as’’ preference relation between acts. We

denote by d (resp. f ) the asymmetric (resp. symmetric) part of c. A similar convention

holds when c is starred, superscripted and/or subscripted.

We say that state iaN is influent (for c) if there are a, b, c, daC and a, baA such that

aiacbib andNot [ciacdib] and degenerate otherwise. It is clear that a degenerate state has no
influence whatsoever on the comparison of the elements of A and may be suppressed from

N. In order to avoid unnecessary minor complications, we suppose henceforth that all states

in N are influent. Note that, in general, this does not rule out the existence of null states iaN,

i.e. such that aicf bic, for all a, b, caA. A state will be said essential if it is not null.4

We denote by cC the relation induced on the set of outcomes C by the relation c on A,

i.e., for all a, baC, acCbZācb̄.
4As pointed out to us by a referee, the distinction between an influent and an essential state is subtle. Let us

illustrate this difference with the simple example of a preference relation for which each state is null while all

states are influent. Let N={1, 2, 3, 4} and C=R. Let c on A be such that, for all a, b a A, acbZAiaP(a,b)piz
AiaP(b,a)pi� 1/4, with p1 = p2 = p3 = p4 = 1/4 and P(a,b)={iaN: ai>bi}. The relation c is clearly complete. All

states are null (an essential state would require to have pi>1/4). Yet, each state is influent. For instance, state 1 is

influent because Not[(0, 0, 0, 0)c(10, 10, 0, 0)] but (10, 0, 0, 0)c(10, 10, 0, 0).



2.3. Comparing preference differences between outcomes

Consistently with Wakker (1988b, 1989a), our analysis uses induced relations com-

paring preference differences on the set of outcomes. Note that our definitions differ from

his, although we use similar notation.

The idea that any binary relation generates various reflexive and transitive binary

relations called traces dates back at least to the pioneering work of Luce (1956). The use of

traces has proved especially useful in the study of preference structures tolerating

intransitive indifference such as semiorders or interval orders (see Aleskerov and

Monjardet, 2002; Fishburn, 1985; Pirlot and Vincke, 1997). We pursue here the same

idea using traces on preference differences.

Definition 1. (Relations comparing preference differences). Let c be a binary relation on

A. We define the binary relations c* and c** on C2 letting, for all a, b, c, daC,

ða;bÞc*ðc;dÞ if ½for all a; baA and all iaN ; ciacdibZaiacbib�;
ða;bÞc**ðc;dÞ if ½ða;bÞc*ðc;dÞ and ðd;cÞc*ðb;aÞ�:

Intuitively, if (a,b)c*(c,d), it seems reasonable to conclude that the preference

difference between a and b is not smaller than the preference difference between c and

d. Contrary to the intuition concerning the comparison of preference differences, the

definition of c* does not imply that the two ‘‘opposite’’ differences (a,b) and (b,a) are
linked. This is the motivation for the introduction of the relation c**.

By construction,c* andc** are reflexive and transitive. Therefore, f * and f ** are

equivalence relations. Note that, by construction, c** is reversible, i.e. (a,b)c**

(c,d)Z(d,c)c**(b,a). Observe that c* and c** may not be complete: induced compar-

isons of preference differences may indeed depend on the reference acts and/or on the state

in which they are revealed. Sweeping consequences will obtain when this is not so.

We note a few useful connections between c*, c** and c in the following lemma that

holds independently on any condition on c.

Lemma 2. Let c be a binary relation on A. Then, for all a, b, c, daA and all iaN,

½acb and ðci;diÞc*ðai;biÞ�Zciacdib ð1Þ

½ðcj;djÞf*ðaj;bjÞ; for all jaN �Z ½acbZccd�; ð2Þ

½adb and ðci;diÞc**ðai; biÞ�Zciaddib; ð3Þ

½ðcj;djÞf**ðaj;bjÞ; for all jaN �Z
acbZccd and

adbZcdd:

8<
: ð4Þ

Proof. Eq. (1) is obvious from the definition ofc*, Eq. (2) follows. Suppose that adb and

(ci,di)c**(ai,bi). Using Eq. (1), we know that ciacdib. Suppose now that dibcc ia. Since

(ci,di)c**(ai,bi) implies (bi,ai)c*(di,ci), Eq. (1) implies bca, a contradiction. Hence Eq. (3)

holds and Eq. (4) follows. 5
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2.4. Coordinate independence and Cardinal Coordinate Independence

Coordinate Independence (CI) is a classical independence condition stating that the

preference between acts is not affected by a common outcome in some state.

