Softw Syst Model
DOI 10.1007/510270-006-0025-9

SPECIAL ISSUE PAPER

A formal approach to model refactoring

and model refinement

Ragnhild Van Der Straeten - Viviane Jonckers -

Tom Mens

Received: 4 February 2005 / Revised: 24 October 2005 / Accepted: 3 March 2006

© Springer-Verlag 2006

Abstract Model-driven engineering is an emerging
software engineering approach that relies on model
transformation. Typical kinds of model transformations
are model refinement and model refactoring. Whenever
such a transformation is applied to a consistent model,
we would like to know whether the consistency is pre-
served by the transformation. Therefore, in this article,
we formally define and explore the relation between
behaviour inheritance consistency of a refined model
with respect to the original model, and behaviour pres-
ervation of a refactored model with respect to the origi-
nal model. As it turns out, there is a strong similarity
between these notions of behaviour consistency and
behaviour preservation. To illustrate this claim, we for-
malised the behaviour specified by UML 2.0 sequence
and protocol state machine diagrams. We show how the
reasoning capabilities of description logics, a decidable
fragment of first-order logic, can be used in a natural
way to detect behaviour inconsistencies. These reason-
ing capabilities can be used in exactly the same way to
detect behaviour preservation violations during model

Communicated by Ana Moreira and Thomas Baar.

R. Van Der Straeten (X)) - V. Jonckers
System and Software Engineering Lab,
Vrije Universiteit Brussel,

Pleinlaan 2, 1050 Brussel, Belgium
e-mail: rvdstrae@vub.ac.be

V. Jonckers
e-mail: vejoncke@ssel.vub.ac.be

T. Mens

Service de Génie Logiciel,

Université de Mons-Hainaut,

Av. du Champs de Mars 6, 7000 Mons, Belgium
e-mail: tom.mens@umbh.ac.be

refactoring. A prototype plug-in in a UML CASE tool
has been developed to validate our claims.

Keywords Model-driven engineering - UML 2.0 -
Description logics - Model refinement -
Model refactoring - Behaviour preservation

1 Introduction

Model-driven engineering is an approach to software
development where the primary focus is on models, as
opposed to source code. Models are built representing
different views on a software system. Models continu-
ally evolve into new versions, and can be used to gen-
erate executable code. The ultimate goal is to raise the
level of abstraction, and to develop and evolve com-
plex software systems by manipulating models only. The
manipulation of models is achieved by means of model
transformation, which is considered to be the heart and
soul of model-driven engineering [33].

Because model-driven engineering is still in its in-
fancy, there is a need for sophisticated formalisms,
techniques and associated tools supporting model trans-
formation. In this article, we focus on the activities of
model refinement, model refactoring and model incon-
sistency management in particular. Model refactoring
is a transformation used to improve the structure of a
model while preserving its behaviour. Model refinement
is a transformation that adds more detail to an existing
model. Both kinds of model transformation activities
are crucial during model evolution, but need to be com-
plemented by the activity of inconsistency management,

@ Springer

R. Van Der Straeten et al.

to deal with possible inconsistencies that may arise in a
model after its transformation.

In this article, we introduce a formalism that relates
all of the above activities. More specifically, we formally
explore the relation between behaviour consistencies of
model refinements and behaviour preservation of model
refactorings. In addition, we show the practical use of
this formalism through a plug-in we developed for a
commercial UML CASE tool. This tool allows us to
detect in an automatic way whether model refinements
and model refactorings are behaviourally consistent.

As a motivating example of what can be achieved,
consider the situation depicted in Fig. 1. A class ATM
(version 1.0) is refined into a subclass CardCharg-
ingATM (version 1.1) in a behaviourally consistent way.
This means that the behaviour of the CardCharg-
ingATM class (expressed by means of a state machine
or sequence diagram, for example) should specialise the
behaviour of the ATM class in the way formally defined
in [10].

Now suppose that the CardChargingATM class
evolves into a new version 1.2, as illustrated in Fig. 1.
Then we would like to know whether or not the evolved
behaviour of the CardChargingATM class is still
behaviourally consistent with the class ATM of which
itis a refinement.

Similarly, suppose that the behaviour of the Card-
ChargingATM class is refactored into a new version 1.3.
Although the refactoring modifies the structure of the
state machine of CardChargingATM, we would like to
guarantee that it does not affect the existing behaviour
(by definition of refactoring). In other words, we need
to check that the refactored version of CardCharg-
ingATMis still behaviourally consistent with the original
ATM class. Again, we can formally express this notion of
behaviour preservation, and verify it in an automated
way. A worked out example of non-trivial model re-
factorings at the level of state machine diagrams will
be given in the next section. These model refactorings
are similar to those that can be found in the research
literature [3,40].

The remainder of the paper will be structured as fol-
lows. Section 2 presents the motivating example in de-
tail. Section 3 formalises behaviour as defined in UML
2.0 protocol state machines and sequence diagrams. Sec-
tion 4 defines behaviour inheritance consistencies in the
context of state machines and sequence diagrams. Sec-
tion 5 formalises behaviour preservation in the context
of model refactoring and shows that the notions of con-
sistency and preservation are closely related. Section 6
proves some additional properties about the behaviour
of classes that already obey certain consistency and pres-
ervation properties. Section 7 introduces the formal-

@ Springer

ism of description logics (DLs) [2] and shows how the
different notions of consistency and preservation can be
expressed as a set of logic facts in this formalism.
Section 8 briefly discusses an implementation of our
inconsistency detection approach in a description logics
engine, and its integration in a commercial UML CASE
tool using its built-in plug-in mechanism. Related work
is discussed in Sect. 9. Section 10 concludes this paper.

2 Motivation
2.1 Motivating example

The motivating example used throughout this paper,
is based on the design of an automatic teller machine
(ATM), originally developed by Prof. Russell Bjork for
a computer science course at Gordon University.! The
class diagrams of this design are presented in Figs. 2
and 3.

The dynamic behaviour of the ATM class is partially
represented by the protocol state machine in Fig. 4.
Other aspects of the dynamic behaviour are represented
by usage scenarios of instances of ATM, such as the
one shown in the sequence diagram in Fig. 5. This se-
quence diagram shows part of an interaction between
instances of the classes ATM, CustomerConsole,Cash-
Dispenser, Session, Withdrawal and Message,
when a user decides to make a withdrawal. The mes-
sages sent in the diagram first retrieve the account num-
ber and the amount to withdraw. Next, messages are
sent to verify if there is enough cash in the ATM and if
the transaction is allowed by the bank. In this scenario,
it is assumed that both conditions are fulfilled. Finally,
the transaction is completed by dispensing the amount
of cash to the user and printing a receipt.

2.2 Behaviour inconsistencies

Following the spirit of our motivating example, in this
paper we assume that the behaviour of a class is defined
as a combination of its protocol state machine and all
sequence diagrams in which instances of the considered
class are involved. This will enable us to formally define
the behaviour of a class, and allow us to detect behaviour
inconsistencies.

As an example, one of the possible behaviour incon-
sistencies that can arise is called behaviour incompatibil-
ity. This would happen if we can find a sequence in one
of the sequence diagrams that is not contained in the set

1 http://www.cs.gordon.edu/courses/cs211.

Model refactoring and model refinement

Model version 1.0 Model version 1.1 Model version 1.2 Model version 1.3
description of description of description of description of
class behaviour class behaviour class behaviour class behaviour
i i i i
' ! ! !
ATM ATM ATM ATM
version 1.0 version 1.0 version 1.0 version 1.0
~1~._ | behaviour behaviour \
N i i ¢
g telfmement refinement
CardChargingAT™M | | | _» CardChargingAT™M | | CardChargingATM
version 1.1 evolve version 1.2 refactor version 1.3
| ' H
refined description of evolved refined description refactored description of
class behaviour of class behaviour class behaviour
Fig. 1 Scenario of evolution of our motivating example
Bank
ATM
- - -d:Integer
ReceiptPrinter 1 ATM->Printer -cash:Cash +openConnection():void
switchon()void 1.7 +closeConnection():void
+ printer 1 itchOff N id S +verifyPIN(pin:Integer,aCard:Card):Boolean
+printReceipt():void +switcl (:voi ATM->Bank 1
+getlD():Integer
+cardInserted():void OperatorPanel
Cust c " +performStartup():void 1 +panel
ustomerConsole +performShutdown():void
1 ATM->Console +readCard():Card ATM<—>OperatorPanel ! +getlnitialCash():Cash
@ +verifyPIN(pin:Integer,aCard:Card):Boolean CardReader)
+readPIN():Integer +console 1 | +ejectCard():void
+readAmount():Cash +dispenseCash(amount:Cash):void 1 +reader
+readAccountNbr():Integer +checklfCashAvailable(cash:Cash):Boolean +ejectCard():void
+displayAmount(amount:Cash):void +acceptEnvelope():void +atm ATM<->CardReader 1 +retainCard():void
+display(message:String):void +getAccountNbr():Integer +readCard():Card
+getAmountEntry():Cash
+displayCash(amount:Cash):void
+send(m:Message):Boolean CashDispenser
ATM->EnvelopeAcceptor +readPIN():Integer . ;
! P P © +displayMessage(message:String):void ¢1 +cashdispenser _ | ash:Cash

EnvelopeAcceptor | +acceptor 1

+atm | 1

+acceptEnvelope():void Session->ATM

o

- session

ATM->CashDispenser 1 +setlnitialCash(initialCash:Cash):void
+dispenseCash(amount:Cash):void
+checkCash(amount:Cash):void

Cash

-amount:double

Session

+add(amount:Cash):void

+subtract(amount:Cash):void
+equal(amount:Cash):Boolean

+performSession():void

+handleFailedTransaction():void

+greaterThan(amount:Cash):Boolean
+lessThan(amount:Cash):Boolean

Fig. 2 Class diagram for the ATM design

of call sequences of the protocol state machine of the
class. For a more detailed classification and description
of all possible inconsistencies, we refer to [43].

Coming back to the behaviour of the ATM class, as
described by the protocol state machine of Fig. 4 and
the sequence diagram of Fig. 5, we can verify that it
does not have any behaviour incompatibility. Indeed,
each sequence of the ATM sequence diagram of Fig. 5 is
contained in the set of call sequences of the ATM state
machine diagram of Fig. 4.

Analysing and detecting behaviour inconsistencies
becomes essential when we start making changes to our
design model, either by modifying the class diagram,
sequence diagrams or protocol state machines, or by
adding new diagrams or removing existing ones. In all
of these cases, it is important to be able to determine

whether the changes made give rise to new behaviour
inconsistencies.

2.3 Model refinement

As a first concrete example of what can happen during
model evolution, we will consider a refinement of a class.
More specifically, we will add a subclass of an existing
class with a “refined” behaviour w.r.t. the original class.
This notion of behaviour refinement can be formalised
by means of a specific notion of consistency, namely
behaviour inheritance consistency. In this section we will
only present the intuition behind it. For a formal defini-
tion, we refer to Sect. 4.

