
Data Mining and Knowledge Discovery manuscript No.
(will be inserted by the editor)

An Optimization Model for Collaborative
Recommendation Using a Covariance-Based
Regularizer

Fabian Lecron · François Fouss

Received: date / Accepted: date

Abstract This paper suggests a convex regularized optimization model to
produce recommendations, which is adaptable, fast, and scalable - while re-
maining very competitive to state-of-the-art methods in terms of accuracy. We
introduce a regularizer based on the covariance matrix such that the model
minimizes two measures ensuring that the recommendations provided to a user
are guided by both the preferences of the other users in the system and the
known preferences of the user being processed. It is adaptable since (1) it can
be viewed from both user and item perspectives (allowing to choose, depend-
ing on the task, the formulation with fewer decision variables) and (2) multiple
constraints depending on the context (and not only based on the accuracy, but
also on the utility of personalized recommendations) can easily be added, as
shown in this paper through two examples. Since our regularizer is based on
the covariance matrix, this paper also describes how to improve computational
and space complexities by using matrix factorization techniques in the opti-
mization model, leading to a fast and scalable model. To illustrate all these
concepts, experiments were conducted on four real datasets of different sizes
(i.e., FilmTrust, Ciao, MovieLens, and Netflix) and comparisons with state-
of-the-art methods are provided, showing that our context-sensitive approach
is very competitive in terms of accuracy.

This is a post-peer-review, pre-copyedit version of an article published in Data Min-
ing & Knowledge Discovery. The final authenticated version is available online at:
https://doi.org/10.1007/s10618-018-0552-3

F. Lecron
Department of Engineering Innovation Management
Faculty of Engineering, University of Mons, Belgium
E-mail: fabian.lecron@umons.ac.be

F. Fouss
Louvain School of Management (LSM)
Louvain Research Institute in Management and Organizations (LouRIM)
Université catholique de Louvain (UCL), Belgium
E-mail: francois.fouss@uclouvain.be



2 Fabian Lecron, François Fouss

Keywords Recommender system · Collaborative filtering · Regularizer ·
Convex optimization · Matrix factorization

1 Introduction

1.1 General Introduction

Recommending items to family members, friends, or neighbors is a social pro-
cess which is part of human life since the dawn of time: before going to the
cinema, before buying a car, before booking holidays, etc., we behave in the
same way, collecting the opinions of relatives and experts before making a
decision. Each of us is daily confronted with recommendations, as were our
ancestors and as will be our children.

The process of recommendation has however drastically evolved last decades
since part of our lives now takes place when connected. But, as the amount of
available information has been growing at a phenomenal rate, it is more and
more difficult to process it. Everybody has already been overwhelmed with
the number of new books, journal articles, and conference proceedings com-
ing out each year. During the last decades, technology has dramatically made
publishing and distributing information easier. The challenge now consists in
developing technologies that can help us sift through all this available infor-
mation to find the most valuable information for each of us. Recommender
systems are one of these technologies. Recommender systems try to provide
people with recommendations of items they will appreciate, based on their
past preferences, history of purchase, and demographic information.

Recommender systems have their origin (see the surveys of Adomavicius
and Tuzhilin (2005), or Lü et al (2012) for more details) in the work done
in, mainly, information retrieval (Salton, 1989), cognitive science (Rich, 1979),
forecasting theories (Armstrong, 2001), marketing (Lilien et al, 1992), man-
agement (Murthi and Sarkar, 2003), and emerged as an independent research
area in the mid-1990s, with the first papers on collaborative filtering appearing
in (Hill et al, 1995; Resnick et al, 1994; Shardanand and Maes, 1995). Various
approaches (content-based, collaborative, or hybrid approaches – combining
the first two) were developed through years to produce the best recommender
systems (see, e.g., (Adomavicius and Tuzhilin, 2005; Lü et al, 2012)). While
content-based approaches recommend items similar to the ones a user preferred
in the past depending on the features of the items, collaborative approaches
recommend to a user items that people with similar tastes and preferences have
liked or items similar to the ones the considered user has preferred, depending,
this time, on the links between items and users, and not on the features of
items.

This work suggests to produce recommendations by using a convex regular-
ized optimization model (i.e., a linear least-squares), minimizing two measures.
Moreover, we introduce a regularizer based on the covariance matrix ensuring
that the recommendations provided to a user are guided by both the prefer-



Collaborative Recommendation Using a Covariance-Based Regularizer 3

ences of the other users in the system (our model can therefore be classified
as a collaborative filtering one – see Related Work) and the known prefer-
ences of the user being processed, and leads to very competitive results in
terms of accuracy. This is very attractive since it is now clear in the recom-
mender systems’ community that state-of-the-art systems, based on various
approaches, can provide very accurate recommendations for different kinds of
items in many areas. It is however less evident that only the accuracy still has
to be taken into account for designing and comparing recommender systems.
Imagine you need some novelty in your recommendations, and therefore a sys-
tem that favors non-popular items, or imagine you need to add a financial
constraint in the model (e.g., on your margin), etc. Such constraints should
be integrated into a recommender system. Interestingly, multiple constraints,
depending on the context, can easily be added to an optimization model such
as ours, as is also shown in this paper.