Definition 3. (Condition CI). Let c be a binary relation on A. This relation is said to

satisfy CI if, for all iaN, all a, baC and all a, baA,

aiacaibZbiacbib:

It is not difficult to see that if c satisfies CI then, for all EoN and all a, b, c,

daA, aEccbEcZ aEdcbEd. Condition CI is therefore equivalent to postulate P2, often

referred to as the ‘‘Sure Thing Principle’’, introduced by Savage (1954).

The following definition is adapted from Wakker (1989a, page 80).

Definition 4. (Condition CCI). Let c be a binary relation on A. This relation is said to

satisfy CCI if:

aiacbib

and

cibcdia
and

djcccjd

)
Zajccbjd;

for all i, jaN, all a, b, c, daA and all a, b, c, daC.

We refer to Wakker (1989a) for a thorough discussion of this condition and to the

references in Section 1 for a study of its possible variants.5 Note that, since we supposed

that all degenerate states were suppressed from N, we state here the condition for all i,

jaN, contrary to Wakker (1989a) who only states it for essential states i and j. Although

influent states may not be essential, they will turn out to be so for complete relations in

presence of CCI.
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3. Results

3.1. CI, CCI and preference differences

Conditions CI and CCI can easily be reformulated using the relations comparing

preference differences between outcomes introduced above. The, easy, case of CI is dealt

with first.
5Köbberling and Wakker (2003) have recently proposed a weakened version of CCI, using indifferences instead

of preferences in the above definition. They show that this condition, when coupled with monotonicity, may

replace the original condition in the characterization of SEU (they furthermore show that such a weakening is also

possible starting with the restricted versions of CCI mentioned above used to characterize Choquet Expected

Utility and Cumulative Prospect Theory). In our nontransitive setting, such a weakening of CCI does not seem to

lead, on its own, to interesting restrictions on c. We do not consider it here.
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Proposition 5. Let c be a binary relation on A. Then c satisfies CI if and only if and only

if (iff) (a,a)f *(b,b), for all a, baC.

Proof. It is clear that [c satisfies CI]Z[aiacaibZbiacbib, for all a, baC, all iaN and

all a, baA]Z[(a,a)f *(b,b) for all a, baC]. 5

The following summarizes the main consequences of CCI when c is complete.

Lemma 6. Let c be a complete relation on A. If c satisfies CCI then:

(1) c* is complete,

(2) Not[(a,b)c*(c,d)]Z (b,a)c*(d,c),
(3) c** is complete,

(4) c satisfies CI,

(5) [af b and (c,d)]d**(ai,bi)]Z ciaddib,
(6) all states are essential.

for all a, baA, all iaN and all a, b, c, daC.

Proof. Part 1. Suppose that c* is not complete so that, for some a, b, c,
daC, Not[(a,b)c*(c,d)] and Not[(c,d)c*(a,b)]. By definition, this implies

aiacbib, Not[ciacdib], cjccdjd and Not[ajccbjd], for some i, jaN and some a,

a, b, c, daA. Since c is complete, we have dibccia. Using CCI, aiacbib, dibccia
dibccia and cjccdjd imply ajccbjd, a contradiction.

Part 2. Suppose that, for some a, b, c, daC, Not[(a,b)c*(c,d)] and Not[(b,a)c*(d,c)].
By definition, we have ciacdib, Not[aiacbib], djcccjd and Not[bjccajd], for some

i, jaN and some a, b, c, daA. Since c is complete, we have bibcaia. Using CCI,

bibcaia, ciacdib and djcccjd imply bjccajd, a contradiction. Part 3 easily follows

from parts 1 and 2.

Part 4. Since c** is complete and reversible, we have (a,a)f *(b,b), for all

a,baC. CI therefore follows using Proposition 5.

