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Abstract

Data mining continues to play an important role in medicine; specifically, for the development

of diagnosis aid models used in expert and intelligent systems. Although we can find abundant

research on this topic, clinicians remain reluctant to use decision support tools. Social pressure

explains partly this lukewarm position, but concerns about reliability and credibility are also put

forward. To address this reticence, we emphasize the importance of the collaboration between both

data miners and clinicians. This survey lays the foundation for such an interaction, by focusing on

the specifics of diagnosis aid, and the related data modeling goals. On this regard, we propose an

overview on the requirements expected by the clinicians, who are both the experts and the final

users. Indeed, we believe that the interaction with clinicians should take place from the very first

steps of the process and throughout the development of the predictive models, thus not only at the

final validation stage. Actually, against a current research approach quite blindly driven by data,

we advocate the need for a new expert-aware approach. This survey paper provides guidelines to

contribute to the design of daily helpful diagnosis aid systems.

Keywords: Data Mining; Medicine; Diagnosis Aid; Explainable Artificial Intelligence

1. Introduction

As one of the trendiest research topics of our century, Data Mining (DM) makes key contribu-

tions to the scientific and technological advance in a considerable number of fields (Gupta, 2014;

PhridviRaj and GuruRao, 2014). Coined during the nineties, the discipline is subject to a tough

competition for the development of algorithms always more powerful, which aim at processing data
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Figure 1: Evolution of the annual number of publications related to medical data mining in the Scopus database (Sco-
pus) on a quarter of a century, from 1990 to 2015

to infer some knowledge in the form of patterns and/or relationships (Bellazzi and Zupan, 2008).

The associated techniques are derived from the fields of both statistics and Machine Learning (ML),

the latter which aims at developing computational methods able to extract generalizations from a

set of data (Giudici, 2005).

Medical applications feature among the concerns of the DM community, with a significant in-

crease in research interest over the last years (see Figure 1). This interaction comes in different

disciplines (Bellazzi et al., 2011): at the cellular and molecular level (bioinformatics); at the tis-

sue and organ level (imaging informatics); at the single patient level (clinical informatics); at the

population and society level (public health informatics).

For half a century now, diagnosis prediction has been a very active research area of clinical

informatics (Wagholikar et al., 2012). In this regard, with the advent of DM, research has progres-

sively shifted away from the statistical approach long considered as a standard practice. Actually,

under a hypothetico-deductive process, statistical analyses are driven to check a hypothesis stated

beforehand and data samples are collected for this special purpose (Yoo et al., 2012). This statis-

tical approach is surely adapted to raise differences between pathological and control groups, but

not to set an individual assessment, i.e. a clinical examination per subject. In contrast, enriched by

ML techniques, DM inductively processes a voluminous amount of data, to both extract knowledge

and develop predictive models able to help in diagnosing pathologies (Vieira et al., 2017; Yoo et al.,

2012; Bellazzi and Zupan, 2008). In such a process, statistics may find its place in feature engineer-
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ing, before the stage of model building which is mainly based on ML methods of classification or

regression (Esfandiari et al., 2014).

In that respect, it is through data mining that recent works were devoted to the early detection

of cancer, e.g. see Lyu and Haque (2018); Aličković and Subasi (2017); Cichosz et al. (2016); Nahar

et al. (2016); Esfandiari et al. (2014); Krishnaiah et al. (2013);Parvin et al. (2013); Gupta et al.

(2011). Other pathologies, such as cardiac and pulmonary diseases, diabetes, hypertension, meningi-

tis form besides a significant part of the research for more precise diagnoses (Esfandiari et al., 2014).

Several psychiatric disorders, such as Attention Deficit Hyperactivity Disorder (ADHD) (Itani et al.,

2018a; Abraham et al., 2017; Milham et al., 2012), Alzheimer (Papakostas et al., 2015), autism (Kos-

micki et al., 2015), schizophrenia, depression and Parkinson (Woo et al., 2017) are also the object

of extensive investigation.

As probably perceived by most of researchers, and certainly by the authors of the present paper,

diagnostic decision support systems that have been proposed so far are not unanimously approved

by clinicians (Wagholikar et al., 2012). Such systems, and the underlying predictive models, are

notably found as being far from the field reality. It is thus most likely that data miners are not

enough attentive to the specifics of medical diagnostic decision support. In particular, though the

DM community was sensitized about the distinctive nature of medical applications (Cios and Moore,

2002), the predictive performance remains practically the lonely parameter within the scope of data

miners, which encourages competition. This trend has been accentuated with the greater availability

of open medical databases, shared by different medical and research centers worldwide (Di Martino

et al., 2017; Woo et al., 2017; Di Martino et al., 2014; Esfandiari et al., 2014; Mennes et al., 2013;

Ihle et al., 2012; Kerr et al., 2012; Milham et al., 2012; Poline et al., 2012). Some of these datasets

were launched at the occasion of official contests, e.g. the ADHD-200 collection (Milham et al.,

2012). In focusing almost exclusively on performance, these research works (1) miss challenges of

better perceiving and understanding the issues proper to the medical field, (2) are exposed to the

risk of yielding inconsistent models, since notably, recent studies showed that there may be no logic

behind the predictions of accurate models (Ribeiro et al., 2016).

It is our strong conviction that the clinicians have to be involved in the whole development

process of their decision support systems. Indeed, they bring expertise and knowledge to contribute

to intelligent and expert systems. That is why, in the present paper, we will shed light upon the

specifics of medical data mining for diagnosis aid and raise the related data modeling goals. For

such a purpose, we will address the following questions.
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(1) How can decision support models be more attractive to clinicians? What are the expressed

requirements in this regard?

(2) What are the objectives corresponding to such requirements in terms of mathematical mod-

eling?

(3) In what way medical data, particularly in this era of open medical data proliferation, makes

data mining more challenging?

(4) To what extent are the current data mining techniques able to satisfy the clinicians’ needs

and to handle the particular nature of medical data simultaneously?

In answering these questions, we are led to describe a comprehensive expert-aware approach

which stands out from the existing literature, through three main contributions exposed below.

• Because of the limited effectiveness of some models, Karpatne et al. (2017) push for a theory-

guided data science. Such DM models are grounded in theoretical bases, in the domains of

Physics and Chemistry mainly. In the context of medical diagnosis, we can adopt a similar

approach, not guided by theory, but rather by the experts’ domain knowledge. Our paper

lays the bases for such an approach, in building a kind of bridge between both the medical

and data mining domains.

• We not only express that the issue of diagnosis aid is of a particular nature, we also propose

the translation of the associated specifics into modeling goals. Indeed, most of the papers

that have interest on the specifics of the medical domain have a wide scope, and are thus

not specifically focused on diagnosis, but also on prognosis and monitoring notably, which

involves that modeling is not discussed with enough depth (Bellazzi and Zupan, 2008; Cios

and Moore, 2002; Lavrač, 1999). Besides, we bring a more recent point of view compared

to the papers that specifically addressed aided medical diagnosis (Wagholikar et al., 2012;

Kononenko, 2001).

• We do not provide an overview of DM techniques and the related works; this was widely

proposed in previous surveys (Kalantari et al. 2018; Kourou et al. 2015; Esfandiari et al. 2014;

Wagholikar et al. 2012; Yoo et al. 2012). We rather question the existing DM techniques,

given the modeling goals raised following the understanding of the problem and data. This

allows us to raise some solid future research directions.

4



Predicted as . N P

Negative (N) TN FP

Positive (P) FN TP

Figure 2: Confusion matrix

The paper is organized as follows. In section 2, we expose the materials we considered to

structure and make our survey. The results are presented in section 3 and discussed in section 4.

Finally, we conclude this report in section 5.

2. Materials

2.1. Terminology

Medical diagnosis is the result of a challenging task which consists of collecting and conciliating

different information (Donner-Banzhoff et al., 2017; Hommersom and Lucas, 2016; Miller, 2016).