1.2 Related Work

The two primary areas of collaborative filtering are distinguished according to
the neighborhood methods and the latent factor models (Koren, 2008; Koren
et al, 2009). Approaches based on neighborhoods use various statistical tech-
niques to determine a set of users/items, often referred to as the neighbors,
who are the most similar to the active user/to the items the considered user
has preferred, depending on the historical behavior of the users. The most pop-
ular approaches (Herlocker et al, 2002) use the Pearson correlation coefficient,
the Spearman rank correlation coefficient, and the cosine correlation as mea-
sure of similarity. Many extensions to these classical techniques as well as other
neighborhoods measures were proposed in the literature. Approaches based on
latent factor models consist in transforming both items and users to the same
latent factor space, making them directly comparable (Koren, 2008). Latent
factor models can be obtained by performing matrix factorization. In a basic
form, the factor vectors are deduced with a minimization of the regularized
squared error on a set of known ratings. Singular Value Decomposition (SVD)
is a well-established technique to obtain latent factors in information retrieval
(Koren et al, 2009; Paterek, 2007; Koren, 2009). Other matrix factorization
methods have been used in the literature: principal component analysis (Kim
and Yum, 2005; Yu et al, 2009), bounded matrix factorization (Kannan et al,
2012), nonnegative matrix factorization (Zhang et al, 2006; Luo et al, 2014),
probabilistic matrix factorization (Salakhutdinov and Mnih, 2008; Shan and
Banerjee, 2010), etc.

One of the first approach to merge latent factor and neighborhoods models
is described in (Koren, 2008). The authors added a term allowing to exploit
implicit feedback when factorizing the matrix of known ratings. Following the
same idea, Zhang et al (2013) integrated a social regularizer and an item simi-
larity regularizer into a probabilistic matrix factorization. The advantage was
to use the social interactions of users on a microblog. A graph-regularized



4 Fabian Lecron, François Fouss

nonnegative matrix factorization was proposed by Gu et al (2010) to include
user’s demographic information, social interactions, item’s genre information,
etc. The additional term is defined with a graph Laplacian. Recently, Rao
et al (2015) proposed a scalable algorithm for matrix completion that incorpo-
rates additional structural information (e.g., social graphs, item co-purchasing
graphs). The proposed regularizer relies on a Laplacian matrix associated to
the graph encoding relationships between variables.

In the present paper, we introduce a regularizer based on the inverse co-
variance matrix. The interest of using the inverse covariance matrix is that
it encodes the correlations between all items or all users (we will see that
we can do both). Some similar regularizers using covariance matrix through
a trace norm are proposed in (Feldman, 2012) in the context of multi-task
learning (MTL) but the purpose is quite different with the present work. Still
in (Feldman, 2012), other regularizers usually applied for multi-task learning
are presented: a distance to mean regularizer, a trace norm regularizer and a
pairwise distance regularizer. In our opinion, using correlations thanks to the
inverse covariance matrix provides a better generalization than using a simple
distance to mean or a pairwise distance regularizer. In a similar way, Ning and
Karypis (2011) also proposed a regularized optimization problem based on a
n × n (n being the number of items) aggregation matrix. In order to avoid a
dimensionality problem, they introduce the l1-norm of the aggregation matrix
to learn a sparse matrix. Theoretically, we could merge our regularizer into
a matrix factorization technique such as suggested by the methods described
above (Gu et al, 2010; Zhang et al, 2013; Rao et al, 2015). However, these
methods work well with sparse similarity matrices and using our covariance-
based regularizer would have been too computationally demanding. To give
an order of magnitude, a user-user similarity matrix for the Netflix dataset
(Bennett and Lanning, 2007) would require to deal with 480, 189 × 480, 189
links between users.

For these reasons, matrix factorization is included in our model as a pre-
processing step and its role is somehow different from latent factor models. In
our approach, it only serves to express users or items in the same space and to
reduce the dimensionality of the problem. The results of matrix factorization
is then used in the convex problem optimizing the similarity measure we have
defined. As a consequence, our model could be classified as a neighborhood
one since we use a similarity measure between users/items (two formulations
are defined) written as a convex optimization problem.

The positive impact of performing a matrix factorization and then writ-
ing our recommender system as a convex optimization model is that we can
easily include additional constraints in the problem depending on the context.
In their well-known survey, Adomavicius and Tuzhilin (2005) highlighted the
fact that including multiple criteria in recommender systems to extend their
capabilities was a challenging issue. Since then, some works have focused on
this topic.

Rodriguez et al (2012) studied a specific application of recommender sys-
tems with multiple objectives. They described TalentMatch, a product at



Collaborative Recommendation Using a Covariance-Based Regularizer 5

LinkedIn which scours the database of users and finds the best candidates
for a given job posted on the website. The system provides recommendations
by computing similarities between a subset of a member’s feature vector and
semantically related subsets of the given job’s feature vector. The authors ar-
gued in the paper that it is interesting to add other features than semantic
ones in the TalentMatch system, such as the job-seeking intent of a mem-
ber. By doing so, they showed that the semantic match is decreased but that
the utility of the recommendations is increased (42% increase on email reply
rate). The specificity of their approach is that they use additional objectives in
an optimization problem but they also control the loss of matching precision
by penalizing the distance between the semantic match distribution (without
additional constraints) and the enhanced score distribution (with additional
constraints). The optimization problem is different from what we propose in
this paper since objective function and constraints in (Rodriguez et al, 2012)
can be nonlinear. It is unfortunately impossible to estimate the influence on
optimization time since this aspect is not discussed in their paper.

The advantage of focusing on the utility of personalized recommendations
(and not only on the accuracy) is also stressed in (Jambor and Wang, 2010).
The authors experimented a recommender system based on the formulation of
a problem using constrained linear optimization techniques. The linear con-
straints allow to solve the problem faster than in (Rodriguez et al, 2012). The
objective function of the problem is very simple and linked to constraints such
as the fact that a user likes popular items or the probability that items are
available during recommendation. The authors pointed out that the accuracy
is drastically reduced with their approach. Therefore, they propose to enrich
the objective function with a nonlinear term based on covariance matrix with-
out explaining how they deal with the dimensionality of the problem.