In version 1.1 of the design model of our running
example, we add a new subclass CardChargingATM

@ Springer

R. Van Der Straeten et al.

CurrentAccount SavingsAccount

Transaction

\V4 Transfer—->toAccount

Transfer

Account 1

-balance:Cash

[> +performTransaction():Boolean

+to 0..1
1 Transfer—>fromAccount

+getCurrentBalance():Cash

+getCustomerSpecifics():void
+complete Transaction():void

+getCustomerSpecifics():void
+completeTransaction():void

+setCurrentBalance(newBalance:Cash):void | +from 0.1
+verifyAccountBalance(cash:Cash):Boolean 1

Withdrawal->Account

+to |1 +from | 1 +from

0.1 Withdrawal

Inquiry Deposit

+getCustomerSpecifics():void
+completeTransaction():void

+getCustomerSpecifics():void
+completeTransaction():void

+getCustomerSpecifics():void
+completeTransaction():void

Inquiry—>Account

0.1 0..1

Deposit—>Account

Fig. 3 Class diagram for the Account andTransaction class hierarchies

ReturningCard

RetainCard >©<

retainCard()[not valid PIN && tries = 3 ejectCard()

[Idle)readplN()(PINEntry) VerifyPIN() [valid PIN

VerifyingPIN

(ChoosingTransaction

cancel() GettingCustomerSpecifics

readPIN()[not valid PIN && tries < 3

PrintReceipt

printReceipt()

dispenseCash(cash)[allowedWithdrawal]

[not allowedWithdrawal]

Fig. 4 UML protocol state machine diagram for ATM class

that is a refined version of class ATM that not only al-
lows the customer to withdraw cash money, but also
to charge “virtual” money to his bank card. This re-
fined behaviour of CardChargingATM is represented
by the protocol state machine in Fig. 6. An orthogonal
composite state VerifyingTransaction is added to
the existing composite state GettingCustomerSpe-
cifics (see Fig. 4). Its substate VerifyATMBalance
is moved one level deeper into the new composite state
VerifyingTransaction. The customer still has to
specify the account number and the amount of cash for
withdrawal. The states AccountEntry and
AmountEntry arestill part of the GettingCustomer-
Specifics state and not of the orthogonal Verify-
ingTransaction state. As a result, the same account

@ Springer

VerifyWithdrawal

AmountEnt
AocouniEniy

cash := getAmountEntry()

getAccountNbr()[WITHDRAWAL]

:= checkIfC: i)

[not cashAvailable]

VerifyATMBalance

number and amount will be used to charge the cus-
tomer’s bank card and to withdraw money. Verifying
if the customer’s account has sufficient funds and if the
transactions are allowed by the bank is now done in
parallel. Once these checks have been passed, the ATM
dispenses the money and at the same time, the Card-
ChargingATM class, unlike its parent, the ATM class,
charges the card.

To be able to determine whether CardCharg-
ingATM is a formal refinement of ATM, we need to for-
malise the consistency relationship between both
classes. Given that both classes are related via inheri-
tance, we can base ourselves on the substitutability prin-
ciple [20], and require that an instance of the subclass
CardChargingATM must be usable in each situation

Model refactoring and model refinement

:CashDispenser | | atm:ATM | | :CustomerConsole | | s:Session |

1: Withdrawal(atm, s)

:Withdrawal I

P [2.1:getCustomerSpecifics()

PE—

2 : x:=performTransaction(

1.1:accnumber:=getAccquntNbr
Q

1

I

21.1.1: accnumber::lfeadAccounthr()

1

I

I

I

I

21.2: cash::getAmduntEntry()

1

I

P.1:cash:=readAmol !
I

nk()

I

P.1.3: true::checkIfCash/,l\vaiIable(cash)
1

I
211.3.1: checkCash(cash 1
I
_47
X : 2.1.4: Message(accnumber, cash, WITHDRAWAL)
I I
: : SR ey
1 2.1.5: true:=send(m)
I I
T
I
I
. « |
! .
2.2.1:dispenseCash(cash) 2.2: completeTransaction()
I
T
2.2.1.1: dispenseCash(cagh) :
47 I
I I
1 2.3 printReceipt()
I I
T
I
I
I
I
I

Fig. 5 Sequence diagram for withdrawal scenario on an ATM

GettingCustomerSpecifics

getAccountNbr()[WITHDRAWAL and CHARGING]

P VerifyingTransaction
ReturningCard
RetainCard i 20l
AccountEntry ’ﬁa\iywwhdrawa\
— £ I . InitWithdrawal VerifyATMBalance
A _J

retainCard()[not valid-PIN 8 tries = 3 ejectCard()

cashavailable := checklfCashAvailable(cash)
sh := getAmountEntry() dispenseCash(cash)(allowWithdrawal]

(Idle JreadPIN)(__ PINEntry VerifyPIN() —‘ [valid-PIN Yy—rrd cancel()
VerfyingPIN €

[not cashavailable] %@
AmountEnty A _ _ _ _ _ _ _ _ _ o —] _—_ - -
readPIN()[not valid-PIN &4 tries <3

PrintReceipt printReceipt()

niiCharging _)allowCharging := send(m)(VerfyCharging }argeCard([alowCharging) ™~ GardCharging
Eror) not allowCharging]

[not allowWithdrawal]

Fig. 6 UML protocol state machine for CardChargingATM class (version 1.1)

@ Springer

R. Van Der Straeten et al.

where an instance of the superclass ATM is expected.
We can state this more precisely in terms of sequence
diagrams and protocol state machines as follows: each
sequence of the ATM sequence diagram of Fig. 5 should
be contained in the set of sequences of the CardChar-
gingATM state machine diagram of Fig. 6.

In our case, ATM and CardChargingATM do not
obey this consistency rule, because an instance of
CardCharging ATM will withdraw money and it will a/-
ways charge a card. It is not possible to skip the charging
of the card and immediately choose a new transaction,
which is the original behaviour of the ATM class. Hence,
according to this view, CardChargingATM cannot be
regarded as a refinement of ATM.

2.4 Model evolution

Starting from version 1.1, one can make further changes
to the design model. For example, we could continue to
evolve the behaviour of CardChargingATM by intro-
ducing a new state (AmountEntryCard) and transi-
tions in the composite state GettingCustomersSpe-
cifics asshown in the state machine diagram in Fig. 7
(representing part of version 1.2 of the design model).
This is an example of an evolution step where we have

added new functionality to the CardChargingATMclass.

The amount to be withdrawn and to be charged on the
card can now be different. This was not the case for the
previous version of the CardChargingATM (in version
1.1 of the design model).

2.5 Model refactoring

We can also consider more restrictive model evolutions,
that do not add new functionality or remove existing
functionality, but have the purpose of simplifying the de-
sign model without changing its behaviour. Such model
evolutions are called model refactorings.

For model refactoring, the idea of behaviour consis-
tency is very important. If we know that a given design
model is behaviour consistent, and we perform a model
refactoring, then we expect the evolved design model to
be behaviour consistent too. In other words, the refactor-
ing is assumed to preserve certain behaviour consistency
properties. Being able to verify or guarantee preserva-
tion of these properties becomes crucial in this situation.

An example of the result of a complex model refac-
toring is shown in Fig. 8 (version 1.3). This protocol
state machine represents a refactored version of the one
shown in Fig. 7 (version 1.2). To obtain the new state
machine from the original one, a sequence of two re-

@ Springer

factorings has been applied, Move states into orthogonal
composite state and Flatten states.

The first refactoring, Move states into orthogonal com-
posite state, can be seen as the inverse of the Sequential-
ize concurrent composite state refactoring defined in [3].
States are moved into different regions of an orthog-
onal composite state. In our example the simple state
AmountEntry is moved into one region of the ver-
ifyingTransaction state and the state Amount-
EntryCardismovedinto the other region and renamed
into ChargingAmountEntry. The original state
AccountEntryissplitintotwostates (AccountEntry
and ChargingAccountEntry). These states are the
“initial states” of the two different regions. As a re-
sult the previous initial states, InitWithdrawal and
InitCharging become superfluous and are deleted.
Moving a state into a certain region of an orthogo-
nal composite state has some consequences. High-level
transitions (i.e., transitions originating from a compos-
ite state) originating on the orthogonal composite state,
are inherited by the moved states. By moving a state
into one region of the orthogonal composite state, if the
moved state becomes active, other states will be active
too, one in each remaining region. As a result, if the
AmountEntry state is active, the ChargingAmount-
Entry state can be active too. This situation is not pos-
sible in our example version 1.2.

The second refactoring, Flatten States, flattens the
states GettingCustomerSpecifics and Verify-
ingTransaction into a new state also named Get-
tingCustomerSpecifics thatisanorthogonal com-
posite state.

After applying both refactorings, it is important to
know that the original behaviour has not been modi-
fied. For example, in this case, we can formally prove (or
check with a tool) that the sequences of operations that
can be invoked on the original class CardCharging-
ATM (version 1.2) can also be invoked on the refactored
class CardChargingATM (version 1.3).

3 Preliminary definitions

In this section, we introduce some preliminary defini-
tions that are needed to define the dynamic behaviour
of a class and to characterise precisely behaviour inheri-
tance consistency and behaviour preservation in Sects. 4
and 5.

Notation 1 The set of all preconditions of an opera-
tion op, i.e., the set of conditions that must be true when
the operation op is invoked, is denoted by Pregp.

Model refactoring and model refinement

Fig. 7 Evolved part of the

GettingCustomerSpecifics

state machine for
CardChargingATM class

getAccountNbr()[WITHDRAWAL and CHARGING]

(version 1.2). Only the s = geamaunEnng

composite state Getting-
CustomerSpecifics and
the states directly linked to it

ejectCard()

[valid-PIN cancel()

ehossngTrarsacion)

VerifyingTransaction

N TIEITR

allowWitharawal := send(m)[cashAvailable]

tocHarge := getAmountEntry()

‘AmountEntryCard

InitWithdrawal

VerifyATMBalance VerifyWithdrawal

Gashavailable := checkl{CashAvailable(cash)

dispenseCash(cash)[allowWithdrawal]

are shown here, since the
other states and transitions
have not been modified

,%hcm@mg llowCharging = send(m) o g™ o

[CardCharging)

]

ot allowCharging]

Error \/’[

[not allowCharging]

Fig. 8 Refactored part of the
state machine for cancel)

tingC:

CardChargingATM class
(version 1.3), after having
performed a sequence of two
refactorings Move states into
orthogonal composite state
and Flatten states

ejectCard()

[ChoosingTransaction)

[valid-PIN

Transactiondone

getAccountNbr()[WITHDRAWAL and CHARGIN{

cash = (AemouniEniy) VerifyATMBalance
m cashavailable := checklfCashAvailable(cash)

allowWithdrawal := send(m)[cashAvailable]

~ _—

?cnargmg»xcmmsnm tocharge - (ChargingAmountEntry) VerifyCharging
ge 0 1
7 allowCharging := sens

chargeCard()[allowCharding]

ot allowCharging]

CardCharging

The set of all postconditions of an operation op, i.e.,
the set of conditions that must be true when the operation
op is completed, is denoted by Post,.

We do not use a specific constraint language for the
pre- and post-conditions of operations or any other
kinds of constraints that will be needed further in this
paper. Instead, we assume that these constraints (such
as Pre,p and Post,),) are sets of predicates, i.e., Boolean
expressions.

3.1 Sequence diagram

Depending on its purpose, an interaction between ob-
jects (i.e., instances of classes) can be modeled using
different types of UML diagrams. For the sake of sim-
plicity, we only consider sequence diagrams here. We
formally define a SD (sequence diagram) trace as:

Definition 1 A SD trace v, of an instance o of a class
¢ is a sequence of event occurrences denoted (eq,...,ey)

W

ot allowWithdrawal]

occurring on the lifeline of the instance o. An event occur-
rence e is defined as a couple (m,cons) where m denotes
the message that is associated to this event occurrence and
cons represents the constraints valid on the lifeline of the
instance o before the execution of the event occurrence.

A sequence diagram typically consists of several
traces, as defined below:

Definition 2 A sequence diagram A is a set of SD traces.
This set typically contains SD traces for instances of
different classes.

Behaviour consistencies impose restrictions on the
traces defined and more specifically on the order of
invocations of the involved object’s operations (see Sec-
tion 4). As a consequence, we are only interested in the
order of invocations of an object’s operations. As such,
the traces of event occurrences representing the receipt
of a message are important and considered in the defi-
nitions of behaviour consistencies. Therefore, we define
a receiving SD trace as follows:

@ Springer

R. Van Der Straeten et al.

Definition 3 A receiving SD trace v,/ of an instance
o of aclass cis an SD trace v, for the instance o with only
event occurrences representing the receipt of messages,
which represents the invocation of operations.

Example 1 A receiving SD trace of the instance atm
of class ATM in the sequence diagram A of Fig. 5 is
(e1,e2,e3,e4,e5,¢e6), Where eq represents the receipt (by
atm) of the message getAccountNbr, e, represents
the receipt of the message getAmountEntry, e3 repre-
sents the receipt of the message checkIfCashAvail-
able, eq represents the receipt of the message send and
es represents the receipt of the message dispense-
Cash. Finally, e4 represents the receipt of the message
printReceipt.