The latter include the symptoms (subjective data) and the signs (objective data) of the trouble

provided by clinical examinations and laboratory tests. In quest of explanations for these symptoms

and signs, the clinicians come to the conclusion of the existence/absence of a trouble, i.e. the

diagnosis.

A test is one among other elements that motivates a diagnosis (Gordis, 2014; Cios and Moore,

2002). The predictions of a clinical test are of several types. A patient with (respectively without)

the disease D predicted as such is designated as true positive (resp. true negative). In case of wrong

predictions, the patients are false positives or false negatives respectively. Let TP (resp. TN)

denote the number of True Positives (resp. True Negatives) and FP (resp. FN) the number of

False Positives (resp. False Negatives); these quantities are usually exposed in a matrix of confusion

(see Figure 2) (Witten et al., 2005). Different scalar metrics are computed from TP , TN , FP and

FN to assess the performance of clinical tests; they are exposed in Table 1 (Lalkhen and McCluskey,

2008; Akobeng, 2007a,b). Let us note that positive and negative predictive values depend on the

prevalence of the disease (Akobeng, 2007a): they are easily deduced from the knowledge of sensitivity

and specificity, which are free from such an influence.

When several tests are required to check the presence of a medical condition, these tests may

be assessed globally in terms of net sensitivity and net specificity. The values of these indicators

depend on the way in which the tests were administered, i.e. sequentially or simultaneously (Gordis,

2014). Figures 3 and 4 present the mechanisms of sequential and parallel testing. For illustration
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Metric Definition Formula

Accuracy (A) Rate of successful predictions A = TP+TN
TP+FP+TN+FN

Sensitivity or
true positive rate (tp)

. Ability to detect patients with a given
disease. tp = TP

TP+FN
. Probability that a patient with dis-
ease tests positive.

Specificity or
true negative rate (tn)

. Ability to detect patients without a
given disease. tn = TN

TN+FP
. Probability that a patient without
disease tests negative.

Positive Predictive Value
(PPV )

Chance that a patient, predicted as
having a given disease, is truly so.

PPV = TP
TP+FP

Negative Predictive Value
(NPV )

Chance that a patient, predicted as free
from a given disease, is truly so.

NPV = TN
TN+FN

Table 1: Performance metrics of screening tests

Test 1
(𝑡𝑝1, 𝑡𝑛1)

Negative

Positive
Positive

Negative

Test 2

(𝑡𝑝2, 𝑡𝑛2)

Figure 3: Sequential testing

Test 1
(𝑡𝑝1, 𝑡𝑛1)

Test 2
(𝑡𝑝2, 𝑡𝑛2)

Negative

Test 1
(𝑡𝑝1, 𝑡𝑛1)

Test 2
(𝑡𝑝2, 𝑡𝑛2)

PositiveNegative

PositiveNegative

Negative

Figure 4: Parallel testing
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purposes, the example presents the case of two tests; the associated reasoning may be generalized to

situations involving more tests. In case of sequential testing, a patient is submitted to another round

of examination if he/she tested positive, in order to settle definitely his/her medical condition. If

the patient tests positive following a second round of examination, the subject is diagnosed with the

disease in question. Thus, if one of both tests presents a negative result, the patient is considered

as disease-free. The associated net sensitivity and specificity are expressed as:

tp = tp1 · tp2 and tn = tn1 + tn2 − tn1 · tn2.

In contrast, in case of parallel testing, a patient is considered as negative once all tests confirm this

condition simultaneously. In this case, the associated net specificity and sensitivity are given by:

tn = tn1 · tn2 and tp = tp1 + tp2 − tp1 · tp2.

In the same way that a clinician can ask for the opinion of an expert confrere, he/she can

resort to models for diagnosis aid. The only difference between both scenarios rests on the external

nature of the diagnostic support, either human or computerized. The data of one or several test(s)

are potential inputs for diagnosis aid models. It should be noted that non-interpreted outcomes of

testing (e.g. a cholesterol level, a scan) constitute the model inputs, and not the value of the test(s),

i.e. positive or negative. Actually, it is the role of the predictive model to determine a patient’s

medical condition in output.

In light of the foregoing, in the present survey, what we refer to as a model is different from a test,

the latter being a potential input of the former. A model provides a recommendation of diagnosis;

a test provides a result that allows, among other potential information, to make a diagnosis.

2.2. The knowledge discovery process

The extraction of knowledge for the purpose of diagnosis aid fits into a Knowledge Discovery

Process (KDP). Since its pioneer formalization by Fayyad et al. (1996), alternative models were

proposed, either academically- or industrially-minded (Kurgan and Musilek, 2006). In particular,

the KDP was adapted for medical applications and illustrated for the issue of diagnosis aid by Cios

et al. (2007, 2000). The associated steps are summarized below.

Understanding of the problem The process is initiated by the problem statement, the defini-

tion of the objectives, and the sufficient appropriation of a domain-specific vocabulary. Obvi-
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ously, interactions with domain experts are essential. At this level, the choice of data mining

techniques is partially foreseen given the expressed requirements.

Understanding of the data This step consists of collecting and exploring data, i.e. observing

and analyzing the information.

Preparation of the data The creation of target datasets (Fayyad et al., 1996) involves notably

noise removal as well as checking the completeness and consistency of data. Then, data are

processed through engineering, selection and possible reduction of pertinent features.

Data mining This process receives the prepared datasets, and extracts knowledge, i.e. patterns,

relationships (Bellazzi and Zupan, 2008).

Evaluation of the discovered knowledge The results are closely considered: they are expected

to bring new and interesting elements, to be understood and to make sense. Here, domain

experts have to play an important role in their ability to interpret and assess the results.

Use of the discovered knowledge It can lead to action taking, decision making or systems de-

ployment (Fayyad et al., 1996).

The KDP is not strictly a one-way process as it is not excluded to reconsider the work of previous

stages: this allows to reinforce the consistency of the results (Cios et al., 2007). For example, the final

evaluation may ask for refining the results. Or to better understand the data, a re-understanding

of the problem may strengthen the domain-specific knowledge.

2.3. Acceptance criteria

One difficulty related to medical DM is that it may target different publics with the resulting

necessity to address different expectations.

Actually, a DM approach may be requested in the medical field by researchers and specialists

in order to study a given pathology through the identification of explanatory factors. In that case,

the extracted knowledge is validated if it carries a certain level of credibility, measured by means

of criteria related to statistical power notably. If endorsed by the scientific community, such results

may be taken into consideration (directly or indirectly) by clinicians faced with a diagnosis task.

As suggested in section 2.2, the extracted knowledge may also be deployed in the form of a

computerized diagnosis aid. Despite they are the lonely users of such technologies, the clinicians

are influenced in their expectations, e.g. by the patients who place a lot of hope in a fair diagnosis.
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Different models were developed in an effort to explain how a clinician may accept a technology

and integrate it to his/her working practices (Andargoli et al., 2017; Ketikidis et al., 2012; Holden

and Karsh, 2010; Yarbrough and Smith, 2007). The most popular is the Technology Acceptance

Model (TAM), introduced by Davis et al. (1989) and revised by Venkatesh and Davis (2000) (TAM2).

Enjoyed for its concise structure, the model depicts the psychological process which, influenced by

material and social factors, leads to the intention of using a computerized application in different

contexts (Yarbrough and Smith, 2007).

Venkatesh and Davis (2000) report that the acceptance of technology is acquired in practice

once its usefulness and ease of use are both perceived by the user. Moreover, the ease of use

is one of the factors influencing the user’s perception of the usefulness of the application. The

perception of usefulness rests also on social factors: the subjective norm, i.e. the user’s (professional

or private) surroundings’ opinion regarding his/her decision to adopt (or not) the application, and

the image, i.e. the social status the application provides to the user (Mun et al., 2006; Chismar and

Wiley-Patton, 2002).

The subjective norm impacts directly the intention of use. This influence is exerted on the clini-

cian by his/her patients but also by the professional environment. Indeed, the physician is sensitive

to the opinion of confreres, particularly of reference people in the domain, even though this opinion

may be contrary to the physician’s beliefs (Mun et al., 2006). As for the influence of the patients, the

study of Shaffer et al. (2013) shows they often tend to demonize computerized diagnostic support.

