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ABSTRACT
Software package distributions form large dependency networks
maintained by large communities of contributors. My PhD research
will consist of analysing the evolution of the socio-technical con-
gruence of these package dependency networks, and studying its
impact on the health of the ecosystem and its community. I have
started a longitudinal empirical study of Cargo’s dependency net-
work and the social (commenting) and technical (development)
activities in Cargo’s package repositories on GitHub, and present
some preliminary findings.
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1 INTRODUCTION
Today’s software development is increasingly relying on software
package libraries distributed through open source software (OSS)
package managers (such as Cargo, npm, Maven and CRAN). Rather
than writing software from scratch, developers often choose to
depend on existing software packages. At the same time, collabo-
rative online development platforms like GitHub make software
development an inherently social phenomenon [8, 21].

The collection of packages distributed by a software package
manager forms a socio-technical dependency network. Packages
depend on other packages that are required for installing and de-
ploying them. Software developers are technically contributing to
these packages (e.g., by making commits, pull requests to the pack-
age’s git repository). Software developers are also socially active
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(e.g., by commenting on the commit and pull request activities).
The phenomenon of socio-technical congruence (a.k.a. Conway’s
law) [7, 13] assumes that the package dependency network structure
and the communication structure of its community of contributors
are tightly interwoven. Very little research focuses on such socio-
technical congruence at the ecosystem level [22], or studies show
the congruence evolves over time [5].

My PhD research aims to empirically study, within evolving
OSS ecosystems, the socio-technical congruence between package
dependencies, the interaction patterns of package contributors and
how this affects the health of the ecosystem. To do so I will explore 3
research questions: RQ1 How does the dependency network structure
influence social activity? RQ2 How does the social activity of package
contributors increase their likelihood to start/stop depending on this
package? RQ3 How does the social activity of package contributors
increase their likelihood to start/stop becoming technically active?

In the first phase, I will focus on packages distributed through
the Cargo package manager and developed on GitHub by studying
their technical development activity (e.g., GitHub commits and pull
requests) and social communication activity (e.g., commit comments
and pull requests comments). Other activity types and packaging
ecosystems will be explored in a later phase, on the basis of the
results obtained in the first phase. These questions will focus on
the expected benefits that socio-technical congruence will have on
the health of the ecosystem and its community, such as increased
productivity, responsiveness, contributor intake and retention.

2 BACKGROUND
Software ecosystems are large collections of interconnected soft-
ware components with complex socio-technical interaction pat-
terns [19, 20]. Typical well-studied ecosystems are software library
registries [9, 11, 15] (e.g., npm, PyPI, RubyGems, Maven, Cargo)
allowing to reuse software libraries for specific programming lan-
guages. Their technical dependency networks grow at a rapid pace
and may contain fragile packages that have a high transitive im-
pact [10]. Ecosystem-specific policies, values and technical choices
play an important role in how such networks evolve over time [4].

Social issues are at least as important as technical ones. Social
coding platforms can lead to effective work coordination strate-
gies [8] and have become indispensable collaborative environments
for software ecosystems [13]. Researchers have studied the social
aspects of how developer teams interact and evolve [18], how new-
comers progress in a software project [25, 26], how the core team
grows over time [23], how developer teams get renewed [6], and
how socio-technical patterns affect software success or failure [24].

Social and technical issues are tightly interwoven and should
be addressed conjointly, because of Conway’s law stating that the

1226

https://doi.org/10.1145/3338906.3342497
https://doi.org/10.1145/3338906.3342497


ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Mehdi Golzadeh

software structure mimicks the communication and coordination
structure of the community developing it [3, 7, 13, 17]. New models
are required to better understand such socio-technical congruence
at the ecosystem level [22]. In addition, the temporal dimension
needs to be taken into account since the contributor and technical
relationships evolve over time [5]. Combining social and technical
information leads to better prediction models, for example to detect
faults in software components [1, 2], to predict if a project partici-
pant will become a developer [12], and to recommend experts [16].

3 DATA EXTRACTION AND ANALYSIS
The libraries.io monitoring service contains package metadata, in-
cluding dependencies for 36 different package managers. I have
selected the Cargo package manager for the Rust programming
language as a first case study. It was created in 2014, and most of its
packages are developed on GitHub. Cargo is growing fast in number
of packages, package releases, dependencies and contributors [10].

I used on a datadump of libraries.io [14] to extract the tempo-
ral evolution of Cargo’s package dependency network. For each
package, I extracted the package name, release number and date,
maintainer, package dependencies and their versioning constraints.
The dataset contained +15K packages, +66K package releases and
+48K dependency relations. I retrieved the (optional) link to the
corresponding development repositories. I downloaded the rele-
vant historical socio-technical data from their GitHub repositories.
This data includes all contributors and their role, the social com-
menting activities they were involved in (+904K comments), and
the technical development activities they had conducted (+942K
commits, +145K pull requests and +266K issues). 3,170 repositories
had no comments, and comments follow the Pareto rule (80% of all
comments belong to < 20% of all repositories).

To study the socio-technical congruence of Cargo, I am analysing
its package dependency network and the associated technical and
social activities of its contributors. I report some preliminary anec-
dotal results below. They need to be complemented with proper
statistical hypothesis testing, regression and survival analysis, and
prediction modeling. I started to investigate how the presence of
commenting activity in a package repository relates to the intro-
duction of dependency to that package. To do so, I considered all
packages in which a new dependency was added, and analysed
whether commenting activity could be observed in the target pack-
age repository before or after depending on it. Figure 1 summarises
the results. One can observe that in more cases commenting activity
started after depending on that package. An important shift in be-
haviour can be observed since September 2016, where the number
of packages with commenting activity before starting to depend on
them is increasing and even exceeds in September 2017 the number
of packages with commenting activity after starting to depend on
them. Why this occurs remains an open question for now.

In order to assess which types of comments (i.e., commit com-
ments, issue comments, pull request comments or pull request
review comments) are more likely to lead to the introduction of
new package dependencies, I analysed their relative proportion in
repositories prior to the addition of a dependency toward those
packages. Figure 2 presents these results. Among the four types
of comments, the proportion of comments on pull requests and
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Figure 1: Number of package repositories with first commenting ac-
tivity before or after starting to depend on a package.
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Figure 2: Proportion of comment types made in the repositories of
packages before starting to depend on that package.
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Figure 3: Number of caseswith comment activity (by comment type)
before starting to technically contribute to a package.

issue requests is considerably higher than for commit comments
and pull request review comments. I hypothesise that commenting
on pull requests and issue requests for a package could serve as a
good predictor for adding new dependencies to that package. More
detailed statistical analyses are needed to confirm this hypothesis.

I also started to investigate whether social (i.e., commenting)
activity on a package repository increases the likelihood to become
technically active on that repository (i.e., submitting commits or
pull requests). Figure 3 presents some preliminary results. Consid-
ering the four comment types, issue comments appear to be more
likely to result in becoming technically active on a package repos-
itory. The figure shows the number of observations in which the
contributor had a type of comment activity on the package before
starting to contribute to it.

4 CONCLUSION
Given that my PhD research project just started, I only have pre-
liminary results about the evolution of the socio-technical congru-
ence of the Cargo packaging ecosystem. During my PhD studies I
intend to gain a deeper understanding of the dynamics of this phe-
nomenon, and complement this by studying the expected benefits
on the ecosystem’s health, such as increased popularity, produc-
tivity, responsiveness, contributor intake and retention. I intend
to conduct similar studies on other packaging ecosystems, in or-
der to compare their socio-technical congruence and the effect of
ecosystem-specific policies and values.
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