Part 5. Let a = ai and b = bi. Suppose that af b and (c,d)c**(a,b). Since we have

(c,d)c*(a,b), we obtain, using Eq. (1), ciacdib. Suppose therefore, in contradiction

with the thesis, that dibccia. Since c** is complete, (c,d)d**(a,b)ZNot[(a,b)c**(c,d)]
Z[(c,d)d*(a,b) or (b,a)d*(d,c)].

Suppose that (c,d)d*(a,b). This implies that there are c, daA such that, for

some jaN, cjccdjd and Not[ajccbjd]. Now aiacbib, dibccia and cjccdjd imply, using

CCI, ajccbjd, a contradiction. The case (b,a)d*(d,c) is similar.

Part 6. By hypothesis, each state iaN is influent. Therefore, there are a, b, c, daC
and a, baA such that aiacbib and Not[ciacdib] (and, hence, dibdcia, since c is

complete). If cicddic or dicdcic for some caA, then state iaN is essential by

construction. Suppose therefore that cicf dic, for all caA.

It is easy to show that when c is complete and satisfies CCI, if any of the premises

of CCI holds with d instead of c, the conclusion of CCI must hold with d. Now, using

CCI, aiacbib, dibdcia and cicf dic imply aicdbic. Hence state iaN is essential. 5

As was the case with CI, it turns out that CCI can easily be characterized using our

relations comparing preference differences.
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Proposition 7. Letc be a complete relation onA. Thenc satisfies CCI iffc** is complete

and [af b and (c,d)d**(ai, bi)]Z ciaddib, for all a, baA, all iaN and all c, daC.

Proof. Necessity results from Lemma 6. We show sufficiency. Suppose that aiacbib,
cibcdia and djcccjd. In contradiction with CCI suppose that bjddajc. By definition,

djcccjd and Not[ajccbjd] imply Not[(a,b)c*(d,c)], so that (d,c)d**(a,b), since c** is

complete. Now aiacbib and (d,c)d**(a,b) imply diadcib, a contradiction. 5

The above proposition shows that a complete binary relation c on A that satisfies CCI

is already quite well structured: there is a reversible weak order comparing preference

differences between outcomes and c is strictly monotonic w.r.t. this relation. The

additional strength of CCI compared to CI should be apparent considering their respective

impact on c* and c**. On its own, CI, even when coupled with completeness, does not

imply that any of our relations comparing preference differences are complete.

Our experience is that the structuring of preferences brought by CCI is even more

apparent considering its consequences in terms of numerical representations to which we

now turn.

3.2. Numerical representations

We envisage a model in which:

acbZFðpða1;b1Þ; pða2;b2Þ; . . . ; pðan;bnÞÞz0 ðMÞ

where p is a real-valued function on C2 that is skew symmetric (i.e. p(a,b) =� p(b,a)) and
F is a real-valued function on p(C2)n that is increasing in all its arguments and odd (i.e.

such that F(x) =�F(� x), abusing notation in an obvious way). As shown below, model

(M) turns out to have close links with CCI.

Proposition 8. Suppose that Cis finite or countably infinite. A binary relation c on A
satisfies model (M) iff it is complete and satisfies CCI.

Proof. Necessity. The completeness of c follows from the skew-symmetry of p and the

oddness of F. Suppose now that CCI is violated so that aiacbib, cibcdia, djcccjd and

Not[ajccbjd].
Using model (M) we have, abusing notation,

Fðpða; bÞ;K�iÞz0;

Fðpðc; dÞ;�K�iÞz0;

Fðpðd; cÞ;L�jÞz0;

Fðpða; bÞ;L�jÞ < 0:

Using the oddness of F, its increasingness and the skew symmetry of p, the first and

the second inequalities imply p(a,b)z p(d,c), whereas the third and the fourth imply

p(d,c)>p(a,b), a contradiction.

Sufficiency. Since c is complete and satisfies CCI, we know from Lemma 6 that

c** is complete so that it is a weak order. This implies that c* is a weak order.
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Therefore, since C is finite or countably infinite, there is a real-valued function q

such that, for all a, b, c, daC,

ða;bÞc*ðc;dÞZqða;bÞzqðc;dÞ: ð5Þ

Using any such function q, define p letting, for all a, baC, p(a,b) = q(a,b)� q(b,a).
It is easy to show that p is skew-symmetric and represents c**.