Conversely, non computer-assisted practices are perceived as a pledge of professionalism; may the

clinician resort to the opinion of an expert confrere is even perceived as an intelligent act. Yet in

both last cases, the clinicians might base their decision on elements provided in the literature and

extracted from a DM approach. Thus, the involvement of computing in the diagnostic process, if

only to have an advice, would in itself lead the physician’s image to take a hit towards colleagues

and/or patients (Mun et al., 2006).

In the present survey, we will highlight the specifics of DM to develop diagnostic decision support

models which meet the requirements of the clinicians. We will deal with how to make computerized

diagnosis aid fulfill criteria of output quality and results demonstrability advocated by TAM. Nev-

ertheless, it must be recognized that adopting a suitable approach of modeling does not guarantee

exclusively the acceptance of the models since some related factors (e.g. subjective norm) do not

fall within DM concerns.
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Lavrač (1999) Selected techniques for data mining in
medicine

X X X X

Kononenko (2001) Machine learning for medical diagnosis:
history, state of the art and perspective

X X

Cios and Moore (2002) The uniqueness of medical data mining X X X X

Bellazzi and Zupan (2008) Predictive data mining in clinical medicine:
current issues and guidelines

X X X X

Harrison (2008) Introduction to the mining of clinical data X

Iavindrasana et al. (2009) Clinical data mining: a review X X X

Pandey and Mishra (2009) Knowledge and intelligent computing system
in medicine

X

Yardimci (2009) Soft computing in medicine X

Wagholikar et al. (2012) Modeling paradigms for medical diagnostic
decision support: a survey and future direc-
tion

X

Yoo et al. (2012) Data mining in healthcare and biomedicine:
a survey of the literature

X X

Esfandiari et al. (2014) Knowledge discovery in medicine: current is-
sue and future trend

X X X X

Chen and Fawcett (2016) Using data mining strategies in clinical deci-
sion making: a literature review

X X

Patel and Patel (2016) Survey of data mining techniques used in
healthcare domain

X X

Miotto et al. (2017) Deep learning for healthcare: review, oppor-
tunities and challenges

X X

Table 2: Baseline reports on medical DM, presented by covered topics
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2.4. Previous reports on medical data mining

Our survey is based on fourteen narrative reports that address medical DM exhaustively; some

focus specifically on the issue of diagnosis aid (Wagholikar et al., 2012; Kononenko, 2001). These

reports are listed in Table 2, according to the themes to which they refer (directly or indirectly).

It must be emphasized these reports do not necessarily address the themes with the same depth.

Moreover, the distribution in themes is only indicative and it makes no necessarily representation

of the papers’ structure.

Some reports depict the KDP; different standards are addressed. It is generally highlighted that

DM is included within (and is thus distinct from) the KDP. The nature of medical data and

the related terminologies is a frequently exposed subject. Most of studies propose an overview

on DM techniques which were considered in medical applications and/or provide examples of

works having used such techniques. Emphasis is placed on subsets of DM techniques (Miotto et al.,

2017; Pandey and Mishra, 2009; Yardimci, 2009) or specific methods that are pertinent/often re-

quested in the medical domain (Bellazzi and Zupan, 2008; Kononenko, 2001; Lavrač, 1999). Other

papers give a general topology of DM techniques, fully explored and discussed (Esfandiari et al.,

2014; Iavindrasana et al., 2009). Furthermore, as mentioned before, the performance evalua-

tion is a crucial aspect of DM: different indicators may achieve such an assessment (Esfandiari

et al., 2014; Iavindrasana et al., 2009; Cios and Moore, 2002; Lavrač, 1999). The triplet accu-

racy/specificity/sensitivity is the most popular set of indicators in the medical domain. Finally,

some papers give distinctive elements of medical decision making and/or applications, i.e. what

we designate as the specifics of medical data mining. The study of Kononenko (2001) gives

some indications on specific requirements that models for diagnosis aid should meet to be efficient,

while the studies of Bellazzi and Zupan (2008); Cios and Moore (2002); Lavrač (1999) focus their

consideration on medicine in general, e.g. on diagnosis, prognosis or monitoring.

3. Results

The development of diagnostic decision support models is enrolled in a KDP (see section 2.2).

A first step in the process is the definition of the problem and its scopes following concertation with

domain experts (Cios et al., 2007). The scopes are then translated into DM goals that we propose

and discuss in the first part of the present section. Then, we focus on understanding medical data

and their specifics, which allows in turn to reinforce our understanding of the problem, with the

challenges that it brings.
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Requirements DM goals

R1 Ability to validate the model against
the expert personal domain knowledge,
through scientific arguments which sup-
port the model

Global interpretability

R2 Ability to validate a decision on a
per-patient basis

Local interpretability

R3 A reliable predictive model Performance & Robustness

R4 A cautious predictive model: errors have
not the same impact in both senses

Appropriate balance between
specificity and sensibility

R5 Ability to estimate the possibility of
disease in a subject

A probabilistic output

Table 3: Requirements and translation into DM goals

3.1. The problem of diagnosis aid

It is estimated that one out of ten medical diagnoses is mistaken (Graber, 2013). Alternatively,

two clinicians may come to different diagnoses with regard to a given patient. Setting up a diagnos-

tic decision support model is thus surely a challenging objective (Vieira et al., 2017). Moreover, it is

complex to reproduce the intuition of the physician acquired after several years of expertise (Hom-

mersom and Lucas, 2016). But DM has a strong side: it can process a large amount of data where

humans fail due to the limits of their mental processes (Donner-Banzhoff et al., 2017).

But what are the requirements of clinicians towards models for diagnosis aid? We propose

here to state general needs, gathering some elements found in the literature (Ribeiro et al., 2016;

Bellazzi and Zupan, 2008; Mencar et al., 2007; Kononenko, 2001; Lavrač, 1999) and those suggested

by clinical collaborators. The expectations and associated DM goals are presented in Table 3; these

will be discussed and justified in the following sections. The list may need to be extended by

additional aspects depending on each specific context of diagnosis.

3.1.1. Interpretability

The clinicians’ foremost requirement is to be able to justify and validate the prediction of a diag-

nosis aid model. To this end, the recommandation must be based on an interpretable model (Mencar

et al., 2007; Kononenko, 2001; Lavrač, 1999). Efforts have been recently deployed to define this con-

cept (Doshi-Velez and Kim, 2017; Lakkaraju et al., 2016; Lipton, 2016). According to Doshi-Velez

and Kim (2017), interpretability is “the ability to explain or to present in understandable terms

to humans”. Based on this definition, we worked on defining the properties of interpretability

regarding the problem of diagnosis aid.
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Cough

Fever

Flu

> 37.5

Bronchitis

≤ 37.5

Yes

Other

No

Figure 5: An example of decision tree (taken from Bock et al. 2013)

Transparency (readability, human readability). Through a code or a language, transparent models

are able to show how their output (e.g. the predicted diagnosis) is deduced from the inputs (e.g.

the patient’s data) (Bellazzi and Zupan, 2008). This is the property of white boxes in contrast

to black boxes which are completely opaque (Baesens et al., 2009). For example, decision trees

are white boxes as they provide all the progression that leads to make a final decision, under a

top-bottom reading approach (see Figure 5). Artificial neural networks are black boxes: no link

can be made between the inputs and the output of the models (Bellazzi and Zupan, 2008). To sum

up, the content of transparent models is accessible, a feature which several papers also express as

(human-)readability (Hajiloo et al., 2013; Kukenys et al., 2011; Anglade et al., 2009; Corney, 2002).

