
Analysing Socio-technical Congruence in the Package
Dependency Network of Cargo

Mehdi Golzadeh
Software Engineering Lab, UMONS

Mons, Belgium
mehdi.golzadeh@umons.ac.be

ABSTRACT
Software package distributions form large dependency networks
maintained by large communities of contributors. My PhD research
will consist of analysing the evolution of the socio-technical con-
gruence of these package dependency networks, and studying its
impact on the health of the ecosystem and its community. I have
started a longitudinal empirical study of Cargo’s dependency net-
work and the social (commenting) and technical (development)
activities in Cargo’s package repositories on GitHub, and present
some preliminary findings.

CCS CONCEPTS
•Human-centered computing→Empirical studies in collab-
orative and social computing.

KEYWORDS
Socio-Technical congruence, Software ecosystem, Software reposi-
tory mining, Software development, Package dependency network

ACM Reference Format:
Mehdi Golzadeh. 2019. Analysing Socio-technical Congruence in the Pack-
age Dependency Network of Cargo. In Proceedings of the 27th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3338906.3342497

1 INTRODUCTION
Today’s software development is increasingly relying on software
package libraries distributed through open source software (OSS)
package managers (such as Cargo, npm, Maven and CRAN). Rather
than writing software from scratch, developers often choose to
depend on existing software packages. At the same time, collabo-
rative online development platforms like GitHub make software
development an inherently social phenomenon [8, 21].

The collection of packages distributed by a software package
manager forms a socio-technical dependency network. Packages
depend on other packages that are required for installing and de-
ploying them. Software developers are technically contributing to
these packages (e.g., by making commits, pull requests to the pack-
age’s git repository). Software developers are also socially active

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5572-8/19/08.
https://doi.org/10.1145/3338906.3342497

(e.g., by commenting on the commit and pull request activities).
The phenomenon of socio-technical congruence (a.k.a. Conway’s
law) [7, 13] assumes that the package dependency network structure
and the communication structure of its community of contributors
are tightly interwoven. Very little research focuses on such socio-
technical congruence at the ecosystem level [22], or studies show
the congruence evolves over time [5].

My PhD research aims to empirically study, within evolving
OSS ecosystems, the socio-technical congruence between package
dependencies, the interaction patterns of package contributors and
how this affects the health of the ecosystem. To do so I will explore 3
research questions: RQ1 How does the dependency network structure
influence social activity? RQ2 How does the social activity of package
contributors increase their likelihood to start/stop depending on this
package? RQ3 How does the social activity of package contributors
increase their likelihood to start/stop becoming technically active?

In the first phase, I will focus on packages distributed through
the Cargo package manager and developed on GitHub by studying
their technical development activity (e.g., GitHub commits and pull
requests) and social communication activity (e.g., commit comments
and pull requests comments). Other activity types and packaging
ecosystems will be explored in a later phase, on the basis of the
results obtained in the first phase. These questions will focus on
the expected benefits that socio-technical congruence will have on
the health of the ecosystem and its community, such as increased
productivity, responsiveness, contributor intake and retention.

2 BACKGROUND
Software ecosystems are large collections of interconnected soft-
ware components with complex socio-technical interaction pat-
terns [19, 20]. Typical well-studied ecosystems are software library
registries [9, 11, 15] (e.g., npm, PyPI, RubyGems, Maven, Cargo)
allowing to reuse software libraries for specific programming lan-
guages. Their technical dependency networks grow at a rapid pace
and may contain fragile packages that have a high transitive im-
pact [10]. Ecosystem-specific policies, values and technical choices
play an important role in how such networks evolve over time [4].

Social issues are at least as important as technical ones. Social
coding platforms can lead to effective work coordination strate-
gies [8] and have become indispensable collaborative environments
for software ecosystems [13]. Researchers have studied the social
aspects of how developer teams interact and evolve [18], how new-
comers progress in a software project [25, 26], how the core team
grows over time [23], how developer teams get renewed [6], and
how socio-technical patterns affect software success or failure [24].