Define F letting, for all a, baA,

Fðpða1;b1Þ; pða2;b2Þ; . . . ; pðan;bnÞÞ ¼

exp

�Xn
i¼1

pðai;biÞ
�

if adb;

0 if afb;

�exp

�
�
Xn
i¼1

pðai;biÞ
�

otherwise:

8>>>>>>><
>>>>>>>:

ð6Þ

The well-definedness of F follows from Eq. (4). It is odd by construction since c is

complete. Let us show that it is increasing. Suppose that p(a,b)>p(ai,bi). If adb, we

obtain, using Eq. (3), aiadbib and the conclusion follows from the definition of F. If

af b, we obtain, using Proposition 7, aiadbib and the conclusion follows from the

definition of F. If bda, we have either bibdaia, bibf aia, or aiadbib. In either case, the

conclusion follows from the definition of F. 5

Remark 9. Before tackling the general case, let us note that the uniqueness properties of

the functions used in model (M) are clearly quite weak. Since we do not study this

model for its own sake but as a framework allowing us to understand the consequences

of a number of requirements on c, we do not study them here; an analysis of these

properties is easily inferred from the results in Bouyssou and Pirlot (2002).

The extension of proposition Proposition 8 to sets of arbitrary cardinality is

straightforward. Let hF, pi be a representation of c in model (M). It is clear that we

must have:

ða;bÞd**ðc;dÞZpða;bÞ > pðc; dÞ: ð7Þ

Hence, when model (M) holds, the weak order cp induced on C2 by p refines c**. A

necessary condition for model (M) to hold is C2 has a finite or countable order dense subset

for cp (see Fishburn, 1970, ch. 3 or Krantz et al., 1971, ch. 2). Since this weak order

refines c**, it is clear that C2 will then have a finite or countable order dense subset for

c**. Let us call OD the assertion that C2 has a finite or countable order dense subset for

c**. We have shown that OD is necessary for model (M). The proof of Proposition

8 shows that adding this condition to the completeness of c and CCI is also sufficient

for (M). We omit the cumbersome and apparently uninformative reformulation of OD in

terms of c. We have thus proved the following.

Theorem 10. A binary relation c on A satisfies model (M) iff it is complete and satisfies

CCI and OD.
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Using model (M), it is easy to derive more consequences of the combination of

completeness and CCI. We omit the simple proof of the following, which shows that, in

spite of the absence of transitivity of c, model (M) implies many of the usual

monotonicity properties of the SEU model.

Proposition 11. Let c be a binary relation on A satisfying model (M). Then for all a, b a
A, all a, baC and all nonempty EoN,

(1) [aicCbi for all iaN]Z [acb],

(2) [aicCbi for all iaN and ajdCbj for some jaN]Z [adb],

(3) aEacbEaZacCb.

Remark 12. It may be instructive to analyze which of the classical postulates used in

Savage (1954) (excluding P6 and P7, which are not pertinent in our setting with a finite

number of states) are satisfied by model (M). It is not difficult to see that model (M) keeps

all of P2 (since CI holds), P3 (in view of part 3 of proposition 11) and P5 (it is easy to see

that adCbZp(a,b)>0, which must be true for some a,b if all states are to be influent; this

implies that d cannot be empty). It keeps only the completeness part of P1, abandoning

transitivity. Simple examples show that model (M) may violate postulate P4. As should be

apparent from its formulation, model (M) does not, in general, allow tastes to be separated

from beliefs.

Remark 13. Consider now model (MV), which is obtained from model (M) abandoning the

increasingness of F in its arguments. In order to better appreciate the relative strengths of

CI and CCI, it is interesting to note that the conjunction of completeness and CI is

tantamount to (MV). We show this below in the case of a finite or countably infinite set C,
leaving to the reader the, easy, task of extending the result to the general case (this requires

limiting the cardinality of C2/f **).