Intelligibility. Caruana et al. (2015); Lou et al. (2013, 2012) introduced intelligibility as the ability

to demonstrate clearly the influence of each model input in the final decision. In particular, they

advocate as intelligible Generalized Additive Models (GAM), given by:

g(y) = f1(x1) + . . .+ fn(xn)

if xi denotes the model inputs for i = 1, . . . , n, fi the shape function, g the link function, y the

target variable. Here, the learning phase has to predict the shape functions; the contribution of

every input xi to the final result is represented by its image through fi(xi). But basically, GAMs

can not model potential interactions between inputs. Generalized Additive Models plus Interactions

(GA2Ms) address this inconvenient (Lou et al., 2013):

g(y) =
∑
i

fi(xi) +
∑
i,j

fi,j(xi.xj).
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The underlying algorithm deduces the most likely existing interactions. Taking into consideration

some selected pairwise interactions improve the performances and do not impair the intelligibility

of the models. As a matter of fact, these interactions can be viewed on heatmaps (Lou et al., 2013).

GA2Ms were considered for clinical prediction with success, e.g. for the prediction of pneumonia

risk (Caruana et al., 2015). Naturally, GAMs are not the lonely existing intelligible models: as

suggested by Lipton (2016), decision trees comply with intelligibility as each model node with its

incident branches can be translated literally, in plain text description. If we look again at Figure 5,

the first node coupled with its right incident branch can be read as: “patients who do not have a

cough”.

Simplicity (compactness). According to Occam’s razor, simplicity must be found in any process.

Enhanced as a feature of interpretability (Lipton, 2016; Guillaume, 2001; Revelle and Rocklin, 1979),

simplicity is acquired through a reduced number of variables (Kononenko, 2001). This results in

a faster decision inference (Lipton, 2016) and in a certain convenience for both the clinician and

the subject. Indeed, a sophisticated diagnosis may require significant amount of data, whereas

the collection of medical data may be expensive, time consuming, and uncomfortable for the pa-

tient (Kononenko, 2001). Among the simplest models, 1R (Holte, 1993) is well-known: it considers

a single attribute to make predictions. To go further, TAR2 (Menzies and Hu, 2006) proposes

compact theories in two components: the minimal sets of constraints that change the sample dis-

tribution to focus on favorable or unfavorable situations respectively, i.e. health and illness in our

context. It may provide simpler theories than decision trees.

Comprehensibility. The ability to apprehend a global and synthesized vision of the model consti-

tutes an important factor of interpretability. Obviously, it is likely that a non-simple model is not

comprehensible; however, simplicity is not a guarantee of comprehensibility (Domingos, 1999). If

simplicity is easily measurable in numerical terms (e.g. the number of levels in a decision tree), com-

prehensibility is much more complex to assess because it may depend on how a clinician, personally,

perceives the model. For example, as diagnosis aid tools, some clinicians may prefer decision trees

while others would rather prefer a list of rules. Moreover, regardless the clinicians’ preference re-

lated to the nature of a model, between a short one and a long one, having both the same predictive

accuracy, the long model may be found unanimously as more interesting, e.g. if the latter involves

fewer attributes.
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Meaningfulness. The model expressed in non domain-specific terms may not be clear to experts.

In other terms, any part, any parameter or feature of the model must make sense, i.e. refer to the

usual vocabulary/knowledge of the experts (Mencar et al., 2007). This quality influences necessarily

the nature of the model and the pertinent features on which diagnosis aid should be built, but also

the type of operations applicable to the features.

A model may not be declared as interpretable in absolute terms (Lipton, 2016; Ribeiro et al.,

2016). For example, the interpretability of linear models decreases as the number of input variables

increases because of loss in simplicity (Mencar et al., 2007). Such an observation is also true

concerning decision trees, as the number of nodes increases (Otte, 2013). Besides, performing a

principal component analysis on features leads to new ones that, though constituting a combination

of the original features, are less perceptible; whatever the white box models in which such new

features are introduced, meaningfulness is practically lost.

In Table 3, we presented global and local interpretability in answer to requirements R1 and R2

respectively. Indeed, both notions are slightly different (Ribeiro et al., 2016). On the one hand,

global interpretability is a prerequisite to the global validation of a model as a whole, i.e. from

the inputs to their individual involvement and interaction in the final decision. Translating this

concept in the context of diagnosis aid, this means the clinician can raise explanations for diagnosis

recommendation, and for a range of patient profiles. If this synthesized view of the model behavior

is pertinent, the model is globally validated by the user. On the other hand, local interpretability

is a prerequisite to the local validation of a model. In this context, this means that, for a given

patient, the clinician is provided with explanations for the diagnosis recommendation; on this basis,

he/she has the ability to trust (or not) the prediction of a model.

Naturally, global interpretability involves local interpretability: if a model may be interpreted

by its user whatever the values of the inputs, interpretation is acquired for any combination of input

values. Conversely, a model may be locally, though not globally interpretable: this is the case if a

property of interpretability is missing at a global level. For example, a lost of global simplicity may

affect the ability to understand the model in its whole, while the chain of reasoning which leads to

a given decision may be simple.
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Figure 6: ROC graph: comparison of four clinical tests

3.1.2. Performance & Robustness

Reliability is a requirement that models for diagnosis aid should meet. In DM terms, it means

that they must be performant and robust.

To measure performance, many are the evaluation metrics in DM: they are derived from different

disciplines (Sokolova and Lapalme, 2009; Witten et al., 2005; Klösgen and Zytkow, 2002; Baldi et al.,

2000). It is understood that the assessment of models for diagnosis aid should be preferably achieved

with the same indicators that the clinicians usually use for the assessment of their own clinical tests

and to which they are therefore familiar, i.e. accuracy, specificity and sensitivity (see section 2.1

and Table 1). Furthermore, a graphic indicator is also used to assess the relevance of clinical tests,

and may thus be considered to check the performance of predictive models.

Let us consider a clinical test with a continuous outcome s. Given a threshold α, we suppose

that a patient is predicted as disease-free if s < α and pathological otherwise. Depending on the

value of α, the true and false positive fractions, i.e. the sensitivity (tp) and the complementary

of the specificity (1-tn) respectively, are variables. Indeed, the higher the threshold α, the higher

the fraction of false negatives is, and the less sensitive the test is. The couples of values (1-tn, tp)

corresponding to different levels of threshold α are the points of a Receiver Operating Characteristic

(ROC) curve (Lasko et al., 2005). The Area Under the Curve (AUC) may be interpreted as the

average sensitivity of the test. Figure 6 shows the ROC curves of four Tests (T ). Obviously,
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T4 presents the best behavior since it notably keeps the highest levels of sensitivity among the

other classifiers, in the range of tested values for α. With an AUC of 0.5, T1 is such a random test.

Actually, the ROC curve is convenient since it allows to compare different tests directly and visually.

Many techniques exist to select the value of α that achieves interesting performances (see Kumar

and Indrayan 2011).

Robustness regards the predictive behavior of the model under changes impacting its inputs or

parameters. Conceptually, this involves that the model output should not be different for patients

having similar profiles. Moreover, a model should not be significantly influenced by weak param-

eter shifts. Thus, taking inspiration from Odenbaugh (2011), we can define robustness from two

perspectives.

• Robustness against model tuning : let M = {M1,M2,M3, . . .Mn} denote a set of models

sharing the same settings except for a certain parameter. For a given instance xi, a robust

prediction yi with regards to M is such that Mj(xi) = yi, ∀Mj ∈M .

• Robustness against input variability : let X =
{
x(1), x(2), x(3), . . . x(n)

}
denote a set of similar

instances, i.e. close in the sense of a distance metric or sharing the same feature values, except

for one. A robust prediction y with regards to X is such that M(x(i)) = y, ∀x(i) ∈ X.

Generally, robustness is assessed on a range of values which correspond to low deviations of a

reference situation.

3.1.3. Appropriate balance between specificity and sensitivity

Depending on the way by which they are committed, some errors of prediction may not be

tolerated. The analysis of sensitivity and specificity allows to measure such a risk.

In some cases like the diagnosis of psychiatric disorders in children, should predictive models

make errors, it must be ensured that these wrong predictions have the lowest impact on them.