Agarwal et al (2011) proposed several formulations of constrained linear
problems with multiple objectives applied to a Yahoo module providing users
with interesting and informative articles everyday. The idea was to optimize
jointly for number of clicks and other post-clicks utilities such as total time
spent. The users are segmented into homogeneous groups, and features such as
number of clicks and post-clicks utilities are computed for each segment. Their
work is therefore different to the approach detailed in the present paper since
we are interested in collaborative filtering for personalized recommendations.

A common issue with the aforementioned methods is that they all are
specific to the users. In the literature, some datasets are treated effectively by
user-based methods and others by item-based methods. As a consequence, we
propose a general framework that can be formulated either in a user-based
form or in an item-based one.

1.3 Contributions and Organization of the Paper

This work has 4 main contributions:



6 Fabian Lecron, François Fouss

– It defines a new framework for recommending items, exploiting a convex
optimization model using a similarity measure based on the covariance
matrix.

– It shows how the optimization of this problem, although already fast, can
be made even faster and scalable by using matrix factorization, making the
model suited for many applications where real-time recommendations are
required for consumers.

– It shows how multiple constraints depending on the context can be easily
added to such an optimization model, providing new opportunities for more
diversified and adapted recommender systems.

– It shows that both user-based and item-based approaches can be integrated
in this framework, allowing to choose, in a very attractive way and depend-
ing on the task, the formulation with fewer decision variables.

Section 2 describes the convex optimization framework for collaborative rec-
ommendation and further investigates the dimensionality reduction work. In
Section 3, the optimization model is applied on well-known datasets in the
field of recommender systems, and results are shown and analyzed. Conclud-
ing remarks and possible extensions are discussed in Section 4.

2 Methods

2.1 Framework Overview

The goal of a recommender system is to provide an ordered list of items to each
user. The items are ordered given a measure of preference that the user would
give to them. In the present work, we propose to predict these preferences by
solving an optimization problem. Regardless of the context, we distinguish two
measures that are required to be optimized to obtain relevant recommenda-
tions, and we introduce a regularizer based on the covariance matrix.

In the following, we consider that the number of users is equal to u and
the number of items is equal to v.

2.1.1 Regularizer Based on Covariance Matrix

In this section, we present a user-oriented point of view of the problem. Section
2.2.2 shortly describes the dual formulation of the problem with an item-
oriented point of view.

Let us define the decision variable X ∈ Rv×u, a matrix such as each column
represents a user and each row an item:

X = [x1,x2,xj , . . . ,xu] . (1)

Note that xj is a column vector characterizing a user j such as: xj = (xj1, xj2, . . . , xji, . . . , xjv)
T.

First, the known preferences of the user being processed by the system
need to guide the process. To illustrate our purpose, let us consider a matrix



Collaborative Recommendation Using a Covariance-Based Regularizer 7

M where each column stands for a user and each row for an item, in such a way
that mij represents the preference (e.g., an implicit feedback with a value of 1
or 0) of a user j for an item i. If the user did not expressed a preference then
mij is set to 0. Notice that, if the matrix is a rating matrix, a conflict could
arise if the value 0 is also the lower bound of the rating scale. In this case,
authors in (Devooght et al, 2015) showed the interest of using an explicit prior
on unknown ratings. By assuming that unknown items are more likely to be
weakly rated, they improved results over state-of-the-art matrix factorization
methods. As a consequence, in order to avoid a conflict, we could use 0 as an
explicit prior on unknown ratings in the matrix. Let x be the solution of the
optimization model, representing the predicted preferences for a user j and all
the items, let us note κj the set of items i for which mij is known at column
j. Therefore, for each user j the difference between the known mij and the
xij associated to these known mij has to be minimized. A vector is therefore
built, for each user j, containing these differences ∀i ∈ κj :

...
xij −mij

...

 (2)

Actually, Equation (2) tries to get xj close to the a priori information we
know about the user being processed.

Secondly, we need to ensure that the recommendations provided to a user
are guided by the preferences of the other users in the system. One way to
take into account the preferences of all the users of the system is to minimize
the Mahalanobis distance d between xj and the sample characterized by M,
summarized by its mean and its covariance matrix. Formally, we have:

d =
√

(xj − x̄)TΣ−1(xj − x̄), (3)

where x̄ is the mean computed over the columns of M and Σ−1 is the inverse
covariance matrix associated to M. If mj is the column vector j of matrix M,
we have that Σ = 1

u−1
∑u
j=1(mj − x̄)(mj − x̄)T, where x̄ = 1

u

∑u
j=1 mj .

The Mahalanobis distance allows to include the preferences of all the users
in the optimization process. It actually tries to get xj close to the mean
while taking into account the correlations between items (represented by Σ−1).
These correlations are computed with the preferences (or implicit feedback)
given by all the users to the items. Other regularizations are also possible.
We have tested a Laplacian regularization (Smola and Kondor, 2003) without
obtaining results as good as those obtained with the proposed regularization.
It is important to note that in Equation (3), matrix Σ might not be invertible.
However, Section 2.3 explains how to reduce the dimensionality of the problem
and shows that we do not need to invert Σ but only a reduced version of it.

Finally, the two measures described in this section are used to form the
optimization model. Moreover, effective recommender systems are required to
be fast in order to deal with large amount data. Therefore, our system has



8 Fabian Lecron, François Fouss

been designed by using convex optimization since convex problems can be
solved very reliably and efficiently with a polynomial-time complexity (Boyd
and Vandenberghe, 2004). The next section explains how to integrate our
recommender system into a convex optimization framework.