Social and technical issues are tightly interwoven and should
be addressed conjointly, because of Conway’s law stating that the

1226

https://doi.org/10.1145/3338906.3342497
https://doi.org/10.1145/3338906.3342497


ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Mehdi Golzadeh

software structure mimicks the communication and coordination
structure of the community developing it [3, 7, 13, 17]. New models
are required to better understand such socio-technical congruence
at the ecosystem level [22]. In addition, the temporal dimension
needs to be taken into account since the contributor and technical
relationships evolve over time [5]. Combining social and technical
information leads to better prediction models, for example to detect
faults in software components [1, 2], to predict if a project partici-
pant will become a developer [12], and to recommend experts [16].

3 DATA EXTRACTION AND ANALYSIS
The libraries.io monitoring service contains package metadata, in-
cluding dependencies for 36 different package managers. I have
selected the Cargo package manager for the Rust programming
language as a first case study. It was created in 2014, and most of its
packages are developed on GitHub. Cargo is growing fast in number
of packages, package releases, dependencies and contributors [10].

I used on a datadump of libraries.io [14] to extract the tempo-
ral evolution of Cargo’s package dependency network. For each
package, I extracted the package name, release number and date,
maintainer, package dependencies and their versioning constraints.
The dataset contained +15K packages, +66K package releases and
+48K dependency relations. I retrieved the (optional) link to the
corresponding development repositories. I downloaded the rele-
vant historical socio-technical data from their GitHub repositories.
This data includes all contributors and their role, the social com-
menting activities they were involved in (+904K comments), and
the technical development activities they had conducted (+942K
commits, +145K pull requests and +266K issues). 3,170 repositories
had no comments, and comments follow the Pareto rule (80% of all
comments belong to < 20% of all repositories).

To study the socio-technical congruence of Cargo, I am analysing
its package dependency network and the associated technical and
social activities of its contributors. I report some preliminary anec-
dotal results below. They need to be complemented with proper
statistical hypothesis testing, regression and survival analysis, and
prediction modeling. I started to investigate how the presence of
commenting activity in a package repository relates to the intro-
duction of dependency to that package. To do so, I considered all
packages in which a new dependency was added, and analysed
whether commenting activity could be observed in the target pack-
age repository before or after depending on it. Figure 1 summarises
the results. One can observe that in more cases commenting activity
started after depending on that package. An important shift in be-
haviour can be observed since September 2016, where the number
of packages with commenting activity before starting to depend on
them is increasing and even exceeds in September 2017 the number
of packages with commenting activity after starting to depend on
them. Why this occurs remains an open question for now.

In order to assess which types of comments (i.e., commit com-
ments, issue comments, pull request comments or pull request
review comments) are more likely to lead to the introduction of
new package dependencies, I analysed their relative proportion in
repositories prior to the addition of a dependency toward those
packages. Figure 2 presents these results. Among the four types
of comments, the proportion of comments on pull requests and

2015-01 2015-05 2015-09 2016-01 2016-05 2016-09 2017-01 2017-05 2017-09 2018-01 2018-05
0

50

100

150

P
ac

ka
ge

 R
ep

os
ito

rie
s

After
Before

Figure 1: Number of package repositories with first commenting ac-
tivity before or after starting to depend on a package.

2015-01 2015-05 2015-09 2016-01 2016-05 2016-09 2017-01 2017-05 2017-09 2018-01 2018-05

0.1

0.2

0.3

0.4

0.5

P
ro

po
rti

on
 o

f C
om

m
en

t

Commit
Issue
PullReview
Pull

Figure 2: Proportion of comment types made in the repositories of
packages before starting to depend on that package.

2014-02 2014-08 2015-02 2015-08 2016-02 2016-08 2017-02 2017-08 2018-02
0

50

100

150

200

250

300

350

Nu
m

be
r o

f c
as

es

Commit Comment
Pull Comment
Issue Comment
Pull Review Comment

Figure 3: Number of caseswith comment activity (by comment type)
before starting to technically contribute to a package.

issue requests is considerably higher than for commit comments
and pull request review comments. I hypothesise that commenting
on pull requests and issue requests for a package could serve as a
good predictor for adding new dependencies to that package. More
detailed statistical analyses are needed to confirm this hypothesis.

I also started to investigate whether social (i.e., commenting)
activity on a package repository increases the likelihood to become
technically active on that repository (i.e., submitting commits or
pull requests). Figure 3 presents some preliminary results. Consid-
ering the four comment types, issue comments appear to be more
likely to result in becoming technically active on a package repos-
itory. The figure shows the number of observations in which the
contributor had a type of comment activity on the package before
starting to contribute to it.