Indeed, a model having a low ability to detect healthy subjects (i.e. low specificity) is far from

being cautious, since they are exposed to the risk of being prescribed an unnecessary medication

(with risks for still growing children). The opposite situation is less damaging: if a model has a low

ability to detect pathology (i.e. low sensitivity), the detection of the trouble may be just delayed in

time in the child’s development. Thus, for a given accuracy, models may not be necessarily cautious:

it depends on the balance between sensitivity and specificity. To illustrate this point, let us consider

the confusion matrices of two models of Attention Deficit Hyperactivity Disorder (ADHD) diagnosis

having the same accuracy: see Tables 4 and 5. In both cases, the accuracy is of 68%, but model B
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Predicted as > ADHD TD

ADHD 48 2

TD 30 20

Table 4: Example A

Predicted as > ADHD TD

ADHD 20 30

TD 2 48

Table 5: Example B

(Table 5) is more cautious than model A (Table 5): indeed, the specificity of B is of 96%, while the

specificity of model A is poor with 40% of Typically Developing (TD) children detected only.

This being said, high sensitivity is important for the diagnosis of severe diseases (e.g. can-

cer) (Lalkhen and McCluskey, 2008). Yet simultaneous testing (see section 2.1) reduces the number

of false negatives, so it increases the net sensitivity. Indeed, under such a modality of testing, a

patient is considered positive once he/she was predicted as so by at least one test (Gordis, 2014).

In the same way, data miners can develop a set of several models, based on the (non-interpreted)

outcomes of parallel testing and come to the existence of disease in case at least one of these models

predicts positivity.

3.1.4. A probabilistic output

As discussed before, the imprecision of diagnostic tests involves the impossibility to predict with

certainty a subject’s condition. In reality, the result of a diagnosis is more nuanced than that. That

is why Bellazzi and Zupan (2008) suggest that predictive DM models should provide an output

probability for diagnosis with confidence intervals, which is rarely completed.

In clinical practice, the knowledge of specificity and sensitivity is sufficient to compute the

probability of contracting a disease for a given patient. To this end, two indicators are computed:

the likelihood ratios for positive and negative tests (Akobeng, 2007b; Deeks and Altman, 2004).

• The likelihood ratio for a positive test (LR+) expresses how many more times a patient with

a given disease is likely to test positive than a patient without the disease:

LR+ =
Sensitivity

1− Specificity
=

tp

1− tn
.

A test such that LR+ > 1 involves that a subject with disease is more likely to test positive

than a subject without the same disease.

• The likelihood ratio for a negative test (LR−) expresses how many more times a patient with
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a given disease is likely to test negative than a patient without the disease:

LR− =
1− Sensitivity

Specificity
=

1− tp
tn

.

An interesting test is such that LR− < 1: it is naturally expected that a patient with disease

is less likely to test negative than a subject without the disease. In general, the inverse of LR−

is more intuitive to interpret: it expresses how many more times a patient without disease is

likely to test negative than a patient with the disease.

Before medical examination, a clinician can estimate the pre-test probability P0 that a patient is

affected by a disease given his/her medical history and the exhibited symptoms. Once the patient

has been tested, it is possible to deduce the probability a posteriori that he/she has the disease, i.e.

the post-test probability P1, given the likelihood ratio LR of the test. Indeed, the Bayes theorem

expresses that (Akobeng, 2007b):

Post-test odds = LR× Pre-test odds ⇔ P1

1− P1
= LR× P0

1− P0

P1 is deduced using the likelihood ratio (LR+ or LR−) corresponding to the test result (+ or −).

With the use of a Fagan’s nomogram, the post-test probability is deduced easily, in a graphical

form (see Figure 7). By extending the segment joining the pre-test probability (left axis) and the

likelihood ratio (middle axis), the intersection with the right axis gives the post-test probability.

Figure 7 shows an example with a pre-test probability of 45%. The clinical test is characterized by

tp = 93% and tn = 65%. If the subject tests positive, the probability of disease increases to 68.5%;

in case of negative result, the probability decreases to 8.8%. Note that a test with a unit likelihood

ratio (dotted line) gives no additional information to a clinician. The reasoning may be transposed

to predictive models for diagnosis aid as they are also characterized by sensitivity and specificity

values.

3.2. Medical Data

In contrast to the problem of diagnosis aid, the nature of medical data is a subject widely covered

by reviews on medical DM. Table 6 presents the features of these data, and the reports that cover

1Drawn with the function nomogrammer of the ggplot2 package in R software (Adam M. Chekroud, 2016; R Core
Team, 2013)
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them partly or completely. In particular, Cios and Moore (2002) and Harrison (2008) gave overviews

which practically corroborate one another, except for the concepts encompassed by the heterogeneity

feature of medical data. Indeed, Cios and Moore (2002) consider that heterogeneity is explained

by the varied nature, volume and imprecision of medical data, their non-single interpretation by

physicians, the non-existence of a single disease terminology as well as the poor compatibility with

the logic of mathematics. On the other hand, Harrison (2008) explains the heterogeneity of medical

data by their various nature and by the existence of different methodologies to acquire a same

measurement value. In the rest of the present survey, we associate the heterogeneity of data with

the features preventing their uniform processing whether between records or attributes. This brings

us to expand the description of heterogeneity provided by Harrison (2008) with additional features.

In the second part of this section, we outline the factors that increased this natural heterogeneity

of medical data in open databases released by the culture of data sharing.

3.2.1. Characteristics of medical data

By their particular nature, medical data require specific handling, with thus additional (implicit)

needs to consider for the development of models for diagnosis aid. In the following paragraphs, we
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Different data types & measurement methods X X X X

High dimensionality X X X X

Imprecision X X X

Incompleteness X X X X X X X

Inconsistency X X X X X X

Non-single disease terminology X X

Non-single interpretation X X

Poor compatibility with the logic of mathematics X X X

Temporal components X X

Sensitive property & use issues X X X X

Table 6: Medical data features covered by different reviews

summarize these features; some are illustrated in the specific context of diagnosis.

Heterogeneity. Several sources of heterogeneity exist in medical data.

• Medical data are of different types such as biological data, images, signals, discrete values,

interviews.

• Several scales exist to assess some discrete indicators (Harrison, 2008). For example, Stanford-

binet (Bain and Allin, 2005), Raven’s matrices (Raven, 2000), Wechsler (Kaufman et al., 2015;

Wechsler, 2014, 2003) are different tests used to measure the intellectual quotient.

• A form of heterogeneity may characterize diseases; types of cancer are incidentally reviewed

from time to time (Miotto et al., 2017; Kourou et al., 2015; Allison and Sledge, 2014).
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High dimensionality. For a given patient, many types of data may be available. Moreover, imaging

and signal acquisition technologies generate voluminous files and raw data (Cios and Moore, 2002).

For example, at a given instant, a brain MRI consists of multiple 2D images acquired as slices of

the whole brain volume, during a complete rotation of the MRI equipment. In consequence, to

assess the brain activity over a certain time period, several brain volumes, i.e. sets of 2D slices, are

acquired per patient (Bates, 2011; Reimer et al., 2010).

Imprecision. Test results, observations and diagnoses are subject to imprecision (Harrison, 2008;

Cios and Moore, 2002). Actually, a diagnosis is established from a set of tests which do not achieve

perfection; they are also characterized by specificity and sensitivity values (Maxim et al., 2014; Cios

and Moore, 2002).

Incompleteness. It is common to raise missing information in medical datasets. The problem of

missing values can occur because of economical, ethical, medical or technical reasons (Yoo et al.,

2012; Cios and Moore, 2002).

• Economical reasons: generally, medical datasets are not collected for research purposes. Thus,

the idea of collecting unnecessary data (such as images and signals) from a medical point of

view is mostly given up to save money and time.

• Ethical reasons: patients may have not given their consent for the use of their data and/or to

undergo an exam on a voluntary basis. Questions of privacy remain sensitive at this level.

• Medical reasons: the medical status of a patient may forbid the acquisition of some data. This

status is defined by factors such as age, family and/or patient medical history. Thereby, all

kinds of information may not necessarily be collected regarding a single patient.

• Technical reasons: the entirety of medical information is not necessarily featured in computer-

ized systems. Indeed, some data remain on paper, which involves missing values in information

systems. This is the case in hospitals that have not been pushed to a full computerization of

their processes.