2.2 Regularized Optimization Problem for Collaborative Recommendation

This section shows how to transform the two measures defined in Section 2.1.1
using a norm, allowing us to rewrite our problem as a convex optimization
model (i.e., a linear least-squares). In the following, we distinguish the user-
based case, the item-based case, and the case where neighbors are considered.
The formulations of the recommender system proposed in this section are
based on solving an unconstrained linear least-squares. In Matlab, the opera-
tion A\B returns a least-squares solution to the system of equations Ax = B.

2.2.1 User-based

A linear least-squares (Gill et al, 1981) is formulated according to:

min
x

1

2
‖Ax− b‖22 . (4)

Note that the x solution of such a linear least-squares problem can be
reduced to solving a set of linear equations

(
ATA

)
x = ATb (see for example

(Boyd and Vandenberghe, 2004)). So, the analytical solution is given by x =(
ATA

)−1
ATb.

To be in line with Equation (4), the regularizer based on Mahalanobis
distance (see Equation (3)) needs to be transformed given:

d2 = (xj − x̄)TΣ−1(xj − x̄)

= (LT(xj − x̄))TLT(xj − x̄)

=
∥∥LT(xj − x̄)

∥∥2
2

=
∥∥LTxj − LTx̄

∥∥2
2
,

(5)

where L is the Cholesky decomposition of the inverse covariance matrix such
as: Σ−1 = LLT.

Moreover, Equation (2) is simply modified by considering the norm such
as: ∑

i∈κj

(xij −mij)
2. (6)

Equations (5) and (6) can then be associated in the convex model defined
in Equation (4). These constraints actually need to be minimized, leading to
the following formulation of the objective function:



Collaborative Recommendation Using a Covariance-Based Regularizer 9

min
xj

1

2

∥∥LTxj − LTx̄
∥∥2
2

+
1

2

∑
i∈κj

(xij −mij)
2. (7)

In Equation (7), a parameter α could be added to adjust the impact of
the regularization. However, we noticed in our experiments that when working
with implicit feedback, a value of α near to 1 is a good trade-off. Let us assume
x?j , the optimal solution associated to the minimization problem described in
(7). It represents the predicted preferences of user j for all the items. Therefore,
a number of recommendations can be made to this user by considering the
items (not already purchased by the user) with the highest scores of preference.

Our approach uses the Mahalanobis distance to take into account the cor-
relations between items and between users. Actually, the Mahalanobis distance
tries to measure the difference between a vector xj and the mean x̄ of the whole
training set. Instead of using x̄, we could consider a set of nearest neighbors of
the current decision variable. This way, we introduce an adapted Mahalanobis
distance which represents the difference between xj and the mean x̄neigh of
the neighbors which is influenced by the number of neighbors (users in the
user-based point of view) considered (this parameter needs to be fixed).

Several methods exist to compute a similarity measure between users or
items in order to define neighborhoods (e.g., Pearson correlation coefficient in
(Herlocker et al, 2002), kernels in (Fouss et al, 2012), etc. – see (Deza and
Deza, 2014) or (Fouss et al, 2016) for a survey). We decided to use a simple
(and known to provide good results) similarity measure based on the cosine
correlation.

2.2.2 Item-based

The item-based formulation is proposed as a dual formulation of the user-
based one. The decision variable is a matrix X ∈ Ru×v such as each column
represents an item and each row a user:

X = [x1,x2,xi, . . . ,xv] . (8)

Note that xi is a column vector characterizing an item i such as: xi =
(xi1, xi2, . . . , xij , . . . , xiu)

T
.

Equation (7) is easily adapted by considering MT the transpose of matrix
M, where each column stands for an item and each row for a user, in such a
way that mji represents the preference of a user j for an item i. Solving the
item-based version of (7) provides an optimal solution x?i . It represents the
predicted preferences of all the users for the item i. As a consequence, we have
to compute the value of x?i for i ∈ (1, v). Finally, for each user, we recommend
a given number of items with the highest preferences.



10 Fabian Lecron, François Fouss

2.3 Dimensionality Reduction

The number of variables involved in Equation (7) can be important, especially
if a large amount of items and users is considered. Even if convex optimization
is characterized by polynomial-time complexity, it is relevant to reduce the
number of variables in these equations. Furthermore, computing matrix L
in this context is memory-demanding for large datasets since it requires to
have access to the entire covariance matrix which is non-sparse. Matrix L
should therefore be computed when the dimensionality of the problem has
been reduced.

Two methods for reducing the dimensionality are considered in the present
work: Principal Component Analysis and Nonnegative Matrix Factorization.
Note that other matrix factorization techniques could have been used to reduce
the dimensionality (e.g., convex formulations such as (Hsieh and Olsen, 2014)).
The following section presents our framework with matrix factorization in a
general way.

2.4 Matrix Factorization

Matrix factorization allows to decompose a matrix as the product of matrices.
Let us consider M, a matrix where each column stands for a user and each
row for an item. By considering that M contains v rows and u columns, we
can decompose M such as:

M ≈ ΦB, (9)

where M is a matrix where each column is a data point (i.e., a user), B is a
(r × u) matrix containing the coordinates of these data points in the basis Φ,
which is a (v × r) matrix, and r is the number of components, which lower
than u or v (depending on the approach).

When considering the user-based case, a column vector xj (a vector of
preferences) of matrix M is given by:

xj = Φb̂j , (10)

where each column of Φ is a basis element, and b̂j is a vector representing the
preferences of user j in the basis.