Notation 2 The set of all event occurrences denoting
the receipt of a message for each instance o of a class c
appearing in the sequence diagram A is denoted by E .

Example2 Let A and e; be defined as in Example 1.
Then Ea atm = {e1, €2, €3, e4,¢5,¢e6}. If the sequence dia-
gram A would have contained more than one instance of
class ATM, then En a7y would have contained all event
occurrences corresponding to receipts of messages for
each instance of ATM.

3.2 Protocol state machine

UML 2.0 differentiates between two kinds of state ma-
chines, behavioural state machines and protocol state ma-
chines. Behavioural state machines are used to specify
the behaviour of various model elements. Protocol state
machines are used to express usage protocols and are
always defined in the context of a classifier, which can
have several protocol state machines. These state ma-
chines express the legal transitions that a classifier can
trigger. As such they are a convenient way to define a
lifecycle of an object or an order of the invocation of its
operations. Because in the context of behaviour consis-
tencies, the order of invocation of operations is the most
important, only protocol state machines are considered
here.

A protocol transition specifies a legal transition for an
operation. Transitions of protocol state machines have
next to their trigger, which is an operation invocation,
a pre- and a post-condition. We make some simplifying
assumptions in this paper. UML provides special kinds
of states and transitions, such as junction and choice
states and submachine states, entry and exit points on
transitions. These concepts are not considered in this

paper.

@ Springer

A protocol state machine (PSM) can be defined as
follows (based on the definition in [38] and in [39]) %:

Definition 4 A protocol state machine I, = (S, T¢, L,
pe, Ae) for a class c, consists of a set of states S. and a
labelled transition set T, C P(S¢) x L¢ x P(S.) contain-
ing labelled relations (S1,1,S2) such thatl € L., where L,
is a set of labels.

A label | is defined as a triple (op,g,h) where op is
operation that is defined in ¢ or in one of the ancestors
of ¢, g € Pre,), specifies the precondition of the transi-
tion (which is evaluated as part of the precondition of the
operation op), and h C Post,, specifies the postcondi-
tion of the transition (which is part of the postcondition
of the operation op), or, as a triple | = (e,g,{}), where
€ corresponds to a dummy operation and g specifies the
guard.

pc denotes the top-most initial state, for which
351,8 € Sc:pe € 8,(81,1,8) € T. where | € L.
and transitions outgoing p. only have labels of the form
[= (e.8.{).

A denotes the set of final states of the state machine,
for which 3S1 € Acand Sy € S : (S1,1,82) € Te for any
le L.

Note that, in UML PSMs there can be transitions
without operation calls and without any guard, as well
as transitions that only have a guard specified but no
operation call. Both kinds of transitions are supported
by labels of the form [= (e, g,{})-

Due to the fact that a transition is specified as a
relation between sets of states, simple, composite and
orthogonal composite states are also supported (see
Sect. 15.3.11 in [27]). Our definition also supports high-
level, compound and completion protocol transitions
(see Sect. 15.3.14 in [27]). The basic idea is that all these
notions of states and protocol transitions can be trans-
formed into a canonical form containing transitions be-
tween sets of states (which can be singletons).

We now define the notion of (active) life cycle state
configuration.

Definition 5 A (life cycle) state configuration £, of an
instance o of a class ¢ in a PSM Tl. is a tree of states
belonging to S..

A life cycle state configuration is a free of states, because
of the existence of composite and orthogonal composite
states.

Example 3 Consider as an example, the state machine
shown in Fig. 7. A possible life cycle state configura-
tion is the tree (we represent a tree by nested sets)

2 Note that P(S) denotes the powerset of S.

Model refactoring and model refinement

{GettingCustomerSpecifics, {AmountEntry}}.
Not only the simple state AmountEntry is considered
as part of the life cycle state configuration but also all the
directly or transitively composite states to which the sim-
ple state belongs. Another example of a life cycle state
configuration is the tree {GettingCustomerSpecif-
ics, {VerifyingTransaction, {VerifyWith-
drawal, CardCharging}}}.

The active state of an object at a given point in time
is defined by the set of states it occupies in the state
machine. This set of states is referred to as the active life
cycle state configuration of the object. In the example
above, this is the set containing the leaf states Verify-
Withdrawal and Card Charging.

Definition 6 An active (life cycle) state configuration o,
of an instance o of a class c in a PSM Tl is a subset of
S¢ and corresponds to the set of leafs of a life cycle state
configuration.

The firing of a transition enables the change of active
state configuration.

Definition 7 A PSM trace y, of an instance o of a class
cina PSM T, is a sequence of active life cycle state con-
figurations (0,1, ...,00,) such that 0,1 = {pc} and, for
ie{l...n—1}, 041 = 00 0r 00, Ti,00,i+1) € Te.

Definition 8 A call sequence w, of instance o of class c
in a PSM T1. is a sequence of labels (t1,...,t,;) (n > 1),
where t; € L.

Definition 9 A call sequence u = (g, ..., ;) is valid on
an active state configuration o, x of instance o, if there is
a PSM trace yo, = (051 ...00k--.0nt1) Of 0 where for
ie {k . .n}, (0'071', Tiao'o,i+1) € Tc.

Example 4 (dispenseCash,printReceipt,
ejectCard) is a valid call sequence on the active state
configuration {VerifyWithdrawal,CardCharging}
of Fig. 6.

4 Behaviour inheritance consistency of class
refinements

When modelling the behaviour of classes in a class hier-
archy, we are confronted with an important problem.
How should the behaviour of the subclasses be related
to the behaviour of the superclasses? This is a prob-
lem that does not only occur at the modelling level,
but also at the source code level. For example, Meyer
presents a taxonomy of 12 different valid kinds of ways
inheritance can be used in an object-oriented program-
ming language [23]. Therefore, it is necessary to identify

different notions of behaviour inheritance consistency
between a class and its subclass. Depending on the pre-
cise relationship between a class and its subclass some
notions of inheritance consistency will be valid, while
others will not.

If we restrict ourselves to the definition of class behav-
iour that we have adopted in this paper, we can provide a
precise characterisation of behaviour inheritance consis-
tencies in terms of the relationship between the protocol
state machines and sequence diagrams of a class and its
subclass. Rather than inventing our own definition of
behaviour inheritance consistency, we will rely on two
variants that have already been defined by Ebert and
Engels [10], namely observation and invocation inheri-
tance consistency. Although it is very well possible that
other useful definitions of inheritance consistency exist,
we will restrict ourselves to these two in the current
paper.

Observation inheritance consistency means that each
sequence of calls which is observable with respect to a
subclass must result (under projection of the operations
known) in an observable sequence of its correspond-
ing superclass. If a subclass reacts to the invocation of
an operation op, where op is also known to the super-
class, this reaction must also be reflected in the superclass
behaviour specification. Observation consistency can be
defined between state machines, between sequence dia-
grams, and between a state machine and sequence dia-
grams.

In order to define this kind of consistency, we need
some auxiliary definitions.

Definition 10 The restriction up, of a sequence p =
(t1,...,Tn) to a set L is the sequence obtained from pn
by removing all t; ¢ L.

The restriction U | L of a set of sequences U to a set
Lisdefinedas U | L={¢|3nelU:¢=pur}

Definition 11 Given a sequence diagram A and a PSM
I.
The function label. : Ex . — L. : (m,cons) — (op,g,h)
maps an event occurrence onto a label as follows:
op is the operation corresponding to message3 m,
g = Preyp U cons,
h = Post,p.

Definition 12 Observation inheritance consistency. Let
¢ be a class, ¢ a subclass of ¢, and instances o of ¢ and o’
of c.

APSMTl, = (S’, T’,L’,p’,A’) is observation inher-
itance consistent with a PSM T1, = (S, T, L, p, A) if, for

3 Remark that in this paper we only consider symbolic messages
and transitions. See also Sect. 7.4.

@ Springer

R. Van Der Straeten et al.

every valid call sequence y' of o, u; is a valid call se-
quence of o.

A SD A’ is observation inheritance consistent with a
SD A with respect to ¢ and ¢’ if; for every instance o' of
c,if v = vy /" is an SD trace in N, then ng isan SD
trace in A.

A SD A’ is observation inheritance consistent with a
PSM T1. = (S, T, L, p, A) with respect to ' if, for every
SD trace vy /"¢ = {e1,...,ey) in N/, there exists a valid
call sequence o = (11, ..., Tm) (With m > n), containing
labels tj = (op,g,h) = label (e;) (withj > i) and preserv-
ingthe order of the e;’s in the trace (i.e., if tj, = label.(e; 1)
than k > j).

Moreover, if 1j = label.(e;) and tjy, = label.(ej1)
(with u > 1) then all intermediate labels t, (with r =
1...u—1) are of the form (¢, g, {}), and Ujsrstru gris
part of cons of e;.

Remark that we do not define observation inheri-
tance consistency between a PSM Il and an SD A with
respect to the superclass c. Such a definition would imply
that all possible scenarios are described by A, because
every trace in the PSM I1. must be observable in A
under projection of the methods known. This demands
completeness of the models which is seldom the case,
especially not in early phases of the software develop-
ment life cycle.

Alsoremark that we do not require L C L’ in our defi-
nition of observation inheritance consistency. Let L. =
{a,b} and L' = {a} and two state machines I, contain-
ing L and I containing L’. Suppose that {(a), (a,b)} is
a set of valid call sequences of I, and {({a)} is a singleton
containing the valid sequence of ITy. In this case, I1y
and I1. are observation consistent while L ¢ L’.

Example 5 Consider the protocol state machine I1yry of
Fig. 4, and the protocol state machine I1; 1 of the class
CardChargingATM shown in Fig. 6 that refines the
behaviour specified by ITay. I111 is observation con-
sistent with ITamq. The objects of the class CardChar-
gingATM do behave like the objects of the class ATM if
viewed only to this class description. The extension of
the state machine IT; ; representing the charging of the
card only contains labels that are not known to ITary.

Invocation inheritance consistency means that any se-
quence of operations invocable on the superclass can also
be invoked on the subclass. This notion of behaviour
inheritance consistency is based on the substitutability
principle requiring that an object of subclass B of class
A can be used where an object of class A is required.

Definition 13 Invocation inheritance consistency. Let ¢
be a class, ¢’ a subclass of ¢, and instances o of ¢ and o’

of c.

@ Springer

APSMTIl, = (S, T,L,p',A\) is invocation inheri-
tance consistent with a PSM T, = (S, T, L, p, A) if every
valid call sequence p on {p} in T; is also valid on {p'}
in T and for all their respective PSM traces y and y' it
holds that y = ;.

A SD A is invocation inheritance consistent with a SD
A with respect to ¢ and ¢, if every SD trace v, /™ in A is
also a SD trace in A’ for an instance o' of class c'.

APSMTIl, = (S, T,L,p',) is invocation inheri-
tance consistent with a SD A with respect to c if, for every
SD trace v,/ = (e1...en) in A, there exists a valid
call sequence oy = (11 ...ty,) (With m > n), containing
labels Ty = (op, g, h) = label.(e;) (withj > i) and preserv-
ingthe order of the e;’s inthetrace (i.e., if tj, = label.(e; 1)
than k > j)

Moreover, if 1j = label.(e;) and tjy, = label:(ej1)
(with u > 1) then all intermediate labels t, (with r =
1...u—1) are of the form (¢, g, {}), and U]-S,S]-Jru gris
part of cons of e;.

Remark again that, in this case, we do not define invo-
cation consistency between a PSM TI1, and a sequence
diagram A’ with respect to a subclass ¢’ of ¢. Such a
definition would imply completeness of the models in-
volved, which is seldom the case.

Also remark that it is not necessary that S, respec-
tively L, is a subset of 5, respectively L'.