Incompleteness may also occur in case of medical datasets including representatives of a single

(healthy/pathological) population. In such a case, there is no possibility to assess the features of a

population against another.
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Inconsistency. The quality of medical data is not guaranteed. Indeed, imaging and signal acquisition

technologies are subject to noise, which may result in inconsistent data (Cios and Moore, 2002).

Though preprocessing pipelines exist, it is not ensured that noise has been well removed. The full

elimination of disturbance sources may even sometimes be impossible, notably because some of

these disruptions could be ignored by the data miner.

Sometimes, inconsistency arises form the data incompleteness. For example, it happens that

patients, though presenting similar features, have not the same diagnosis. This is explained by the

fact that clinicians can take into consideration other facts (e.g. patient medical history) that are

not necessarily consigned in the database used by the data miner.

Non-single interpretation. The interpretation of medical data by physicians is subjective. Inciden-

tally, research works were dedicated to the best representation of the agreement between physicians

on diagnoses (McHugh, 2012; Pies, 2007), e.g. the Kappa statistics (McHugh, 2012; Cohen, 1960):

κ =
Pr(a)− Pr(e)

1− Pr(e)

with Pr(a), the agreement rate among physicians i.e. the observed agreement ; Pr(e), the probability

of a random agreement i.e. the expected agreement (Viera et al., 2005). For example, if clinicians

agreed on 55 diagnoses among 100, then Pr(a) = 0.55. Pr(e) is computed as:

Pr(e) =

m∑
i=1

n∏
j=1

pij

if pij is the probability that clinician j gives the diagnosis i, m being the number of possible

diagnoses, and n, the number of clinicians. Actually, this probability takes into consideration the

prevalence of the disease within the population soliciting the clinician in question.

Table 7 shows Kappa coefficients for psychiatric disorders in children (Freedman et al., 2013).

Higher κ are observed in diseases such as breast cancer, with a rate of 89% (Pies, 2007).

Poor compatibility with the logic of mathematics. The medical context involves special require-

ments that the logic of mathematics can not completely meet (Cios and Moore, 2002; Moore and

Hutchins, 1980). Medicine is a discipline opened to nuances in interpretations, such that the ex-

pected responses should not necessarily be definitive. The problem of canonical forms is also an

illustration of this partial incompatibility: on the opposite of medicine, mathematics are based on

canonical forms through the ability to simplify expressions in reduced forms (Cios and Moore, 2002).
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Mental Disorder κ (%)

Autism Spectrum Disorder 69
Attention Deficit Hyperactivity Disorder (ADHD) 61
Bipolar I Disorder 52
Avoidant/Restrictive Food Intake Disorder 48
Conduct Disorder 46
Posttraumatic Stress Disorder 34
Major Depressive Disorder 28
Mixed Anxiety-Depressive Disorder 5
Nonsuicidal Self-Injury -3

Table 7: Kappa coefficients for psychiatric disorders (adapted from Freedman et al. 2013)

Temporal components. Medical data may include temporal relations, between symptoms for exam-

ple. Yet the order in which symptoms appear is far from insignificant in the process of diagno-

sis (Combi et al., 2010). To illustrate this fact, Wagholikar et al. (2012) mentions the example of

traumatic brain injury and fainting: the sense of the causal relationship may have a specific impact

on the final diagnosis.

Sensitive property and use issues. Modalities of data storage, analysis methods and property are

the subject of extensive debates in ethics committees to ensure respect for the patients’ privacy and

the careful use of the medical data to avoid any form of abuse (Yoo et al., 2012; Cios and Moore,

2002).

3.2.2. Characteristics of open medical data

With the culture of open data sharing, voluminous databases are available for research; they are

released to address a large range of diseases (see Esfandiari et al. 2014 and Woo et al. 2017) and col-

lected from various research/hospital centers worldwide. Open medical data are thus characterized

by an accentuated heterogeneity. Indeed, once medical databases are related to volunteers assessed

in different parts of the world, cultural and social factors, if ignored, may lead to bias in research

studies. Yet such factors are most likely involved in both trouble causes and prevalence (Al-Kuraya

et al., 2005; Trostle, 2005; Link and Phelan, 1995; Landy, 1977). What is more, according to sites,

the nature and calibration of equipment, experimental conditions and recruitment procedures differ,

which increases inter-site variability (Abraham et al., 2017).

4. Discussion

Our analysis shows that modeling the process of diagnostic decision is an art in its own right.

Indeed, it involves to satisfy the clinicians’ requirements in this respect (see section 3.1) without
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ignoring the particular nature of medical data (see section 3.2) to achieve a final useful, pertinent

and consistent modeling. In the present section, we discuss the potential of DM to meet such an

objective. This allows us, in a second stage, to raise the limitations and strengths of the advocated

research approach.

4.1. On the potential of data mining to meet the expressed needs

One of the major challenges to face with the problem of diagnosis aid is to succeed in targeting

model interpretability, without loss of performance. On that regard, decision trees are valued

for the interpretability integrated within their proper structure; it is in this sense that decision

trees, among others, are qualified as ante-hoc methods (Holzinger et al., 2017). Besides, under

an appropriate tuning of the related parameters, a good level of performance and robustness may

be expected. Such benefits make decision trees very pertinent in the medical domain (Podgorelec

et al., 2002). However, concerning performance, we can do much more with neural networks and the

recent advent of deep learning (Miotto et al., 2017). Of course, opting for such techniques means

shifting away from interpretability.

Thus, we must recognize that the most accurate methods of machine learning remain those which

are the most sophisticated, and the less interpretable accordingly. It is here legitimate to ask how

achieving a fair compromise between performance and interpretability, despite the obvious hurdle of

complexity. In response to this questioning, the work of Ribeiro et al. (2016) advocates LIME – Local

Interpretable Model-agnostic Explanations – which may be qualified as a post-hoc method (Holzinger

et al., 2017). Indeed, in a limited neighbor of an instance x, the method approximates a classifier

(e.g. a neural network), a posteriori, by an interpretable model as concise and faithful as possible.

The latter may be a linear model whose weights show, by their intensity, the features that have a

meaningful impact on the prediction. In the same spirit, the technique SP-LIME (Submodular Pick

Local Interpretable Model-agnostic Explanations) tries to interpret a model in its integrity (Ribeiro

et al., 2016). SP-LIME selects some instances from the initial training set in a way that the set of

explanations provided by LIME for each selected instance gives a global insight on the model.

A priori, both LIME and SP-LIME techniques are well suited to meet the requirements expressed

beforehand for diagnosis aid since they allow to validate predictive models locally and globally, while

giving the opportunity to resort to performant models. Incidentally, LIME was applied successfully

on medical data to extract explanations from the predictions of a random forest (Katuwal and Chen,

2016). But the method remains still to be explored on technical and computational planes (Ribeiro
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et al., 2016). In point of fact, depending on the nature of the intermediate classifier, the notion of

model complexity is not obvious to quantify. Moreover, the work of Ribeiro et al. (2016) has not

experienced decision trees as intermediate explainers. Yet this may be one avenue worth exploring

since decision trees, by their intuitive shape, are very attractive for medical applications (Podgorelec

et al., 2002). By contrast, the interest of using SP-LIME is less well understood: after all, it relies on

training different interpretable models to explain globally a single classifier. In comparison, training

a single interpretable classifier seems equally relevant while consuming less time and resources.

Performance, measured notably by the accuracy of the models, is surely a factor influencing

the practitioners’ confidence on diagnosis aid. However, robustness constitutes also a key element

to ensure a full reliability. For example, our previous DM-based work (Lecron et al., 2013) proposed

a robust methodology for 3D spine reconstruction for the diagnosis and treatment of scoliosis.

Actually, to perform a reconstruction, the physician has to manually set landmarks on radiographs,

so it must be insured that an imprecise localization of such landmarks has the least impact on

the quality of the results. In particular, reference methods appeared to be highly sensitive to the

position of the initial landmarks, with a drastic increase in errors as these markers are located far

from their appropriate position. On the opposite, our method presents a very slow increase in errors

on a large range of deviation. This robustness, acquired on any input of the algorithm, is crucial to

get a final reliable reconstruction on which diagnosis is based.