By reducing the dimensionality with matrix factorization, the second term
of Equation (7) is written:

1

2

∑
i∈κj

(φib̂j −mij)
2. (11)

where φi is the row of Φ related to item i.
The first term of Equation (7) becomes:



Collaborative Recommendation Using a Covariance-Based Regularizer 11

1

2

∥∥LTxj − LTx̄
∥∥2
2

=
1

2

∥∥∥LT
(
Φb̂j

)
− LTx̄

∥∥∥2
2

=
1

2

∥∥∥LT
(
Φb̂j − x̄

)∥∥∥2
2

=
1

2

∥∥∥LT
Φ

(
b̂j − x̄Φ

)∥∥∥2
2
,

(12)

where LT
Φ and x̄Φ are the expressions of LT and x̄ in the basis Φ. These

expressions are deduced given that matrix decomposition allows to write: LT =
ΦLT

Φ and x̄ = Φx̄Φ. In order to compute LT
Φ, the covariance matrix ΣB related

to B is computed, where B is the expression of M in the basis Φ (we have
indeed M = ΦB). If bj is the column vector j of matrix B, we have that
ΣB = 1

u−1
∑u
j=1(bj − x̄Φ)(bj − x̄Φ)T. If r is the number of components, this

covariance matrix ΣB is a r × r matrix. Then, LT
Φ is obtained by performing

a Cholesky decomposition of the inverse covariance matrix (by a simple call
to the function chol on Matlab).

Finally, the user-based formulation with a reduced number of variables is
given by:

min
b̂j

1

2

∥∥∥LT
Φ

(
b̂j − x̄Φ

)∥∥∥2
2

+
1

2

∑
i∈κj

(φib̂j −mij)
2

(13)

When the nearest neighbors are included in the optimization problem, the
first term of Equation (13) becomes:

1

2

∥∥∥LT
Φ

(
b̂j − x̄neigh,Φ

)∥∥∥2
2
, (14)

where LT
Φ, x̄Φ, and x̄neigh.,Φ are the expression of, respectively, LT, x̄, and

x̄neigh in the basis Φ. The item-based formulation with a reduced number of
variables is obtained with a similar approach.

Solving the problem defined in Equation (13) provides the optimal vector

b̂?. This vector needs to be mapped in the initial space by knowing that
x? = Φb̂?, and the resulting vector x? represents the predicted preferences
of a user for all the items. The items with the highest preference are finally
recommended to the user. Let us note that this process needs to be separately
repeated for all the users. In the item-based formulation, the optimal vector
b̂? allows to compute the preferences of all users for one item.

2.4.1 Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) is a linear dimensionality reduc-
tion technique for nonnegative data. NMF has become a widely used tool for
the analysis of high-dimensional data as it automatically extracts sparse and
meaningful features from a set of nonnegative data vectors (Gillis, 2014). The
technique is relevant in our context since the ratings or implicit feedback, and
as a consequence the preferences of users, are always nonnegative.



12 Fabian Lecron, François Fouss

In order to factorize M, the problem to be solved is written:

min
Φ,B
‖M−ΦB‖2F with Φ ≥ 0 and B ≥ 0. (15)

To solve this problem, we use the accelerated hierarchical alternating least
squares (HALS) algorithm described in Section 4.2 of (Gillis, 2011). The source
code is available online1. Solving this problem provides the matrices Φ and B
which are required to obtain LT

Φ and x̄Φ in Equation (13).

2.4.2 Principal Component Analysis

Principal Component Analysis (PCA) is a well-known statistical method to re-
duce the number of variables (Johnson and Wichern, 2002). PCA decomposes
the original space into orthogonal axes along which the variance is maximized.

In the case of PCA, the vector xj is not represented by Equation (10) but
by:

xj = x̄ + Φb̂j , (16)

where x̄ is a column vector characterizing the mean of users computed over
matrix M, Φ is a matrix containing the orthogonal axes computed from matrix
M, and b̂j is a column vector containing the weights on these axes related to
the user j.

Given Equation (16), Equation (12) needs to be slightly adapted by re-

placing xj with x̄ + Φb̂j . Then, the first term of Equation (13) becomes:

1

2

∥∥LTxj − LTx̄
∥∥2
2

=
1

2

∥∥∥LT
(
x̄ + Φb̂j

)
− LTx̄

∥∥∥2
2

=
1

2

∥∥∥LTΦb̂j

∥∥∥2
2

=
1

2

∥∥∥∥Diag

(
1

σ

)
b̂j

∥∥∥∥2
2

.

(17)

Since the components of B are uncorrelated in PCA, only the diagonal of LT

remains, which is represented by the inverse of the variance on each component.
In this specific case, LT does not have to be formally computed, only σ2, a
vector where each element is the variance of one component of PCA, is needed.

In order to obtain matrices Φ and B, a Singular Value Decomposition
(SVD) is performed on the centered version M̃ of M. In the literature, SVD
on a given (m× n) matrix M is often characterized by: M = USVT. If we
only consider the r largest singular values (e.g., with function svds on Matlab),
Φ is equal to U while B is equal to SVT when SVD is performed on M̃.

1 https://sites.google.com/site/nicolasgillis/code



Collaborative Recommendation Using a Covariance-Based Regularizer 13

3 Experiments

3.1 Data and Methods

In order to assess the effectiveness of our approach, we used four datasets of
different sizes. The first one is FilmTrust, a small dataset crawled from the
FilmTrust website (Guo et al, 2013). It contains 35,497 ratings (from 1 to 5)
given by 1,508 users to 2,071 movies. Tang et al (2012) crawled the popular
product review website www.ciao.co.uk. We used these data to create our
second dataset with 102,616 ratings given by 7,010 users to 20,000 items (here,
the number of items is greater than the number of users). The third dataset
is the MovieLens 10M dataset2. It consists of 10,000,054 ratings (from 1 to 5)
given by 71,567 users to 10,681 movies (here, the number of users is greater
than the number of items). It is considered that each user has rated at least
20 movies. Finally, we made experiments with the Netflix dataset (Bennett
and Lanning, 2007), containing 100,480,507 ratings (from 1 to 5) given from
480,189 users to 17,770 movies.