Example 6 The behaviour of the sequence diagram A
of Fig. 5 is not invocation consistent with behaviour of
class CardChargingATM specified by the PSM IT; | of
Fig. 6 with respect to class ATM. Indeed, the SD trace
(e1,e2,e3,e4,e5,e6) of Example 1 does not correspond
to a valid call sequence

(getAccountNbr, getAmountEntry,
checkIfCashAvailable, send, dispenseCash,
printReceipt)

in the PSM I1; 1, that always requires the invocation of
the operations concerning the charging of the card.

In the context of UML state diagrams, some inheri-
tance policies are discussed in [28]. They are referred to
as Subtyping, Strict Inheritance and General refinement.
The subtyping policy corresponds to invocation consis-
tency. The other policies correspond neither to obser-
vation nor to invocation consistency and are tailored
towards implementation-level. The inverse of invoca-
tion consistency is known in literature as Restriction
Inheritance [23]. This kind of inheritance occurs when
the behaviour of the subclass is a subset of the behav-
iour of the parent class. It is an explicit violation of the
principle of substitutability and should be avoided when-
ever possible, but sometimes it is inevitable. Restriction
inheritance occurs for example, if a software modeler is
modelling a class based on existing classes that should

Model refactoring and model refinement

not, or cannot, be modified. This is the case if existing
library classes are used.

Until now, we assumed that the PSMs expressed ob-
servable call sequences and invocable call sequences,
while the sequence diagrams expressed observable traces
and invocable traces. The following notations are intro-
duced:

Notation 3 The set of invocable call sequences and SD
traces of a class c is denoted by IS(c). The set of observ-
able call sequences and SD traces of a class c is denoted
by OS(c).

In general, IS(c) is a subset of OS(c). This is stated in
[10]. We will use these notations in Sect. 6 to prove
behaviour inheritance consistencies or behaviour pres-
ervation properties between different classes. In the next
section, behaviour preservation properties correspond-
ing to the above presented inheritance consistencies are
introduced and defined.

5 Behaviour preservation of model refactorings

In the motivation of Sect. 2, we explained the need for
guaranteeing behaviour consistency of UML models,
and the need to preserve this consistency when the mod-
els evolve. When arbitrary changes are made to a model,
it is quite likely that its behaviour consistency will not
be preserved. However, there exists an important class
of model evolutions, called model refactorings, that do
preserve behaviour. The main goal of these model re-
factorings is to improve the structure (or other qualities)
of the model, while preserving (most of) its behavioural
properties.

In order to determine whether a given model refac-
toring preserves behaviour, we need to define precisely
what this means. To achieve this, we will take an ap-
proach that is very similar to the one taken in Sect. 4:
just like the behaviour of a subclass can be inheritance
consistent with the behaviour of its superclass, the behav-
iour of a new version of a class can preserve the behav-
iour of the original version. Even more, the different
flavours of behaviour inheritance consistency that were
explored in Sect. 4 (namely observation and invocation
inheritance consistency) also make sense in an evolution
context. This will be formalised below.

Before doing so, however, we need to be clear about
what it means to be “a new version of a class”. We will
adopt a very broad view here. It includes changes to the
class itself (renaming, adding, removing or modifying
operations or attributes), or to its associated behaviour
(renaming, adding, removing or modifying state ma-
chine diagrams or sequence diagrams). But even more

sophisticated changes can be envisioned, such as split-
ting a class into two or more classes (each of these new
classes is then considered to be a new version of the orig-
inal one), or combining two or more classes into a single
merged version. Splitting or merging sequence diagrams
or state machine diagrams can also be accommodated
in this way.

The first notion of behaviour preservation between a
class and its new version that we can formalise, is obser-
vation call preservation. Intuitively, it means that every
call sequence observable with respect to a new version
of a class (under projection of the operations known)
must result in an observable call sequence of its corre-
sponding original class.

Definition 14 Observation call preservation. Let ¢ be a
class, ¢’ a new version of ¢, and instances o of ¢ and o' of

C/

The behaviour specified by a PSM Tl = (§8',T',L’,
o',) is observation call preserving with a PSM Tl, =
(S,T,L,p,A) if, for every valid call sequence ' of o', iy
is a valid call sequence of o.

The behaviour specified by a SD A’ is observation call
preserving with a SD A with respect to ¢ and ¢’ if, for
every instance 0’ of ¢, if vV = v, /" is an SD trace in N/,
then U%AC is also an SD trace of A.

The behaviour specified by a SD A’ is observation call
preserving with a PSM T, = (S, T, L, p, A) with respect
to ¢ if, for every SD trace vy /"¢ = (e1,...,e,) in N,
there exists a valid call sequence o, = (t1,...,Tm) (With
m > n), containing labels 1 = (op,g,h) = label.(e;)
(with j > i) and preserving the order of the e;s in the trace
(i.e., if Ty = label.(ej+1) than k > j)

Moreover, if tj = label.(e;) and tjy, = label (ei1)
(with u > 1) then all intermediate labels t, (with r =
1...u —1) are of the form (e, g, {}), and Uj§r§j+u gris
part of cons of e;.

Observe that Definition 14 is almost identical to Defi-
nition 12. The main difference is that the words obser-
vation inheritance consistent are replaced by observation
call preserving. Also, ¢’ does not represent a subclass of ¢
anymore, but a new version of ¢ in the refactored model.

Example 7 The behaviour of the class CardCharg-
ingATM specified by the refactored PSM I 3 of Fig. 8
is not observation call preserving with respect to the
PSM I1; , of Fig. 7. A first model refactoring used here,
moves some simple states into a composite orthogonal
state and a second model refactoring used, flattens two
states. As a result of these refactorings, the amount to
be charged on a card must not necessarily be entered
after the amount to be dispensed (cf. IT;3). However,
this precedence constraint is required in the description

@ Springer

R. Van Der Straeten et al.

of the behaviour of the original version of CardCharg-
ingATM (cf. [Ty 5).

The second notion of behaviour preservation that we
define is invocation call preservation. It guarantees that
each call sequence invocable on a class, must also be in-
vocable on the new version of the class in the refactored
model.

Definition 15 Invocation call preservation. Lef ¢ be a
class, ¢’ a new version of ¢, and instances o of ¢ and o’ of
c.

APSM Ty = (S, T,L,p',A) is invocation call pre-
serving with a PSM Tl. = (S,T,L, p, A) if every valid
call sequence . on {p} in T, is also valid on {p'} in T
and for their respective PSM traces y and y' it holds that
Y = Vs

A SD A’ is invocation call preserving with a SD A with
respect to ¢ and ¢/, if every SD trace v, /™ in A is also a
SD trace in A’ for an instance o' of class c'.

APSMTly = (8, T,L,p',) is invocation call pre-
serving with a SD A with respect to c if; for every SD trace
Vo /"¢ = (eq ...en) in A, there exists a valid call sequence
Mo = (T1...Ty) (With m > n), containing labels t; =
(op,g,h) = label.(e;) (with j > i) and preserving the
order of the e;’s in the trace (i.e., if Ty = label.(e;y1) than
k>j)

Moreover, if 1j = label.(e;) and tjy, = label (ei1)
(with u > 1) then all intermediate labels t, (with r =
1...u—1) are of the form (¢, g, {}), and Uj§r§j+u gris
part of cons of e;.

The definition of invocation call preservation is iden-
tical to Definition 13 by substituting invocation call pre-
serving for invocation inheritance consistency.

Referring to Example 7 above, the behaviour speci-
fied by the refactored PSM I1; 3 is invocation call pre-
serving with the PSM Iy 5.

6 Combining behaviour preservation and behaviour
inheritance consistencies

In this section, we will explore the relationship between
inheritance consistencies and the notion of behaviour
preservation. Assuming that there is a behaviour inheri-
tance consistency relationship between a superclass and
its subclass, we would like to find out if this consistency
relationship is preserved when either the subclass or the
superclass evolves. This question is schematically illus-
trated in Figs. 9 and 10.

As a concrete example, reconsider the class ATM ver-
sion 1.0 and its subclass CardChargingATM version 1.1
(see Fig. 1). Consider now the PSM I1; of the class ATM

@ Springer

as shown in Fig. 4. Assume that the PSM I1; ; (shown
in Fig. 6) is extended by the composite state of the PSM
1. The PSMs are invocation inheritance consistent. The
PSM TI1; 3 (partly shown in Fig. 8) is also invocation call
preserving with respect to the (extended) PSM Iy ;.
The question arises if, based on this information, we can
prove that version 1.3 of class CardChargingATM, ob-
tained by performing a model refactoring, is still behav-
iour inheritance consistent with version 1.0 of class ATM.

Abstracting away from SD traces and PSM call se-
quences, we can define invocation inheritance consis-
tency or invocation call preservation as IS(c) € IS(¢'),
where ¢’ is a subclass of ¢ or a new version of ¢. Observa-
tion inheritance consistency or observation invocation
call preservation can be defined by OS(¢’ | V) € OS(c),
where V denotes the set that is the union of the set of la-
bels L. and the set of event occurrences E = (Jy, Eac,
and c is a superclass of ¢’ or a previous version of c.

In general, the following properties can be proven:

Proposition 1 Let ¢ be a class, c/1 a subclass of ¢y, ¢y an
identical copy of c1 that is contained in a different model
version (e.g., ATM class 1.0 in model version 1.2 and AT
class 1.0 in model version 1.3), and c), a subclass of c;
such that ¢ is a new (modified) version of c}. (see also
Fig. 9)

1. Ifc| and c| areinvocation inheritance consistent and
¢, and ¢} are invocation call preserving then ¢, and
¢y are invocation inheritance consistent.

2. If ¢} and cy are observation inheritance consistent
and c/2 and ¢y are invocation inheritance consis-
tent and

1S(c1) = OS(c1)

then OS(cy | V1) € OS(c)).

3. Ifc| and cy areinvocation inheritance consistent and
¢, and c; are observation inheritance consistent and
IS(c1) = OS(cy) then OS(c; | V2) € OS(c)).

Proof 1. ¢} and ¢ are invocation inheritance consis-
tent, hence IS(c1) € IS(c)). ¢, and ¢} are invocation
call preserving, hence 1S(c}) < IS(c}). Because c;
and ¢, are identical, we conclude that

1S(e2) = IS(c1) S IS(c)) S 1S(c))

This implies that ¢; is invocation inheritance consis-
tent with ¢.

2. c’1 and c¢; are observation inheritance consistent,
hence OS(c| | V1) € OS(cy). ¢5 and ¢, are invo-
cation inheritance consistent, hence IS(c2) € 1S(c)).
Because ¢; and ¢ are identical, and given that

Model refactoring and model refinement

Fig. 9 Examples illustrating
Proposition 1

Fig. 10 Examples illustrating

Cq Co

invocation
inheritance ?
consistency

Cy —=>0Ch
invocation call
preservation

invocation call

i, —— G,
observation invocation
inheritance inheritance
consistency consistency

Cy———>0C),
?

invocation call

Ci ——— G,
invocation observation
inheritance inheritance
consistency consistency

¢y ——=>Cy
9

observation call

Proposition 2 preservation preservation preservation
Ci—=>0Cy Ci——=>GC, Cg ——=>GC,
invocation observation invocation
2 inheritance inheritance ? inheritance ?
consistency consistency consistency
CI1 N CI2 CI1 CI2 CI-I CI2

IS(c1) = OS(cy), and, in general, IS(c5) S OS(c))
we can conclude that

OS(c} | V1) € OS(cy) = IS(cy) = IS(c2) < IS(ch)
C 0S(cy)

This results in: OS(c] | Vi) € OS(ch).

3. c’1 and cj are invocation inheritance consistent, hence
IS(c1) € 1S(c)). ¢ and c; are observation inheri-
tance consistent, hence OS(c, | V2) € OS(c2). Be-
cause ¢ and c; are identical, and given that IS(cy) =
OS(cy), and, in general, IS(c)) S OS(c}), we can
conclude that

OS(c5 | V2) € OS(c2) = OS(c1) = IS(cy) S IS(c))
< OS(cy)
This results in: OS(c) | V2) € OS(c)). O

From the first item of the proposition, we can con-
clude that the behaviour of version 1.3 of class
CardChargingATM, specified by the union of the PSM
I1; (shown in Fig. 4) and the PSM IT1; 3 (shown in Fig. 8),
is invocation inheritance consistent with the behaviour
of the ATM class as specified by the PSM IT;.