4 CONCLUSION
Given that my PhD research project just started, I only have pre-
liminary results about the evolution of the socio-technical congru-
ence of the Cargo packaging ecosystem. During my PhD studies I
intend to gain a deeper understanding of the dynamics of this phe-
nomenon, and complement this by studying the expected benefits
on the ecosystem’s health, such as increased popularity, produc-
tivity, responsiveness, contributor intake and retention. I intend
to conduct similar studies on other packaging ecosystems, in or-
der to compare their socio-technical congruence and the effect of
ecosystem-specific policies and values.

Acknowledgement. This research is supported by the joint
FNRS / FWO Excellence of Science project 30446992 SECO-ASSIST.

1227



Analysing Socio-technical Congruence in the Package Dependency Network of Cargo ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos. 2012. Graph-based

analysis and prediction for software evolution. In International Conference on
Software Engineering (ICSE). 419–429. https://doi.org/10.1109/ICSE.2012.6227173

[2] Christian Bird, Nachiappan Nagappan, Harald Gall, Brendan Murphy, and
Premkumar Devanbu. 2009. Putting It All Together: Using Socio-technical Net-
works to Predict Failures. In International Symposium on Software Reliability
Engineering (ISSRE ’09). IEEE Computer Society, Washington, DC, USA, 109–119.
https://doi.org/10.1109/ISSRE.2009.17

[3] Kelly Blincoe, Francis Harrison, Navpreet Kaur, and Daniela Damian. 2019. Ref-
erence Coupling: An exploration of inter-project technical dependencies and
their characteristics within large software ecosystems. Information and Software
Technology 110 (2019), 174 – 189. https://doi.org/10.1016/j.infsof.2019.03.005

[4] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2016.
How to Break an API: Cost Negotiation and Community Values in Three Software
Ecosystems. In International Symposium on Foundations of Software Engineering
(FSE). ACM, 109–120. https://doi.org/10.1145/2950290.2950325

[5] Marcelo Cataldo and James D. Herbsleb. 2008. Communication Networks in Geo-
graphically Distributed Software Development. In ACM Conference on Computer
Supported Cooperative Work (CSCW ’08). ACM, New York, NY, USA, 579–588.
https://doi.org/10.1145/1460563.1460654

[6] Eleni Constantinou and Tom Mens. 2017. Socio-technical evolution of the Ruby
ecosystem in GitHub. In IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). 34–44. https://doi.org/10.1109/SANER.
2017.7884607

[7] M. Conway. 1968. How do Committees Invent? Datamation Journal (April 1968),
28–31.

[8] Laura A. Dabbish, H. Colleen Stuart, Jason Tsay, and James D. Herbsleb. 2012.
Social coding in GitHub: transparency and collaboration in an open software
repository. In Int’l Conf. Computer Supported Cooperative Work. 1277–1286.

[9] Alexandre Decan, Tom Mens, and Maelick Claes. 2017. An empirical comparison
of dependency issues in OSS packaging ecosystems. In International Conference
on Software Analysis, Evolution and Reengineering (SANER). 2–12. https://doi.
org/10.1109/SANER.2017.7884604

[10] Alexandre Decan, Tom Mens, and Philippe Grosjean. 2019. An empirical
comparison of dependency network evolution in seven software packaging
ecosystems. Empirical Software Engineering 24, 1 (February 2019), 381–416.
https://doi.org/10.1007/s10664-017-9589-y

[11] Jens Dietrich, David J. Pearce, Jacob Stringer, Amjed Tahir, and Kelly Blincoe.
2019. Dependency Versioning in the Wild. In International Conference on Mining
Software Repositories (MSR).

[12] Mohammad Gharehyazie, Daryl Posnett, and Vladimir Filkov. 2013. Social Ac-
tivities Rival Patch Submission For Prediction of Developer Initiation in OSS
Projects. In Int’l Conf. Software Maintenance.

[13] J. D. Herbsleb and R. E. Grinter. 1999. Architectures, coordination, and distance:
Conway’s law and beyond. IEEE Software 16, 5 (1999), 63–70.

[14] Jeremy Katz. 2018. Libraries.io Open Source Repository and Dependency Meta-
data (Version 1.4.0) [Data set]. http://doi.org/10.5281/zenodo.2536573.