For the four datasets, we worked with implicit feedback given by the users
since our recommender system is not designed to predict ratings but to provide
a ranking given some predicted preferences. It is therefore relevant not to
consider the actual value of the ratings but to consider a 1 when a user has
rated an item and a 0 otherwise.

In the following experiments, the datasets were randomly divided into n
subsets (with n = 10) and the algorithms were executed n times (n-fold cross-
validation). In each run, one of the n subsets (containing about 10% of the
ratings) was used as the test set while the other n − 1 subsets were merged
into a training set. Then, the average result was computed on the n runs.

For each user and each run, the algorithm computes, based on the training
set, a ranked list of preferences about items. From that information, we retain
a ranked list of all the items that the user has not rated, according to the
training set.

Regarding the evaluation of a recommender system, the literature is often
divided between accuracy metrics (precision, recall, etc.) and error metrics
(RMSE, MAE, etc.). Cremonesi et al (2010) suggested that there is no mono-
tonic relation between accuracy metrics and error metrics. Furthermore, our
recommender system is not designed to predict ratings but to provide a ranked
list of items. As a consequence only accuracy metrics are suitable to evaluate
our approach. We therefore decided to use the precision and the recall scores,
as the most popular accuracy metrics in the field of recommender systems.
The test set contains, for each user and each run, a set of items that the user
has actually rated and that are not linked to that user in the training set.
The recall score (recall@n) is the average (on all users) of the proportion (in
percentages) of items from the test set that appear among the top-n of the
ranked list from the training set, for some given n. This measure should be as

2 http://grouplens.org/datasets/movielens/



14 Fabian Lecron, François Fouss

Number of components
0 20 40 60 80 100

R
ec

al
l@

20
 - 

Pr
ec

is
io

n@
20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Recall@20 - Item-based - PCA
Precision@20 - Item-based - PCA
Recall@20 - User-based - PCA
Precision@20 - User-based - PCA
Recall@20 - Item-based - NMF
Precision@20 - Item-based - NMF
Recall@20 - User-based - NMF
Precision@20 - User-based - NMF

(a) FilmTrust dataset

Number of components
0 20 40 60 80 100

R
ec

al
l@

20
 - 

Pr
ec

is
io

n@
20

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Recall@20 - Item-based - PCA
Precision@20 - Item-based - PCA
Recall@20 - User-based - PCA
Precision@20 - User-based - PCA
Recall@20 - Item-based - NMF
Precision@20 - Item-based - NMF
Recall@20 - User-based - NMF
Precision@20 - User-based - NMF

(b) Ciao dataset

Number of components
0 20 40 60 80 100

R
ec

al
l@

20
 - 

Pr
ec

is
io

n@
20

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5 Recall@20 - Item-based - PCA
Precision@20 - Item-based - PCA
Recall@20 - User-based - PCA
Precision@20 - User-based - PCA
Recall@20 - Item-based - NMF
Precision@20 - Item-based - NMF
Recall@20 - User-based - NMF
Precision@20 - User-based - NMF

(c) MovieLens dataset

Number of components
0 10 20 30 40 50 60 70

R
ec

al
l@

20
 - 

Pr
ec

is
io

n@
20

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Recall@20 - Item-based - PCA
Precision@20 - Item-based - PCA
Recall@20 - User-based - PCA
Precision@20 - User-based - PCA
Recall@20 - Item-based - NMF
Precision@20 - Item-based - NMF
Recall@20 - User-based - NMF
Precision@20 - User-based - NMF

(d) Netflix dataset

Fig. 1: The influence of dimensionality reduction on recall and precision scores

high as possible for good performance. A recall score of 100 percent indicates
that the method always positions the items in the test set among the top-n of
the ranked list. The precision score (precision@n) is the average (on all users)
of the proportion (in percentages) of items in the top-n that appear in the test
set.

3.2 Impact of Dimensionality Reduction

As described in Section 2, the optimization process can be sped up by limit-
ing the number of decision variables. However, dimensionality reduction also
decreases potential useful information. In the present section, we aim at esti-
mating a good balance between the number of decision variables and the qual-
ity of recommendations. We present at Fig. 1 the evolution of recall@20 and
precision@20 for the FilmTrust dataset (Fig. 1a), the Ciao dataset (Fig. 1b),
the MovieLens dataset (Fig. 1c), and the Netflix dataset (Fig. 1d), according
to the number of components. The user-based formulation and the item-based



Collaborative Recommendation Using a Covariance-Based Regularizer 15

one are distinguished, as well as the two dimensionality reduction techniques
applied in this work: Principal Component Analysis and Nonnegative Matrix
Factorization.

For the Ciao, the MovieLens, and the Netflix datasets, Fig. 1 shows one
general trend. The accuracy (recall and precision scores) increases when the
number of principal components increases. However, this gain is limited after
a number of components approximately equal to 20. This behavior is very
interesting since it allows to greatly reduce the number of decision variables.
To illustrate the impact of reduction, let us remind that in the user-based form
of the problem, the number of decision variables for the MovieLens dataset
is initially equal to 10, 681 (the number of movies) while in the item-based
form, it is equal to 71, 567 (the number of users). These same numbers can be
reduced to about 20 while providing interesting results in regard to recall@20
and precision@20.