The second item in the proposition means that the set
of valid call sequences or traces of the class ¢] under the
projection of the methods known by ¢, must be included
in the set of the call sequences or traces of the class ¢},
which is a new version of the class ¢|. Depending on
how the behaviour of the different classes is specified,
we conclude that:

1. Every valid call sequence of the PSM TI" of ¢}, re-
stricted to the operations known by cy, is also a valid
call sequence of the PSM of ¢};

2. Assume the existence of sequence diagrams A for
c1 and A’ for ¢|. Then for each trace v’ in A/, v}iml

is an SD trace for c5;

3. Assume the existence of a PSM Il;, and sequence
diagram A for c|. Then each call sequence u =
(11 ...14) such that,foreachi e {1...n},1; = labelc/l
(e;), is also a call sequence of instances of c}.

The third item in the proposition means that the set
of valid call sequences or traces of the class ¢, under
the projection of the methods known by c2, must be
included in the set of the call sequences or traces of the
class ¢|. As a consequence, the behaviour of the new
version ¢} is smaller than the behaviour of the original
class. Depending on how the behaviour of the different
classes is specified, we conclude that:

1. Every valid call sequence of the PSM IT' of ¢}, re-
stricted to the operations known by ¢y, is also a valid
call sequence of the PSM of ¢};

2. Assume the existence of sequence diagrams A for
c2 and A’ for ¢). Then for each trace v" in A, vJ’EM2 is
an SD trace in a sequence diagram Ac/l with respect
to c/;

3. Assume the existence of a PSM Il., and sequence
diagram A for ¢). Then each call sequence u =
(11 ...714) such that,foreachi e {1...n},1; = labelc/2
(e), 1s also a call sequence of instances of c’l.

In the scenario described in Proposition 1 a certain
subclass in a hierarchy is evolved. We can prove similar
properties when a superclass in a hierarchy is evolved.

Proposition 2 Let ¢| be a class, ¢ a subclass of ¢y, ¢ a
new (modified) version of ci, and c,, an identical copy of
¢} that is contained in a different model version. (see also
Figure 10)

1. Ifc, and c; areinvocation inheritance consistent and

¢z and ¢y are invocation call preserving then ¢} and
c1 are invocation inheritance consistent.

@ Springer

R. Van Der Straeten et al.

2. If ¢} and c; are observation inheritance consistent
and cp and c| are invocation call preserving and

1S(c1) = OS(c1)

then OS(c, | V1) € OS(c2).
3. Ifc| and c| areinvocation inheritance consistent and
¢2 and ¢y are observation call preserving and

IS(c1) = OS(c1)

then OS(c2 | V1) € OS(c)).

Proof 1. ¢}, and ¢, are invocation inheritance consis-
tent, hence IS(c2) € 1S(c)). ¢ and ¢; are invocation
call preserving, hence IS(c1) € IS(c2). Because c’1
and ¢} are identical, we conclude that

IS(c1) € IS(c2) € IS(ch) = IS(c))

This implies that ¢; is invocation inheritance consis-
tent with ¢;.

2. ¢} and ¢y are observation inheritance consistent,
hence OS(c] | Vi) S OS(cy). ¢z and ¢; are invo-
cation call preserving, hence IS(c;) € IS(c2). Be-
cause ¢} and ¢} are identical, and given that IS(c) =
OS(c1), and, in general, IS(cz) € OS(c), we can
conclude that

OS(ch | V1) = OS(c} | V1) € OS(cr)
= 1S(c1) € 1S(c2) € OS(c)

This results in: OS(c;, | V1) € OS(c2).

3. ¢} andc; areinvocationinheritance consistent, hence
1S(cy) C IS (c’l). ¢z and ¢ are observation call pre-
serving, hence OS(c2 | V1) € OS(c1). Because c’1
and ¢ are identical, and given that IS(c;) = OS(cy),
and, in general, IS(c}) S OS(c}), we can conclude
that

OS(cy | Vi) € OS(c1) = IS(cy) S IS(c)) € OS(c))
= 0S8(c))

This results in: OS(cz | Vi) € OS(c)).]

The second item in the proposition means that the set
of valid observable call sequences or traces of the class)
under the projection of the methods known by ¢y, must
be included in the set of the observable call sequences or
traces of the class ¢y, which is the new modified version
of the class c;. As a consequence, the behaviour of the
subclass ¢} is smaller than the behaviour of the modified
class viewed from the original class.

@ Springer

The third item in the proposition means that the set of
valid observable call sequences or traces of the class ¢,
under the projection of the methods known by ¢, must
be included in the set of the call sequence or traces of
the class c.

7 Specification in Description Logics

To be able to verify consistency and preservation, we
need a formal specification and a formal reasoning en-
gine relying on this specification. A formal approach
is also beneficial for CASE tools, resulting in a precise
and unambiguous approach. In this section, we pres-
ent Description Logics (DLs) as a formal approach for
checking behaviour inheritance consistencies and, as
such, also call preservation properties based on the defi-
nitions given in Sects. 4 and 5.

To detect behaviour preservation violations or incon-
sistencies between different UML elements, we adopted
a logic-based approach for the following reasons: (1)
The declarative nature of logic is well suited to ex-
press the design models which are also specified in a
declarative way; (2) The logic reasoning algorithms are
well understood due to their extensively studied, well-
defined and sound semantics. First-order logic and theo-
rem proving have been proposed by several authors for
expressing software models and the derivation of incon-
sistencies from these models (e.g., [11,14,24,25]). Most
of these techniques operationalise the consequence rela-
tion () by using theorem proving based on the standard
inference rules of classical logic; (3) Some logic reason-
ing engines can deduce implicitly represented knowl-
edge from the explicit knowledge allowing an adequate
treatment of incomplete, subjective, or time-dependent
knowledge.

Spanoudakis et al. [37] identified two inherent lim-
itations of logic-based approaches: (1) first-order logic
is semi-decidable, hence it is impossible to provide for
semantically adequate inference procedures, and (2) the-
orem proving is computationally inefficient. DLs are an
attempt to overcome both problems by restricting the
€Xpressive power.

Remark that the use of the object constraint lan-
guage (OCL) [26] is not really an option for detecting
behaviour inheritance inconsistencies or call preserva-
tion violations. OCL is a query language and it only
addresses static UML diagrams. It is not possible to for-
malise UML models using OCL and to reason about
those models in the way DLs can. It would be possible
to use OCL to check some of the behaviour preserva-
tion properties. However, in the case where traces are

Model refactoring and model refinement

Table 1 Syntax and

Semantics of SHZQ Constructor Syntax Semantics
Atomic concept A AT c AT
Universal concept T TZ = A7
Atomic role R RZ c AT x AT
Transitive role ReR, RT = (RH*t
Conjunction CinG cinct
Disjunction CGuG ctuct S
Negation -C AT\ CT
Value restriction VR.C {d\|Vdy € AT.((dy,dy) € RT — dy € CT))
Exists restriction 3R.C {d13d> € AT.((dy,d>) € RT Ady € CT)}
Role hierarchy RCS RT c §Z H
Inverse role R- {x,») | (y,x) € R? T
Qualified number (= nR.C) {d11l{d2](d1,d2) € RT A dy € CT}| = n) o)
restriction (= nR.C) {dq||{d>|(d1,d>) € RT Ady € CT}| < n}

to be compared or enumerated, it can only be used in a
limited way (due to, e.g., the infinity of the set of traces).

7.1 Introduction to DLs

DLs are a family of formalisms that are less expressive
than first-order logic but have more specific reasoning
abilities and are decidable. DLs represent the knowl-
edge of the world by defining the concepts of the appli-
cation domain and then using these concepts to spec-
ify properties of individuals occurring in the domain.
The basic syntactic building blocks are atomic concepts
(unary predicates), atomic roles (binary predicates) and
individuals (constants). A DL is a two-variable fragment
of first-order predicate logic. This implies that DLs only
use a small set of constructors to construct complex con-
cepts and roles.

Table 1 presents the syntax and semantics of SHZ Q,
one of the most expressive DLs [17]. The constructors
characterising SHZQ are: M (conjunction of two con-
cepts), U (disjunction of concepts), — (complement), 3
(existential qualification), V (universal quantification),
inverse roles and number restrictions on qualified roles.
SHZQ also allows for the definition of transitive roles,
which are to be interpreted as transitive relations.

Using these concept and role constructors, complex
concepts and roles can be formed. The following con-
cept represents a model consisting of classes that have
only abstract operations.*

4 In the remainder of this section, we will use 3R as an abbrevia-
tion for 3R.T.

Model m JownedMember.(Class N
V ownedOperation.(Operation 1 3 isAbstract))

DLs come with a knowledge base formalism. A knowl-
edge base in a DL is a pair consisting of a Thox and
Abox. A Thox is used to introduce names for complex
concepts. For example, for the concept defined above,
we can introduce the name ModelwithAbstractClasses.
In a DL Thox the introduction of a concept name (CN)
for a complex concept (C), is denoted by CN = C.

More expressive Tbox formalisms allow the expression
of so-called general concept inclusion axioms (GCI’s).
The left-hand side as well as the right-hand side of a GCI
are complex concepts. The following GCI specifies that
only classes with abstract operations can be abstract.

Jis Abstract. T € Class 13 ownedOperation.
(Operation N 3 isAbstract)

Concepts are classified in a 7hox according to subcon-
cept-superconcept relationships using the subsumption
(E) relationship. An Abox is a finite, possibly empty set
of individuals. These individuals are instances of con-
cepts or form pairs representing the population of a
certain role. If the corresponding concepts and roles are
defined in the corresponding Thox, then the individuals
appearing in the Abox must obey the restrictions speci-
fied on these concepts and roles in the Thox.

The most important feature of DLs is their classifi-
cation ability. This reasoning task allows them to infer
knowledge that is implicitly present in the knowledge
base. The other basic reasoning capabilities are: instance
checking (is a certain individual an instance of a certain
concept?), relation checking (does a pair of individuals
belong to the population of a certain role?), concept sat-
isfiability (is there an interpretation for the concept?).

@ Springer

R. Van Der Straeten et al.

These reasoning tasks are implemented by sound and
complete reasoning algorithms. For several DLs, there
exist optimal automata-based algorithms that decide
satisfiability of concepts with respect to a Tbox, and
subsumption of concepts. The satisfiability problem is
reduced to the emptiness problem of automata. To get
an idea of the technique the interested user is referred
to [21] and [6].

Several implemented DL reasoning engines exist from
which we have selected the state-of-the-art RACER [16]
system. Other qualities of DLs and DL systems that
make them suitable for our work, are:

— DL systems have an open world semantics, which al-
lows the specification of incomplete knowledge. This
is useful, e.g., for modeling sequence diagrams which
typically specify incomplete information about the
dynamic behaviour of the system.

— Due to their semantics, DLs are suited to express
the static structure of the software application. For
example, Cali et al. [S] translate UML class diagrams
toa DL.

— Due to the close relationship between modal logics
and DLs (e.g., there is a one-to-one mapping be-
tween the DL ALClye, and converse-Propositional
Dynamic Logic), DLs are also suited to express, to a
certain extent, the behaviour of a software applica-
tion.

In [36,43,44], we reported on how a fragment of the
UML metamodel is translated into such an expressive
DL Tbox. User-defined models are translated into a cor-
responding Abox. This translation guarantees the con-
sistency of the user-defined models with respect to the
UML metamodel. We also reported on how different
queries can be executed on those instances represent-
ing the user-defined models, e.g., different consistency
checks that use meta information of the user-defined
models.