[15] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl. 2017. Structure and Evolution of
Package Dependency Networks. In International Conference on Mining Software
Repositories (MSR). 102–112. https://doi.org/10.1109/MSR.2017.55

[16] Ghadeer A. Kintab, Chanchal K. Roy, and Gordon I. McCalla. 2014. Recom-
mending Software Experts Using Code Similarity and Social Heuristics. In Pro-
ceedings of 24th Annual International Conference on Computer Science and Soft-
ware Engineering (CASCON ’14). IBM Corp., Riverton, NJ, USA, 4–18. http:
//dl.acm.org/citation.cfm?id=2735522.2735526

[17] I. Kwan, A. Schroter, and D. Damian. 2011. Does Socio-Technical Congruence
Have an Effect on Software Build Success? A Study of Coordination in a Software
Project. IEEE Trans. Soft. Eng. 37, 3 (May 2011), 307–324. https://doi.org/10.1109/
TSE.2011.29

[18] Luis Lopez-Fernandez, Gregorio Robles, Jesus Gonzalez-Barahona, and Israel
Herraiz. 2009. Applying Social Network Analysis Techniques to Community-
driven Libre Software Projects. In Integrated Approaches in Information Technology
and Web Engineering: Advancing Organizational Knowledge Sharing. IGI Global,
Chapter 3, 28–50. https://doi.org/10.4018/978-1-60566-418-7.ch003

[19] Mircea Lungu. 2009. Reverse Engineering Software Ecosystems. Ph.D. Dissertation.
University of Lugano.

[20] Konstantinos Manikas and Klaus Marius Hansen. 2013. Software Ecosystems: A
Systematic Literature Review. J. Systems and Software 86, 5 (May 2013), 1294–1306.
http://dx.doi.org/10.1016/j.jss.2012.12.026

[21] Tom Mens, Marcelo Cataldo, and Daniela Damian. 2019. The Social Developer:
The Future of Software Development. IEEE Software 36 (January–February 2019).
https://doi.org/10.1109/MS.2018.2874316

[22] M. Palyart, G. C. Murphy, and V. Masrani. 2018. A Study of Social Interactions in
Open Source Component Use. IEEE Transactions on Software Engineering 44, 12
(dec 2018), 1132–1145. https://doi.org/10.1109/TSE.2017.2756043

[23] Gregorio Robles, Jesus M. Gonzalez-Barahona, and Israel Herraiz. 2009. Evolution
of the core team of developers in libre software projects. In Int’l Conf. Mining
Software Repositories. IEEE Computer Society, 167–170.

[24] Didi Surian, Yuan Tian, David Lo, Hong Cheng, and Ee-Peng Lim. 2013. Predicting
Project Outcome Leveraging Socio-Technical Network Patterns. In European Conf.
Software Maintenance and Reengineering.

[25] Minghui Zhou and Audris Mockus. 2011. Does the initial environment impact
the future of developers?. In Int’l Conf. Software Engineering. ACM, 271–280.
https://doi.org/10.1145/1985793.1985831

[26] Minghui Zhou and Audris Mockus. 2012. What make long term contributors: will-
ingness and opportunity in OSS community. In Int’l Conf. Software Engineering.
IEEE Press, 518–528.

1228

https://doi.org/10.1109/ICSE.2012.6227173
https://doi.org/10.1109/ISSRE.2009.17
https://doi.org/10.1016/j.infsof.2019.03.005
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1145/1460563.1460654
https://doi.org/10.1109/SANER.2017.7884607
https://doi.org/10.1109/SANER.2017.7884607
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1109/MSR.2017.55
http://dl.acm.org/citation.cfm?id=2735522.2735526
http://dl.acm.org/citation.cfm?id=2735522.2735526
https://doi.org/10.1109/TSE.2011.29
https://doi.org/10.1109/TSE.2011.29
https://doi.org/10.4018/978-1-60566-418-7.ch003
http://dx.doi.org/10.1016/j.jss.2012.12.026
https://doi.org/10.1109/MS.2018.2874316
https://doi.org/10.1109/TSE.2017.2756043
https://doi.org/10.1145/1985793.1985831

	Abstract
	1 Introduction
	2 Background
	3 Data Extraction and Analysis
	4 CONCLUSION
	References