By comparing the user-based and the item-based approaches, we observe
that the former generally provides lower recall and precision scores than the
latter. Even if this observation is made for the four datasets, we really think
that it is dataset-dependent and does not imply that the user-based formula-
tion provides systematically worse results on other datasets. To support that,
one can see for the Ciao dataset that the evolution of the recall@20 and the
precision@20 is similar for the item-based formulation of the recommender sys-
tem and the user-based formulation (when PCA is used as a dimensionality
reduction technique). An explanation can also be found in (Ning et al, 2015)
where the authors consider five criteria when dealing with the implementation
of a user-based and an item-based recommender system. For the accuracy cri-
teria, they conclude that when the number of users is much greater than the
number of items, item-based methods produce more accurate recommenda-
tions. When the system has less users than items, user-based methods should
be considered.

Another comparison can be made between the dimensionality reduction
techniques. Except for the FilmTrust dataset, recall and precision scores are
always better with PCA rather than NMF. As a consequence, we can not
conclude that imposing nonnegative values in the reduction process improves
the accuracy compared to PCA.

3.3 Additional Constraints

The recall and precision scores presented at Fig. 1 only rely on the optimization
of the objectives described by Equations (2) and (3). However, remember that
one advantage of our approach is its simplicity to add more constraints in the
objective function depending on the context. The only condition is that these
additional constraints need to be written as linear least-squares. For instance,
we can adapt the objective function by taking into account the information of
users (or items) similar to the user (or the item) concerned by the optimization.



16 Fabian Lecron, François Fouss

Table 1: Comparison between formulations of our recommender system with
neighbors and without neighbors

FilmTrust dataset

Neighbors
User-based Item-based

Recall@20 Precision@20 Recall@20 Precision@20
PCA NMF PCA NMF PCA NMF PCA NMF

Without 66.88 81.31 11.49 13.01 81.86 81.67 13.09 13.06
With 70.55 81.33 11.88 13.02 81.96 81.72 13.13 13.10

Ciao dataset

Neighbors
User-based Item-based

Recall@20 Precision@20 Recall@20 Precision@20
PCA NMF PCA NMF PCA NMF PCA NMF

Without 14.82 12.63 1.80 1.56 14.85 13.70 1.80 1.67
With 13.15 14.80 1.70 1.80 14.49 14.08 1.78 1.72

MovieLens dataset

Neighbors
User-based Item-based

Recall@20 Precision@20 Recall@20 Precision@20
PCA NMF PCA NMF PCA NMF PCA NMF

Without 26.15 23.22 12.67 11.74 31.19 29.45 14.16 13.30
With 31.77 25.41 15.44 12.11 31.25 29.55 14.13 13.39

Netflix dataset

Neighbors
User-based Item-based

Recall@20 Precision@20 Recall@20 Precision@20
PCA NMF PCA NMF PCA NMF PCA NMF

Without 13.07 11.52 10.99 10.52 20.85 18.66 14.12 12.59
With 13.57 12.77 11.72 11.15 20.90 18.04 14.35 12.94

This is the first case studied in the present section. The second case concerns
the popularity of items.

Remember that the previous section shows that the number of decision
variables can be reduced to around 20, while maintaining comparable accu-
racy scores (beyond 20 components, the recall@20 is not greatly increased).
Therefore, to conduct the next experiments (i.e., for the two cases described in
this section), we fixed the number of components for the two dimensionality
reduction techniques. The choice was made in order to obtain good results
in terms of recall and precision but also to be able to obtain these results as
fast as possible: the number of components was fixed to 20 for the FilmTrust
dataset, to 30 for the Ciao dataset, to 28 for the MovieLens dataset, and to
30 for the Netflix dataset.

3.3.1 Case 1: the Neighbors

Equation (14) shows how to influence the prediction with neighbors. Here,
we aim at evaluating the impact, on accuracy, of including neighbors in our
recommender system. For that matter, neighbors were selected by using the
cosine similarity measure (which is known to provide good results). For the
four datasets and each tested method, we have evaluated the number of neigh-
bors providing the best recall@20. The following numbers of neighbors were



Collaborative Recommendation Using a Covariance-Based Regularizer 17

considered: 1, 3, 5, 10, 40, 70, 100, 500, 1000. In Table 1, we present recall@20
and precision@20 obtained for different formulations of our recommender sys-
tem: user-based formulation with PCA, user-based formulation with NMF,
item-based formulation with PCA, and item-based formulation with NMF.

It is clearly impossible to define an optimal number of neighbors, which is
highly dependent on the method and the dataset. Nevertheless, the number of
neighbors has not a strong influence on the computing time since the neighbors
are only used to compute a mean in an adapted version of the Mahalanobis
distance.

An interesting advantage is deduced from the analysis of Table 1. In Section
3.2, it seemed that the best formulation of our approach was the item-based
one. In Table 1, the best recall@20 and precision@20 for the MovieLens dataset
are obtained by the user-based formulation. Another trend of Section 3.2 was
that using NMF as a dimensionality reduction technique provided lower recall
and precision scores than using PCA. Table 1 illustrates that this conclusion
has to be mitigated. For the Ciao dataset, the user-based formulation with
NMF and neighbors provides similar results than the item-based formulation
with PCA and no neighbors. As a consequence, it allows to choose the formu-
lation with fewer decision variables: if the number of users is greater than the
number of items in a dataset, the user-based approach will be preferred for
this dataset.

Finally, the general trend of Table 1 is that including neighbors often im-
proves the recall and precision scores for the four datasets.