The question that we will attempt to answer in the
remainder of this section is to what extent DLs can be
used as a semantic domain to express PSMs and call
sequences/traces. If it is possible to use DLs for this
purpose, we can also use them to check the different
behaviour inheritance consistencies and call preserva-
tion properties defined in Sects. 4 and 5.

7.2 Call sequence and SD trace encoding in
SHIQ(D™)

The logic SHZQ(D™) is supported by RACER. This

logic is equal to the logic SHZQ augmented with sup-
port for so-called concrete domains (D~). In many appli-

@ Springer

cations it is necessary to refer to concrete domains and
predefined predicates on these domains when defining
concepts. In our context, this is necessary to express
pre- and post-conditions. A concrete domain consists of
a domain and a set of predicate names. The concrete
domain A has as its domain the set of nonnegative inte-
gers N and its set of predicate names pred(N) consists
of the binary predicate names, <, <, >, > and the unary
predicate names <, <, >, >, for n € N and those
predicate names are all interpreted by predicates on N.
The DL SHZQ(D™) supports the concrete domains rep-
resenting integers, reals, complex numbers and strings.

If sequence diagrams and PSMs are compared to
check for behaviour inheritance consistencies or pres-
ervation properties, SD traces and call sequences are
compared.

Recall Definition 8, defining a call sequence of a PSM
I1. A call sequence u = (t1,...,7) (n > 1), where
7; € L, can be encoded in SHZQ(D™) in different ways
depending on the format of the label ;.

— 1If 7; = (operation, g, h), the label represents the call
of an operation together with possible pre- and post-
conditions. The invocation of the operation operation
is encoded by the GCI: Vop.op’ n (= 1 op) where
operation is translated into an atomic concept op'.
The invocation of the different operations is repre-
sented by the definition of a role op. This role is
connected to the concept op’ representing the oper-
ation operation. The pre- and postconditions, g and
h are translated into concepts. How pre- and post-
conditions are translated into SHZQ(D~) and how
expressive these constraints can be, is explained in
[42].

- If; = (e,8,{}), only g is translated into a concept.

— The question remains how to express that the differ-
ent operations have to be called in sequence. For this
purpose, a binary relation r is used and also the sub-
sumption relation is exploited. Different GCI’s of
the form guard; 1 cally € 3r.(call, N postconditiony
M guardy) are defined in a Thox representing the
different labels of a call sequence. call; and call,
represent the invocation of a certain operation. For
example, a call sequence ((op1,g1,h1), (0p2,82,h2),
(¢,83,{}), (0pa,ga, ha)), will be represented by the
GCTI’s:

g1 MYop.opi ndop (<1 op)

C 3r.(Yop.ops n3op (< 1op)nhingh),
g, MYop.op, ndopn (<1 op)

C 3r.(Yop.opyNIopn (< 1op)nh,ngyngs),
g1 Mgy N Yop.op, Nopn (< 1op) C 3rhy,

Model refactoring and model refinement

where g} are concepts representing the preconditions
gi, and A} are concepts representing the postcondi-
tions h;. The different concepts op; represent the
corresponding operations op;.

In case a call sequence represents the complete set of
possible labels, the different 3r.X concepts, where X
is a concept variable are replaced by Vr.X. The binary
relation r is similar to the accessibility relation in modal
logic. The first GCI specified above, expresses that it is
possible to reach the world where op), is triggered and
K| and g, hold, starting from the world where g} holds
and op)| is triggered.

The receiving SD traces of Definition 3, containing
event occurrences denoting the receipt of a message,
are translated similarly. Consider a receiving SD trace
Vo /"¢ = ((my, consy), (my, consy), (m3, conss)), this trace
is translated into the different GCI’s:

/ / / /
cons; Mmy E Jr.(m, M cons,),

/ / / /
cons, Mmy, & 3r.(m5 N consy),

where m; is a concept representing the message m;, and
cons; is a complex concept representing the set of con-
straints cons; which must be valid before the execution
of the owning event occurrence. In our formalisation,
the different messages m; only contain the operation
invoked. Each message m; is defined as m; = Yop.op; N
Jop 1 (< 1 op), where op/ represents the operation op;.
This translation of a message is similar to the translation
of the invocation of a call of an operation. This simi-
larity allows straightforward verification of properties
between call sequences and SD traces.

The SD trace denoting the receipt of messages by the
object atm shown in the sequence diagram in Fig. 5, is
represented in SHZQ(D™) by the following GCI’s:

m1 = Y op.getAccountNbr m (< 1op) mn Jop
my = Y op.getAccountEntry r (< 1op) M Jop
ms3 =V checkIfCashAvailable m (< 1op) n Jop
my4 =Vsend M (< 1op) N Jop

ms = VdispenseCash 1 (< lop) n Jop

mg =V PrintReceipt M (< 1op) r Jop

my C Ir.m2

my C dr.m3

m3 C Ar.m4

my T Ir.m5

ms C Ar.m6

The corresponding call sequence in the PSM shown in
Fig. 4 is represented by the following GCI’s:

t; = Yop.getAccountNbr m (< 1op) n Jop

I = Vop.getAccountEntry r (< 1op) M Jop
t3 = V checkIfCashAvailable m (< 1op) n Jop
t4 =Vsend n (< 1lop) N Jop

ts = VdispenseCash m (< lop) n Jop

te = VY PrintReceipt n (< 1op) n Jop

IWITHDRAWAL.T m tl C Vr.t2
t2 C Vr.t3
t3 C Vr.(t4 n 3cashAvailable. T)
JcashAvailable. T M t4 C Vr.(t5 M
JallowedWithdrawal.T)
JallowedWithdrawal. T mt5 C Vr.t6

Remark that in this case, the call sequence of the PSM
is considered to be complete as opposed to the SD trace
of the sequence diagram. This is why Vr.X is used in the
translation of the call sequence.

If all the call sequences of a certain PSM must be
encoded, a label can be followed by several other la-
bels. Consider as an example, the PSM of Figure 4 and
the transition calling the operation printReceipt. Af-
ter this transition, two transitions are possible, or the
card is ejected or the withdrawal transaction is chosen.
To express this, the or constructor is used. The GCI
(Yop.printReceipt 1 (= 1op)) T Ir.(Yop.ejectCard 1 (=
1op))u(Yop.getAccountNbrm (= 1 op) N (Awithdrawal))
expresses that the invocation of the operation
printReceipt is followed by a call to ejectCard or by an
invocation of the getAccountNbr operation.

By translating the call sequences of the whole PSM
shown in Fig. 6, we can check if this is, e.g., invoca-
tion inheritance consistent with the sequence diagram
of Fig. 5.

Due to the above translations of call sequences and
SD traces, the set of constraints cons of an event occur-
rence is logically consistent with the preconditions of
the operation if these preconditions are specified in the
corresponding label. No relation is imposed on the set
of constraints of an event occurrence and the postcon-
ditions of the corresponding label by this translation.

7.3 Taking state information into account
The states specified in a PSM I, = (S¢, T¢, Le¢, pes Ac)

can be taken into account and translated into SHZQ
statements as follows:

@ Springer

R. Van Der Straeten et al.

— s € S, is translated into an atomic SHZ Q(D~) con-
cept.

— Initial states and final states are also translated into
atomic SHZQ(D™) concepts. The restrictions on
these kinds of states as specified in the definition
of a PSM, are implemented on the UML metamod-
el representation in SHZQ(D™).

— A composite state is also explicitly translated
into a complex SHZQ(D™) concept consisting
of the intersection of the different substates.
As an example, consider the composite state
GettingCustomerSpecifics in Fig. 4 consist-
ing of three different substates. This composite state
is represented by: GettingCustomerSpecifics =
AccountEntry U AmountEntry U VerifyATM —
Balance, AccountEntry T GettingCustomerSpecifics,
AmountEntry T GettingCustomerSpecifics and
VerifyATM Balance T GettingCustomerSpecifics.

— A labelled relation (S1,/,S2) such that / is a triple
(op,g,h) and S; = {s11,...,51,} and S =
{$2.1,...,82,m}, is translated into a GCI s’L1 n...n
s1, Mg n (Yopop' M (=1lop) E3r(sy; M ..M
S/Z,m nh). s;,j are SHZQ(D™) concepts represent-
ing the state s;;. The operation op is translated into
an atomic concept op’. h and g are translated into
complex concepts 4’ and g’.

— A labelled relation (S1,/,S2) such that / is a triple
(e,8,{) and §1 = {s11,...,851,) and S =
{$2.1,-..,82,m}, is translated into a GCI s’L1 m...nm
s’l’n ng C Eir.(s/L1 m...n S/Z,m)‘ The different states
and the precondition g are translated in the same
way as described earlier.

In certain contexts, additional restrictions must be inte-
grated in the Thox representing call sequences, SD traces
or PSMs. For example, completeness of the set of states
can be enforced. Another restriction is the disjointness
of the different top-level states of a PSM, i.e., states di-
rectly belonging to the PSM. This disjointness restriction
guarantees that two states cannot be active at the same
time.

Depending on which preservation property or inheri-
tance consistency needs to be checked, only relevant
parts of the PSMs are translated. Suppose we want to
check observation inheritance consistency between the
PSMs as specified in Figs. 4 and 6, then both state ma-
chines will be translated into the DL SHZ Q(D™). To be
able to check observation inheritance consistency, the
PSM of the original class is assumed to be complete and
the PSM of the refined class is translated by only tak-
ing into account the operations known to the original
class. The reasoning task Thox coherence, i.e., checking

@ Springer

whether each concept in the Thox is satisfiable, is used
to check observation inheritance consistency or obser-
vation call preservation. This reasoning task is used to
check all consistency and preservation properties de-
fined in this paper.

7.4 Discussion

By translating a PSM and its call sequences into a DL
and by translating SD traces into DL concepts, it is not
only possible to check the consistency and preservation
properties of Sect. 6. We can also prove that, e.g, a cer-
tain message m always occurs, by checking the satisfi-
ability of the concept Vr.m. Similarly we can prove that
a certain message m occurs at least once, by checking
the satisfiability of the concept 3r.m.

By translating constraints into a DL Thox together
with a class diagram (as specified in [43]) or with a PSM
or sequences and traces, some other properties can be
checked. The constraints can be checked for consistency
with respect to a given class diagram. A constraint is
consistent with respect to the class diagram if it can be
satisfied without contradicting the conditions imposed
by the classes. The set of constraints defined on, e.g., a
state machine, can be checked for internal consistency.
Furthermore, it would be possible to check constraint
equivalence, this boils down to equivalence of logical
formula’s.

The current disadvantage of our above introduced
translations, is the lack of feedback given to the user. If
a Thox is not satisfiable, the DL reasoning engine returns
the set of unsatisfiable concepts. From this information
only, we are not able to deduce which SD traces occur in
the sequence diagram. As a result, we do not have access
to the corresponding call sequences in the PSM. To be
able to inform the user correctly, i.e., to back-annotate
the UML model with information concerning the cause
of the inconsistency or preservation violation, two items
must be further investigated. First, current DL tools,
such as RACER, should give more and proper feed-
back on the cause of the satisfiability problem in case
we check for Thox satisfiability. Second, the necessary
information for reconstructing a UML model from a DL
translation must be stored.

Remark that in the definitions of Sects. 3, 4 and 5
and, as a consequence, also in the DL formalisation,
only symbolic labelled messages and transitions, how-
ever, with constraints are considered. In our examples,
we used parametrised messages and transitions. Con-
sider the transition from the state VerifyATMBalance
to the state VerifyWithdrawal in the protocol state
machine shown in Fig. 4. In our translation we only take
into account the constraint, i.e., cashAvailable and

Model refactoring and model refinement

—
POSEIDON

—————
POSEIDON CORE

| YV
RACOOoN plug-in
—

Queries User
Interface

i’

Inconsistency
Resolution

Inconsistency
Detector

e

Extractor

RACER l—

— — —
Query and

Tboxes Aboxes Rule
Repository

t L t Al !
| RACER INFERENCE ENGINE |

!