Dealing with the heterogeneity of open multi-site medical databases is another challenging

aspect of the development of models for diagnosis aid. The recent work of Abraham et al. (2017)

proposes two cross-validation methodologies to develop classifiers less sensitive to the heterogeneity

of multi-site medical data. To constitute a validation set, intra-site cross-validation randomly

withdraws instances from each site subset in proportion to their representation in the whole training

set, while inter-site cross-validation excludes a site completely. Such techniques make classifiers less

sensitive to the problem of technical heterogeneities. But let us assume for a moment that these

technical disparities do not exist: can we still consider a multi-site database as a homogeneous

entity? The answer is likely to be negative. As stated before, socio-cultural factors influence the

epidemiology and etiology of troubles (Al-Kuraya et al., 2005; Trostle, 2005; Link and Phelan, 1995;

Landy, 1977). Regrouping site subsets, based on similar socio-cultural conditions, may thus lead to

more consistent diagnoses. Moreover, troubles may exist in different conditions, e.g. psychological

disorders are often qualified as spectrum disorders (Maser and Patterson, 2002). So another question

to solve is whether socio-cultural factors influence the existence of the trouble or the way in which

26



a trouble is expressed. To sum up, as we showed in a recent work (Itani et al., 2018a), research

should not necessarily be focused on a universal diagnosis for a given condition.

Researchers are frequently faced with unbalanced datasets in pathological/healthy subjects, or

even with datasets including only representatives of a single class. A large number of studies aimed

at circumventing this issue, e.g. Majid et al. (2014); Parvin et al. (2013); Li et al. (2010); Cohen et al.

(2006), to bring back the learning process to the classical multi-class scheme. But in this respect,

a recent option deserves some interest: the process of One-Class Classification (OCC) (Krawczyk

et al., 2015; Khan and Madden, 2014; Pimentel et al., 2014; Chandola et al., 2009; Khan and

Madden, 2009; Mazhelis, 2006; Hodge and Austin, 2004; Markou and Singh, 2003a,b). As coined

by Moya and Hush (1996); Moya et al. (1993), OCC aims to find a description of a target set of

examples, and to detect objects that fit into the description. This classification mode only assumes

the availability of a single class examples, considered as positive instances. Negative instances may

exist, and play the role of counter-examples; they are often scarce. The OCC task actually helps to

identify anomalies, outliers or novelties when faced with the study of a particular phenomenon.

In previous works, OCC was considered for the detection of suspicious masses in mammogra-

phies (Cichosz et al., 2016; Hoffmann, 2007) and scoliosis, by the classification of Magnetic Res-

onance Images (MRI) (Karpate et al., 2015). Heart diseases were also addressed by Cabral and

de Oliveira (2014). López-de Ipiña et al. (2016) showed that OCC outperforms multi-class classifi-

cation for the diagnosis of Alzheimer’s disease. But OCC is an area of research that still needs to be

further developed, particularly as regards medical applications. An important question arises with

respect to the performance of OCC models depending on whether they target pathological or control

cases. The recent work of Retico et al. (2016), dedicated to the study of autism, shows that the

model of pathology rules out well negative instances. The same would not apply as regards models

developed based on the control group, which appeared heterogeneous. Concerning interpretability,

techniques such as LIME are still to be adapted to OCC.

An output probability does not appear indispensable for clinical diagnostic decision models;

so crisp classification is not necessarily to question. Indeed, as we exposed in section 3.1, sensitivity

and specificity values are sufficient to deduce the probability that a patient has a given disease.

The usefulness of a probabilistic output might be rather of a technical order, to tune the balance

between sensitivity and specificity, in setting the appropriate threshold beyond which the existence

of the trouble may be confirmed. In practical terms, a model with a probabilistic output would be

of some interest to clinicians if they accept to drop their traditional Bayesian methodology to trust

27



the probabilities suggested by predictive models. But to this end, we still need to find a place to

devote to the pre-test probability since it is not a proper input of predictive DM models. This could

be the case if the data on which the clinicians estimate this pre-test probability play a role in the

prediction process, which is not insured as this information (e.g. the medical history) is not always

available to the data miner.

Finally, we have to acknowledge the fundamental role of the couple sensitivity-specificity to

assess both the performance and the prudent nature of predictive models. The ideal to strive is

acquiring both high specificity and sensitivity. Generally, the one is acquired at the expense of

the other: there must be therefore an aspiration to achieve a fair compromise between both (see

section 3.1.3). Technically, this may involve to play on the balance between pathological and control

instances in the initial training set, to tune appropriately modeling parameters, or to develop several

predictive models intended to be handled sequentially or simultaneously.

4.2. On the limitations and strengths of the proposed research methodology

The current research in the domain of DM-based diagnosis aid mainly relies on the choice or

development of a predictive algorithm in quest of the best level of accuracy. To strengthen the

value of the results, comparisons with other techniques or previous works for the same problem

are often proposed, e.g. Riaz et al. (2016); Chen et al. (2013); Yeh et al. (2011); Aslandogan and

Mahajani (2004); Dreiseitl et al. (2001). The culture of open medical data sharing has intensified

this competition spirit, rather than encouraging the development of models having a concrete ap-

plicability. Yet as we showed, the latter objective could only be achieved through a more complete

research approach, targeting performance among other context-oriented objectives (see Table 3). If

this knowledge-guided data mining methodology presents several strengths, it has also limitations.

Limitations.

• Under the current state of the art, it is concretely hard to find a DM algorithm which dominates

all others on the set of modeling goals defined in Table 3.

• The success of our research methodology is conditioned by non-technical variables, namely :

(1) the clinicians’ availability in time to interact with the data miners on the very first steps

to understand the problem and data, but also throughout the whole development of a

given diagnostic decision support system ;
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(2) the ability for each of both actors to make their domain-specific vocabulary accessible to

the other.

Strengths.

• Though theoretical at the moment, the methodology shows the way towards the development

of predictive diagnosis aid models at the core of systems which are expected to integrate

clinicians’ expertise, and improve their agreement on a given diagnosis. As such, it is important

to consider the advocated approach, in conducting the evolution of the current DM modeling

techniques towards the expected requirements.

• As regards its underlying DM goals, the methodology promotes the development of scientific

knowledge in the medical domain. Indeed, if DM is widely requested for diagnosis aid, it is

above all in the hope of raising some physiological bases, notably about pathologies that still

remain unknown.

• Through criteria such as simplicity and intelligibility, the methodology promotes models which

may induce technological progress in terms of data acquisition devices. On this regard, the

issues raised by the models may be highly interesting, e.g. do we still need to resort to an

uncomfortable brain MRI exam while the predictive model of a given mental pathology is

based on the activity and/or structure of a limited number of brain zones, i.e. a limited part

of the information provided by MRI? Such a result would be well worth to explore in order

to develop less energy-consuming, less expensive and why not, more user-friendly equipment.

5. Conclusion and future work

An expert and intelligent system has to be designed based on the context of the application

to which it is devoted. It is from this perspective that we proposed the present survey, intended

for researchers specialized in Data Mining (DM) and working on predictive models at the core of

diagnostic decision support systems. It seems that, far from being trivial, the implementation of

models for diagnosis aid needs to rely on a specific approach of data modeling and processing, based

on the clinicians’ requirements. In many respects, such a method differs from the common practice

which promotes continuous improvements of the predictive performances, without being enough

challenged by the issue of knowledge extraction required for a better detection and understanding

of diseases.
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The main conclusion of our paper is the need for the permanent medical expert’s presence

throughout the development of diagnostic decision support systems. It is in this sense that we

advocate an expert-aware approach. Indeed, at the early stages of such a project, the clinician

(i.e. the medical expert) helps the data miner (i.e. the DM expert) to understand the problem

and the related data; in contrast, the data miner allows the medical expert to perceive what DM

may realistically provide to build an expert system. On this regard, the survey proposes a list

of requirements translated into DM goals. This list is naturally not fixed; it may depend on

the pathology which is subject to diagnosis, that is why interaction is so important. During the

development of the predictive model, the continuous interaction between both domain experts

leads to the engineering and the selection of a set of attributes which are simultaneously efficient,

pertinent and meaningful. Afterwards, the interaction allows to guide the selection of an appropriate

model, in terms of performance and interpretability, among other context-oriented goals that we

exposed in the survey. At the last stages, the medical expert has an important role to play in

the implementation of the expert and intelligent system, in order to take into consideration other

practical constraints such as intuitive ergonomics and timeliness.