Proposition 14. Suppose that C is finite or countably infinite. A binary relation c on A
satisfies model (M V) iff it is complete and satisfies CI.

Proof. Necessity. The completeness of c follows from the skew-symmetry of p and the

oddness of F. CI follows from p(a, a) = 0 and F(0) = 0.

Sufficiency. Let z C be any linear order on C, i.e. a complete, antisymmetric and

transitive relation. Consider the set � ={(a,b): a, baC and a>Cb}, where >C denotes the

asymmetric part of z C. Since C is finite or countably infinite, so is � . Therefore, there

is a one-to-one function q between � and some subset of N\{0}.

Define p on C2 letting, for all a, baC,
pða;bÞ ¼ qða;bÞ if ða;bÞa� ;

pða;bÞ ¼ 0 if a ¼ b;
pða;bÞ ¼ �qðb;aÞ if apb and ða;bÞg� :
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By construction, p is skew symmetric. Using such a p define F letting:

Fðpða1;b1Þ;. . . ; pðan;bnÞÞ¼
( þ1 if adb;

0 if afb;
�1 otherwise:

ð8Þ

By construction, p(a,b) = p(c,d) implies [a = b and c = d)]. Since, c satisfies CI, we

know from Proposition 5 that (a,a)f *(c,c) so that (a,a)f **(c,c). This shows, using

Eq. (4), that F is well-defined. It is odd since c is complete. 5

Remark 15. In Bouyssou and Pirlot (2002), we consider several models that, when

translated into the framework of decision under uncertainty, fall ‘‘in between’’ and (MV)
and (M), e.g. a model in which F is odd and nondecreasing in all its arguments. The

analysis of such models is straightforward adequately reformulating the conditions

introduced by Bouyssou and Pirlot (2002).

4. Discussion

It may be interesting to briefly compare Theorem 10 with the characterization of SEU

proposed by Wakker (1989a). We recall his result below considering only the case in

which there are at least two states and all states are influent (and, hence, essential—

therefore we omit the condition of separability, see Wakker (1989a, Remark A.3.1, page

163) or Wakker (1988a, Th. 6.2, page 430)).

Theorem 16. (Wakker (1989a, Th. IV.2.7, page 83)). Suppose that C is a connected

topological space and endow Awith the product topology. Suppose that nz 2 and that all

states are influent. There is a continuous real valued function u on C and n positive real

numbers pi that add up to 1 such that, for all a, baA,

acbZ
Xn
i¼1

piuðaiÞz
Xn
i¼1

piuðbiÞ; ðSEUÞ

iff

˙ c is complete,

˙ c satisfies CCI,

˙ c is continuous (i.e. the sets {aaA: adb} and {aaA: bda} are open for all baA),

˙ c is transitive.

Furthermore, u is unique up to a scale and location and the pi are unique.

Theorem 10 abandons the topological assumptions on C and hence continuity. It also

drops transitivity. Given such differences, it is rather surprising that, as already observed,



D. Bouyssou, M. Pirlot / Mathematical Social Sciences 48 (2004) 11–22 21
the resulting model (M) keeps a number of important properties of model (SEU). This is

an indication of the power of CCI combined with completeness.

It should be noted that model (M) is far from being the only possible model taking

intransitivities into account in decision making under uncertainty. Models of this type have

already been suggested by Fishburn (1984, 1988, 1989, 1990), Fishburn and Lavalle

(1987a,b), Lavalle and Fishburn (1987), Nakamura (1998). Most of these models are

closely related to model (M) but use an additive F together with probabilities for each

state. The closest to model (M) is the Skew Symmetric Additive (SSA) model with a finite

number of states introduced by Fishburn (1990). This model uses the following numerical

representation:

acbZ
Xn
i¼1

piUðai;biÞz0; ðSSAÞ

where pi are positive real numbers that add up to one and U is a skew symmetric real-

valued function on C2.

It is not difficult to see that this model implies the completeness of c as well as CCI.

The characterization proposed by Fishburn (1990) requires a rich topological structure

for C and a formulation of continuity adapted to the nontransitive case. The necessary

axioms that are used (i.e. axioms 3–5) have close connections with CCI while being

collectively stronger.
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