INTERFACE |

| INTERFACE to RACER |

Fig. 11 Architecture of RACOoN

the operation called, i.e., send. The parameter m and the
return parameter allowedwWithdrawal of the opera-
tion are not considered. Nevertheless, we are confident
that our ideas can be extended and mounted to a more
detailed level of messages and transitions. Remark that
allowedwithdrawal is used in a constraint on the
transitions outgoing the state VerifyWithdrawal and
translated into a DL concept.

8 Implementation in a CASE tool

In [36], we set up a preliminary tool chain for the pur-
pose of checking inconsistencies between UML models.
This tool chain has evolved into a Poseidon [15] plug-
in which was initially developed by Simmonds [35]. We
extended this plug-in with various inconsistency detec-
tion queries, the ability to generate different 7boxes and
an inconsistency resolution approach.

The architecture of our environment is depicted in
Fig. 11. This figure shows Poseidon and RACER as start-
ing elements. RACOoN is plugged into the Poseidon
tool and contains several components. In this paper, we
focus on the Extractor, Inconsistency Detector and User
Interface components. Each of these components will be
discussed below.

— The User Interface allows for choosing and execut-
ing the detection of particular inconsistencies on
UML models. It also allows the end-user to config-
ure the tool and to load the DL translation of the
UML metamodel into RACER. It makes a concep-
tual difference between checking consistencies and
verifying behaviour preservation properties. This

resulted in the creation of a pane Preservation Man-
ager. A screenshot of the plug-in and this pane is
shown in Figure 12. The end-user can select the
preservation property to be checked and also the
UML diagram specifying the behaviour of the orig-
inal class and the refactored class respectively.

— The Extractor has a double functionality. It trans-
lates the user-defined models into Abox assertions
and loads this Abox into RACER. It also allows
for the translation of PSMs, call sequences and SD
traces as specified in Sect. 7.

— Due to the correspondence between inheritance
behaviour consistencies and call preservation prop-
erties, the component Inconsistency Detector can be
used in the same way for the detection of inheritance
inconsistencies as for the detection of violations of
corresponding preservation properties.

— The Interface to RACER handles the communica-
tion between the different components (such as
Extractor and Inconsistency Detector) and the
RACER engine.

The plug-in is written in a modular way. Translating mod-
els from Poseidon to RACER and checking properties
on these models are independent activities. The checks
are executed on user-demand. The catalogue of incon-
sistencies and preservation properties is not hard-coded.
It can be selected by the user and dynamically changed.

9 Discussion and related work

Many notions of behaviour inheritance consistency have
been presented in literature. Compared to Schrefl et al.

@ Springer

R. Van Der Straeten et al.

My ATM Example Evolved&

E[ETE] BEeEI S c X Dol

ctored

Poseidon for UML Professional Edition

' [) piagram Centric |

I Main ATM diagram

ATM withdrawal state diagram |

Diagram Centric T‘Il‘f‘ 13} 8]

A S0E- eEEEwole

Alcioels] o

rloyment Diagrams

TomimngC i Sy
uence Diagrams | |“
e Diagrams [RekemngCan i o = gebhmauniEr] i drawalAmoun ity | |
—"
ATM printing concurre ot @< 1 l | contuvadlatie = chac J.H‘.......-AJI
1 1 \ 4 —) ————
ATM state diagram ov_ | = |
I ks abowEdraw « vndim cassAvatab]
ATM withdrawal state _"\‘\ ettt b PR B ik < 3 \\'\"' s
IChaosreg T o)
g P 2k . rabes PN u,_.,._._._.: .) SmgmrieCascash {Hlow e dimma l
S _——
@ w / ethcsmtine (WTTHDRAWAL et CHIRGING] e |
'I{l' ‘St O e el P A s 3] __/,-'\\ [
= [
= ChoosingTransact | 1 o o o y 3 e |
= Error - L }c-..._-_.._... { J (PG oT) . cosnonsi iy [T [
3 GettingCustomers ol - "| :)Gy = et | !
i | ¥ > % g —— |
- |ww-<!
Birdview | r_Tu:-————"‘_______— ———{ CaniCrarg |
IR | le |
, SR
ot eV ama] b
.
GlO[#]|L piagram i
_Constraints Tagged Values _Inconsistency-M Inconsistency-Manager Configuration | Refactoring-Manager _Preservation-Manager || 4 |
[Select preservation check | [Load Original Model) (Load Refactored Modei) Preservation check application results:
Available Preservation Checks after hiding all new events, each Model ATM withdrawal PSM Evolved NOT Observation call preserving
» |/ Invocation Call Preservation sequence of the loaded
¥ |4 Observation Call Preservation refactored/refined PSM diagram ~ Model ATM withdrawal PSM
p 5 should be contained in the set of Refactored loaded
XS sequences of the original PSM
Sequence vs. Sequence
State vs. Sequence
L
V= 76%

Fig. 12 Screenshot of RACOoN plugged into Poseidon

[39], our notions of behaviour inheritance consistency
are more general, since they are defined independent of
the kind of subtype relation between the superclasses
and their subclasses. Engels et al. [10] define observ-
able and invocation consistency using homomorphisms
on state diagrams. Criteria for inheritance of object life
cycles based on Petri nets are discussed in [32,39,41].
Approaches based on CSP are discussed in [12,30]. CSP
is used as a medium to check consistency, i.e., the UML
model remains consistent if its CSP translation remains
consistent. Moreover, CSP refinement relations are used
to check and define several inheritance approaches and
subtyping relations. In this approach, it is necessary to
understand the effects that CSP refinement relations in-
duce on UML models.

There is an abundant amount of work on model check-
ing for different statechart variants. Recent work con-

@ Springer

cerns the translation of UML state machines into the
model checker SPIN [19,31]. Model checking is an auto-
matic, model-based, property-verification approach. It
is intended to be used for concurrent, reactive systems.
Model checking focuses explicitly on temporal proper-
ties and the temporal evolution of systems. It starts with
a model described in a description language, and it dis-
covers whether properties described in a specification
language, are valid on the model. If they are not valid, it
can produce counterexamples, consisting of execution
traces. The specification language can be a temporal
logic or a labelled transition system. The specification
language used by SPIN is PROMELA. SPIN can be
used as a full LTL (linear-time temporal logic) model
checking system, i.e., the properties to be verified are
LTL formulas. Temporal logics have a dynamic aspect,
since truth of a formula is not fixed in a model, as it is in

Model refactoring and model refinement

predicate or propositional logic. The models of temporal
logic contain several states and a formula can be true in
some states and false in others. Other specification lan-
guages are also supported by SPIN. In [31] for example,
UML state machines are translated into PROMELA,
while Biichi automata are used to describe the proper-
ties to be verified. In this particular case the properties
are UML collaboration diagrams.

DLs can also be seen as an automatic, model-based,
property-verification approach. In DLs the specification
and description languages are the same. The built-in
reasoning capabilities are used to verify whether hypoth-
eses asserted by the user are valid on the model. This
does not result in counterexamples which consist of exe-
cution traces. Model checking starts with a logic model
and discovers whether properties asserted by the user
are valid. In a model checking approach the verifica-
tion relies on an exhaustive search of all states that the
system will encounter. This gives rise to the known prob-
lem of state explosion. DLs construct models in which
the property is valid. Model checking focuses explic-
itly on temporal properties unlike DLs. However, some
DLs correspond to certain modal logics of which tem-
poral logics are special cases. Which properties can be
checked by a model checker depends on the expressive-
ness of the specification language.

Research on model refactoring is also emerging. A
set of basic UML refactorings is provided in [40] to im-
prove the software design in a stepwise fashion. Boger
et al. show how model refactorings can be integrated in
the Poseidon UML refactoring browser [3]. Astels uses
a UML tool to perform refactorings more easily, and
also to aid in code smell detection [1]. Model refact-
orings are defined in [29] as a sequence of transforma-
tion rules. Surprisingly, none of the above approaches
towards model refactoring takes behaviour preserva-
tion into account. One of the reasons is that there is no
generally accepted behavioural interpretation of UML
models. Therefore, we consider this as an important con-
tribution of our paper.

The approach presented in our paper does not explic-
itly specify model refactorings as model transformations.
In order to do this, the UML metamodel first needs
to be extended with a model transformation language
(e.g., based on the ideas of graph transformation [22]).
We also need a formal means to prove that a transfor-
mation preserves precisely those behavioural properties
that we want to reason about (e.g., observation and invo-
cation call preservation). Using such a formalism, we can
guarantee that the refactored model is still consistent,
without needing to recheck all consistency rules. This
is precisely the approach taken by [13] in the context
of UML-RT. Transformation rules specify local modifi-

cations that preserve a local consistency property (e.g.,
absence of deadlocks) that can be checked locally. This
enables an incremental approach to consistency check-
ing. Such an incremental approach provides a promis-
ing alternative to traditional model checking approaches
[7], where the entire model needs to be verified again,
even when small and local changes have been made to
a model.

A lot of research has been done in the context of pro-
gram refinements. Specifically, in the context of model
refinement, two methodologies are well-known, namely
Catalysis [9] and KobrA [4]. Catalysis [9] provides com-
plete support for component-based development with
objects and frameworks, building on emergent stan-
dards including the UML. Component interactions can
be described on different levels of detail. More detailed
descriptions can be built in a systematic way from ab-
stract ones. High-level process guidelines are provided
for applying refinement techniques. The KobrA method
[4] represents a synthesis of several advanced software
technologies. The basic goal is to provide a system-
atic approach to the development of component-based
application frameworks. UML models are instantiated
and mapped through a set of well-defined refinement
and translation steps into an executable representation.

Recently, refinement techniques have been applied in
the context of UML. Davies and Crichton [8] use CSP
refinement relations to induce a notion of refinement for
UML. The proposed approach necessitates a thorough
understanding of the effects and restrictions of CSP
refinement relations on UML. Jiirjens [18] uses refine-
ment for security-critical systems in UML. He intro-
duces a formal semantics for UML and defines two kinds
of refinements which preserve some domain-dependent
safety properties. Shen et al. [34] propose a set of rules
based on UML class diagram refinement, more specifi-
cally refinement of relationships specified between clas-
ses, to support model checking for software refinement.
These rules are embedded in the UML metamodel us-
ing stereotypes and keep the class models consistent.
Only limited rules considering basic elements of class
diagrams are taken into account. Whittle [45] investi-
gates the role of refinement in UML class diagrams with
OCL constraints. In particular, he provided an extended
example of the automation of parts of the design process
using transformations.

10 Conclusion and future work

In this paper, we formalised behaviour expressed by
UML protocol state machines and sequence diagrams.

@ Springer

R. Van Der Straeten et al.

Based on this formalisation, different kinds of behaviour
inheritance consistencies were defined between state
machines and sequence diagrams of a class and its re-
fined subclass. Using those consistency definitions, we
derived similar definitions of behaviour preservation
properties between a class and its refactored version.
We also proved some interesting additional properties
regarding inheritance consistency and behaviour pres-
ervation between a refined class and its refactored
version.

Based on our formalisation, description logics were
proposed and applied as a reasoning formalism for the
detection of inconsistencies and call preservation viola-
tions. As a proof of concept of our approach, we imple-
mented our ideas as an extension of a Poseidon plug-in
in which the RACER DL system is used to formally
specify and reason about UML models as a collection of
DL concepts and roles. We used this tool to detect the
inconsistencies we encountered in the evolving design
of an ATM simulation. The DL reasoning abilities were
successfully used to detect inconsistencies between the
behaviour of a class and its refinements. We also used
the tool to check the preservation of behaviour between
subsequent versions of a class.

Until now, we only carried out experiments on small
examples. Experiments on real industrial models remain
to be done. Based on these experiments, we hope to find
out which kinds of model refactorings are most useful in
practice, and what are the kind of behavioural properties
that should be preserved by these refactorings.

We also plan to explore if other consistency speci-
fications such as the ones defined in [43] correspond
to the preservation of certain behavioural properties.
We need to extend our formalisation for parametrised
messages and transitions. As a consequence, we must
investigate to which extent DLs can be used in this
case or whether another reasoning formalism will be
needed.