Thus, with this survey, we shed light on the importance of the interaction between both data

miners and clinicians for the development of meaningful models for diagnosis aid. At no moment

one of both actors should prevail over the other: a kind of balance has to be ensured, at each

stage, to practice a form of data mining driven by knowledge, while leaving some place for discovery

and innovation. Within this consideration, we advocate an approach which supposes that the data

miner does not work for the clinicians, but closely with them.

Compared to previous papers, our survey makes new contributions as regards the issue of DM-

based diagnosis aid, in presenting a complete report of (1) the related modeling aspects, (2) the

constraints related to medical data processing. Actually, we proposed an overview of the specifics

of medical data, in comparing several surveys of the literature (Miotto et al., 2017; Esfandiari et al.,

2014; Yoo et al., 2012; Harrison, 2008; Bellazzi and Zupan, 2008; Cios and Moore, 2002; Lavrač,

1999) and revised the notion of data heterogeneity, given notably the current context of open medical

data sharing. Finally, we developed a critical perspective on the current modeling techniques as

regards their ability to meet the formulated modeling requirements, in thus complementing previous

papers that widely surveyed DM methods (Miotto et al., 2017; Esfandiari et al., 2014; Wagholikar

et al., 2012; Yoo et al., 2012).

This paper naturally opens the door to promising research perspectives. As a matter of fact, the
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advocated DM research approach raises new issues to reach simultaneously the proposed modeling

goals.

Hybridization. – In the current state of knowledge, it is practically excluded to find or to develop a

single algorithm which may process patient’s data to predict a diagnosis through a model reaching

the proposed ambitious goals, i.e. interpretability, performance, robustness, caution, and nuanced

outputs. There is rather a need for a hybrid strategy, in which both tasks of feature engineering and

model building are likely to be considered separately. In such a hybrid process, it remains essential

that the predictive model presents the qualities mentioned above in order to justify its results.

In contrast, the inputs of the latter model may be derived from the initial training set through

a mechanism which does not necessarily need to be justified, provided that it leads to features

making sense for the clinicians (as required by meaningfulness). On this regard, feature learning

may present specific architectures, like those derived from deep learning, e.g. autoencoders and

convolutional neural networks (Ching et al., 2018; Ravı et al., 2017). But these algorithms require

important quantity of data, which is not necessarily available in the context of medical applications:

this constitutes an important obstacle to overcome. Another challenge for data miners is to succeed

in reaching high levels of performance through hybrid strategies, i.e. while using the features derived

from deep architectures as the inputs of predictive models of another nature, ideally white boxes.

Indeed, if such a hybridization recently provided interesting results for diseases such as breast

cancer (Selvathi and AarthyPoornila, 2017), it resulted in less relevant levels of accuracy as regards

mental pathologies such as ADHD and autism (Sen et al., 2018).

Iterative training process. – Methods such as LIME (Ribeiro et al., 2016) are grafted onto classifiers,

typically black boxes, in order to interpret predictions. Though giving the advantage of combining

performance and interpretability, such components extend the decision chain so it becomes legiti-

mate to question the related robustness. Another drawback of these methods is the lack of global

vision of the model behavior: it is surely possible to interpret a prediction related to a given instance,

but it is conversely harder to raise the different combinations of factors to explain a given prediction.

That is why the design of models such as decision trees or GAMs (Generalized Additive Models),

seems more suitable as they present an interpretable structure by nature. However, these methods

need still to be improved to reach higher levels of accuracy. To achieve this, it can be interesting to

consider an iterative training process, in which the model is refined thanks to the intervention of a

clinician who may interpret it to adjust the training set content, e.g. in selecting features belonging
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to a coherent structural or functional ensemble according to the medical knowledge.

Profile-based features. – It would be interesting to predict a diagnosis through the way in which a

patient is related to one or several reference profile(s). A classical approach would rely on principal

component analysis, which is a well-known method, but whose results are less easy to interpret

in terms of reference profiles. For such a purpose, we may rather consider Non-negative Matrix

Factorization (NMF) which proceeds to interpretable dimensionality reductions in a wide range of

applications. Indeed, NMF consists of a decomposition X ≈WH with X ≥ 0, W ≥ 0, H ≥ 0 (Gillis,

2014). If n and r denote respectively the number of columns in X and W (r � n), NMF is actually

achieved by optimizing an error measure, for a given factorization rank r. The columns of W

are seen as basis elements whose positive linear combination may reconstitute any instance of the

original dataset. These basis elements are interpreted according to the context in which they are

raised. For example, in text mining, the columns of W are interpreted as topics, i.e. a set of

words. Given that any instance, i.e. a document in this context, is expressed as a non-negative

linear combination of these topics, the corresponding weights show to which extent the document

is involved in each topic. The work of Anderson et al. (2014) takes inspiration from this idea

for diagnosis prediction of ADHD, considering a topic as a set of elements about a patient (e.g.

phenotype, neuroimaging features); a decision tree was then trained on the resulting NMF weights.

Actually, we think the interpretability of the NMF in this context may be improved in decomposing

data of the same nature, thus considering that the columns of W correspond rather to homogeneous

reference patients’ profiles. Besides, some questions still remain to investigate, in particular :

(1) the choice of values for parameter r;

(2) the influence of certain variables on the decomposition, e.g. the patients’ gender as well as

the impact of a (un)supervised decomposition;

(3) the way in which the constraint of having positive data in X may be circumvented, notably

by means of an alternative matrix representation for both positive and negative data.

The detection of reference profiles may be integrated to a training process, by the detection of

central profiles around which some intervals define the extent of a given healthy or pathological

condition. One of our recent works implements such an idea, in proposing a decision tree for

one-class classification (Itani et al., 2018b).

Coalition-based prediction. – Given some factors such as the health care policy in a country, the local

clinical practices and the equipment availability, patients do not follow the same assessment stages
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for a diagnosis. This results in the availability of different sources of data from patient to patient,

for the diagnosis of a given pathology. Data mining should cope with this situation when it comes

to develop diagnosis aid models. One way to handle this issue is to develop predictive models which

suit their local contexts. But, one challenging research opportunity is to aspire to more universal

solutions. Decision making models, like MR-Sort (Leroy et al., 2011), constitute a good source of

inspiration on this regard: they rely on a classification of instances based on sufficient subsets of the

criteria (called coalitions). Currently, MR-Sort addresses quite small problems (up to 10 criteria and

5 classes) (Sobrie et al., 2013). Thus, transposing the related idea to machine learning approaches

is certainly an interesting research work. In the case of decision trees, this would involve to question

the availability of a given information for a patient, and guide the following questioning in function

of this availability. This would necessarily involve some changes in the underlying greedy algorithm,

by including a degree of dependence between certain levels. Indeed, if the result of a specific exam

is available, the next question should be based on the results of this exam. Overall, depending on

each decision chain of the resulting tree, the required information would not be the same. Of course,

having such a universal model does not exempt from revising some of its aspects depending on the

country and the population, i.e. mainly the thresholds on which the subdivisions are based and

that allow finally to define the borders between healthy and pathological populations. This seems

obvious, but quite challenging to achieve technically.

Therefore, in spite of the progress made in data science, more work is required, especially to

address the issue of aided diagnosis. On this regard, it is through a DM research focused on specific

needs that we can gain both the clinicians’ trust and help towards predictive models – and more

generally systems – having a practical applicability in their everyday working life.
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