From a tool perspective, we need to supply the user
with more detailed feedback about the detected incon-
sistencies or preservation violations. This can be achieved
by storing extra information on the translation of UML
model elements into DL concepts. The tool also needs
to be enhanced to support resolution of detected incon-
sistencies or preservation violations. Finally, we plan to
extend our ideas to deal with consistency maintenance
and behaviour preservation across different levels of
abstraction (e.g., requirements specifications, analysis
and design models, and programs). This will allow us
to provide better formal support throughout the model-
driven engineering process.

@ Springer

References

1. Astels, D.: Refactoring with UML. In: Proceedings of the
International Conference eXtreme Programming and Flex-
ible Processes in Software Engineering, pp. 67-70, (2002)

2. Baader, F., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, Cambridge (2003)

3. Boger, M., Sturm, T., Fragemann, P.: Refactoring browser for
UML. In: Proceedings of the International Conference eX-
treme Programming and Flexible Processes in Software Engi-
neering, pp. 77-81, (2002)

4. Bunse, C., Atkinson, C.: The normal object form: Bridging
the gap from models to code. In Proc. Int’l Conf. UML99,
vol. 1723, pp. 691-705. Springer, Berlin Heidelberg New York
(1999)

5. Cali, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: A
formal framework for reasoning on UML class diagrams. In:
Foundations of Intelligent Systems: 13th International Sym-
posium, vol. 2366 of LNCS, pp. 503. Springer, Berlin Heidel-
berg New York (2002)

6. Calvanese, D., De Giacomo, G., Lenzerini, M.: 2atas make
dls easy. In: Proceedings of the International Workshop on
Description Logics, vol. 53 of CEUR Electronic Workshop
Proceedings, pp. 107-118 (2002)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking.
MIT Press, Cambridge (1999)

8. Davies, J., Crichton, C.: Concurrency and refinement in the
UML. In: Derrick, J., Boiten, E., Woodcock, J., von Wright, J.
(eds.) Electronic Notes in Theoretical Computer Science, vol.
70. Elsevier, Amsterdam (2002)

9. D’Souza, D., Wills, A.: Objects, Components and Frameworks
with UML: the Catalysis Approach. Addison-Wesley, Read-
ing (1998)

10. Ebert, J., Engels, G.: Specialization of object life cycle defi-
nitions. Fachbericht Informatik 19/95, Universitit Koblenz-
Landau, Fachbereich Informatik, Koblenz, (1995)

11. Emmerich, W., Finkelstein, A., Antonelli, S., Armitage, S., Ste-
vens, R.: Managing standards compliance. IEEE Trans. Softw.
Eng. 25(6), 836-851 (1999)

12. Engels, G., Hausmann, J., Heckel, R., Sauer, S.: Testing the
consistency of dynamic UML diagrams. In: Proceedings of the
Sixth International Conference Integrated Design and Pro-
cess Technology (IDPT 2002), June 2002

13. Engels, G., Heckel, R., Kiister, J.M., Groenewegen, L.: Con-
sistency-preserving model evolution through transformations.
In: Proceedings of the 5th International Conference UML
2002, vol. 2460 of LNCS, pp. 212-226. Springer, Berlin Hei-
delberg New York (2002)

14. Finkelstein, A., Gabbay, D.M., Hunter, A., Kramer, J., Nuse-
ibeh, B.: Inconsistency handling in multi-perspective specifi-
cations. In: European Software Engineering Conference, vol.
717 of LNCS, pp. 84-99. Springer, Berlin Heidelberg New
York (1993)

15. Gentleware. Poseidon, http://www.gentleware.com/, 18 March
2004

16. Haarslev, V., Moller, R.: RACER system description. In: Pro-
ceedings of the International’l Joint Conference Automated
Reasoning (IJCAR 2001), vol. 2083 of LNCS, pp. 701-706.
Springer, Berlin Heidelberg New York (2001)

17. Horrocks, 1., Sattler, U., Tobies, S.: Practical reasoning for
expressive description logics. In: Proceedings of the 6th Inter-
national Conference Logic for Programming and Automated

Model refactoring and model refinement

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

Reasoning (LPAR’99), volume 1705 of LNAI, pp. 161-180.
Springer, Berlin Heidelberg New York (1999)

Jiirjens, J.: Formal Semantics for Interacting UML subsystems.
In: Proceedings of the 5th International Conference Formal
Methods for Open Object-Based Distributed Systems (FMO-
ODS 2002), pp. 29-44. Kluwer, Dordrecht (2002)

Latella, D., Majzik, I., Massink, M.: Automatic verification of
a behavioural subset of UML statechart diagrams using the
SPIN model-checker. Formal Aspects Comput. 11(6), 637-664
(1999)

Liskov, B.: Data abstraction and hierarchy. SIGPLAN Notices
23(5), 17-34 (1987). OOPSLA ’87 Keynote Speech

Lutz, C., Sattler, U.: Mary likes all cats. In: Baader, E., Sat-
tler, U. (eds.) Proceedings of the International Workshop on
Description Logics, vol. 33 of CEUR Electronic Workshop
Proceedings, pp. 213-225, 2000

Mens, T., Demeyer, S., Janssens, D.: Formalising behaviour
preserving program transformations. In: Proceedings of the
First International Conference on Graph Transformation, vol.
2505 of LNCS, pp. 286-301. Springer, Berlin Heidelberg New
York (2002)

Meyer, B.: Object-Oriented Software Construction, 2nd edn.
Prentice Hall, Englewood cliffs (1997)

Nissen, H., Jeusfeld, M., Jarke, M., Zemanek, G., Guber, H.:
Managing multiple requirements perspectives with metamod-
els, pp. 37-47. IEEE Software, Washigton DC (1996)
Nuseibeh, B., Kramer, J., Finkelstein, A.: A framework for
expressing the relationship between multiple views in require-
ments specification. IEEE Trans. Softw. Eng. 20(10), 760-773
(1994)

Object Management Group. UML 2.0 Object Constraint Lan-
guage Final Adopted Specification. ptc/03-10-14, January 2005
Object Management Group. Unified Modeling Language
2.0 Superstructure Draft Adopted Specification. ptc/03-08-02,
January 2005

Object Management Group. Unified Modeling Language Ver-
sion 1.5. formal/2003-03-01, January 2005

Porres, 1.: Model refactorings as rule-based update trans-
formations. In: Proceedings of the International Conference
UML 2003, vol. 2863 of LNCS, pp. 159. Springer, Berlin Hei-
delberg New York, 2003

Rasch, G., Wehrheim, H.: Checking consistency in UML
diagrams: Classes and state machines. In: Formal Methods
for Open Object-based Distributed Systems, vol. 2884 of
LNCS, pp. 229-243. Springer, Berlin Heidelberg New York
(2003)

Schifer, T., Knapp, A., Merz, S.: Model checking UML state
machines and collaborations. Electronic Notes Theor. Com-
put. Sci. 55(3) (2001)

Schrefl, M., Stumptner, M.: Behavior consistent specialization
of object life cycles. ACM Trans. Softw. Eng. Method. 11(1),
92-148 (2002)

Sendall, S., Kozaczynski, W.: Model transformation: The heart
and soul of model-driven software development. IEEE Softw.
20(5), 42-45 (2003). Special Issue on Model-Driven Software
Development

Shen, W., Lu, Y., Low, W.L.: Extending the UML metamod-
el to support software refinement. In: Consistency Problems
in UML-based software development I1: Workshop Materials,
number 2003:06, 2003. Available at http://www.ipd.bth.se/con-
sistencyUML/ Consistency_Problems_in_UML_IL.pdf, Octo-
ber 2003

Simmonds, J., Bastarrica, M.C.: Description logics for consis-
tency checking of architectural features in UML 2.0 models.
DCC Technical Report TR/DCC-2005-1, Departamento de
Ciencias de la Computacion, Santiago, Chile, 2005

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Simmonds, J., Van Der Straeten, R., Jonckers, V.: Maintaining
consistency between uml models using description logic. Série
L’objet - logiciel, base de données, réseaux, 10(2-3), 231-244
(2004)

Spanoudakis, G., Zisman, A.: Inconsistency Management in
Software Engineering: Survey and Open Research Issues, vol.
1, pp. 329-380. World Scientific Pub. Co., Singapore (2001)
Stevens, P, Tenzer, J.: Modelling recursive calls with UML
state diagrams. In: Pezzé, M. (ed.) Proceedings of the Fun-
damental Approaches to Software Engineering (FASE 2003),
vol. 2621 of LNCS, pp. 135-149. Springer, Berlin Heidelberg
New York (2003)

Stumptner, M., Schrefl, M.: Behavior Consistent Inheritance
in UML. In: Proceedings of the 19th International Confer-
ence Conceptual Modeling (ER 2000), vol. 1920 of LNCS, pp.
527-542. Springer, Berlin Heidelberg New York (2000)
Sunyé, G., Pollet, D., LeTraon, Y., Jézéquel, J.-M.: Refactor-
ing UML Models. In: Proceedings of the International Con-
ference UML 2001, vol. 2185 of LNCS, pp. 134-138. Springer,
Berlin Heidelberg New York (2001)

van der Aalst, W.: Inheritance of dynamic behaviour in UML.
In: Proceedings of the 2nd International’l Workshop on Mod-
elling of Objects, Components and Agents (MOCA’02), pp.
105-120, August 2002

Van Der Straeten, R.: Inconsistency Management in Model-
driven Engineering. An Approach using Description Logics.
PhD Thesis, Vrije Universiteit Brussel

Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.:
Using description logic to maintain consistency between UML
models. In: Proceedings of the International Conference UML
2003, vol. 2863 of LNCS, pp. 326-340. Springer, Berlin Hei-
delberg New York (2003)

Van Der Straeten, R., Simmonds, J., Mens, T.: Detecting incon-
sistencies between UML models using description logic. In:
Calvanese, D., Giacomo, G.D., Franconi, E. (eds.) Descrip-
tion Logics, vol. 81 of CEUR Workshop Proceedings (2003)
Whittle, J.: Transformations and software modeling languages:
Automating transformations in UML. In: Proceedings of the
International Conference UML 2002, vol. 2460 of LNCS, pp.
227-242. Springer, Berlin Heidelberg New York (2002)

Authors biographies

r

Ragnhild Van Der Strae-
ten received the degrees of
Licentiate in Applied Math-
ematics at the Universiteit
Gent (Belgium), and Licenti-
ate in Applied Computer Sci-
ence and Ph.D. in Science at
the Vrije Universiteit Brus-
sel (Belgium). Currently, she
is a post-doctoral researcher
at the System and Software
Engineering Lab at the Vrije
| Universiteit Brussel. She has

published many peer-reviewed international articles on the topic

of inconsistency management between UML models.

@ Springer

R. Van Der Straeten et al.

Tom Mens received the de-
grees of Licentiate in Math-
ematics, Advanced Master
in Computer Science, and
Ph.D. in Science at the Vrije
Universiteit Brussel. He has
been a postdoctoral fellow of
the Fund for Scientific Re-
search P Flanders (FWO).
He currently lectures on soft-
ware engineering and pro-
gramming languages at the
Université de Mons-Hainaut.
He has published numer-
ous peer-reviewed articles on the topic of software evolu-
tion, and has been co-organiser, program committee mem-
ber and referee of many international workshops and con-
ferences. He is involved in various national and interna-
tional projects and networks on software evolution. He is
a member of both the ACM and the IEEE Computer
Society.

@ Springer

Viviane Jonckers received
her Ph.D. in Computer Sci-
ence from the VUB (1987).
Since 1987, she has been a
professor both at the Depart-
ment of Computer Science of
the Faculty of Science and at
the Department of Informat-
ics of the Faculty of Engineer-
ing. Currently, she is head of
the Department of Computer

= Science and director of the
System and Software Engineering Lab. Her research interests
are knowledge-based programming, the use of (semi-) formal
methods in software engineering and knowledge engineering,
and more recently, component-based and service-based software
development.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