3.3.2 Case 2: The Popularity

The general optimization model defined at Equation (7) seeks to maximize
the preference of users for items. However, this strategy could not be totally
appropriate since for some users, diversity is an important parameter of sat-
isfaction. Additional criteria can be added in the optimization model to help
preserving some diversity in the recommendations.

One way to achieve this is to penalize the popularity of items in the rec-
ommender system, as shown in this section for the user-based formulation of
our system. We first evaluate the popularity of each item, as the mean of the
ratings given by all the users for this item. Let us note µi the popularity of
the item i. Then, for each user, we compute his trend to like popular items.
For this purpose, we extract the popularity µi of each item rated by a user j
and we compute the mean νj of these popularity scores. As a consequence, the
additional constraint can only concern a proportion of users: e.g., the 10% of
users with the lowest popularity score νj . The proportion of users concerned
by this additional constraint is noted nu. Let us remind that the additional
constraint needs to be written with a norm. The adapted optimization model
(without applying dimensionality reduction technique) for the user-based case
is:



18 Fabian Lecron, François Fouss

min
xj

1

2

∥∥LTxj − LTx̄
∥∥2
2

+
1

2

∑
i∈κj

(xij −mij)
2 +

1

2
‖µxj‖22 , (18)

where µ is a row vector characterizing the popularity µi of each item.
To evaluate the impact of the constraint penalizing popular items, we com-

pute the popularity score µi of each item i and we retain the top-100. Then,
the idea is to observe if these popular items are often recommended to the
users. To do so, we use the user-based formulation of our recommender system
and apply PCA as dimensionality reduction technique. For each ranking posi-
tion (from rank 1 to rank 20 where rank 1 is related to the first recommended
item and rank 20 is related to the twentieth recommended item), we compute
the number of users for which a popular item in the top-100 has been recom-
mended. As we explained, the constraint defined at Equation (18) can only
concern a proportion of users nu. Therefore, comparisons are made at Fig. 2
for values of nu varying from 0 to 1. Since our intention is not to improve the
accuracy of the method but to show how to add constraints easily into the
problem, experiments were made only on the FilmTrust, Ciao, and MovieLens
datasets.

Fig. 2 represents, for each ranking position, the proportion of users for
which a popular item in the top-100 is recommended. When nu is equal to 0,
it means that no user is concerned by the constraint penalizing popular items.
If we observe the curve corresponding to nu = 0 in Fig. 2a, Fig. 2b and Fig.
2c, we notice that the algorithm tends to promote popular items since at rank
1 of recommendations, a popular item is recommended to more than 90% of
the users. Increasing the value of nu has the same influence among the three
datasets but not with the same strength. When 20% of the users are concerned
by the constraint penalizing popular items, a popular item is recommended at
rank 1 to still more than 90% of the users for the FilmTrust dataset, to more
than 80% of the users for the Ciao and the MovieLens datasets. A similar
trend is observed for the other ranking positions.

Fig. 2 shows that the constraint defined at Equation (18) has a strong
influence on the popularity of recommended items. However, penalizing the
popularity has an influence on the recall and precision scores. If the main pur-
pose of a recommender system is to propose diversity in the recommendations,
the challenge is to find a satisfying trade-off between accuracy (good recall and
precision) and utility (limiting the recommendation of popular items).

3.4 Discussion

In previous sections, the accuracy of the proposed algorithms and the influence
of additional constraints are analyzed. In the present section, we discuss the
special features of the proposed algorithms and make comparisons with some
methods of the literature.

For the user-based formulation of our model, recommendations are ob-
tained by solving a convex model for which the number of decision variables



Collaborative Recommendation Using a Covariance-Based Regularizer 19

Ranking position
0 5 10 15 20Pr

op
or

tio
n 

of
 u

se
rs

 w
ith

 re
co

m
m

en
de

r p
op

ul
ar

 it
em

s

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n u = 0
n u = 0.2
n u = 0.4 
n u = 0.6
n u = 0.8
n u = 1

(a) FilmTrust dataset

Ranking position
0 5 10 15 20Pr

op
or

tio
n 

of
 u

se
rs

 w
ith

 re
co

m
m

en
de

d 
po

pu
la

r i
te

m
s

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
n u = 0
n u = 0.2
n u = 0.4
n u = 0.6
n u = 0.8
n u = 1

(b) Ciao dataset

Ranking position
0 5 10 15 20Pr

op
or

tio
n 

of
 u

se
rs

 w
ith

 re
co

m
m

en
de

d 
po

pu
la

r i
te

m
s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
n u = 0
n u = 0.2
n u = 0.4
n u = 0.6
n u = 0.8
n u = 1

(c) MovieLens dataset

Fig. 2: Proportion of users with recommended popular items at each ranking
position

depends on the number of items. For the item-based formulation, the number
of decision variables depends on the number of users. Therefore, the choice
between the user-based and the item-based formulations can be made depend-
ing on these parameters. The item-based formulation will be preferred if the
dataset has very few users compared to items, while the user-based formulation
will be preferred if the dataset has very few items compared to users.

In order to make comparisons of the accuracy results with some state-
of-the-art methods based on matrix factorization, we have extracted the best
results obtained in the previous sections for the user-based and the item-based
formulations of our recommender system. Before presenting results, we briefly
describe the methods used for comparison.

– A simple scoring algorithm is the maximum-frequency algorithm (MaxF
or MostPopular). It simply ranks the items by the number of users who
rated them. In other words, items are suggested to each user in order
of decreasing popularity. The ranking is thus the same for all the users.



20 Fabian Lecron, François Fouss

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ec

is
io

n

WRMF
BPRMF
BPRSLIM
MostPopular
Our approach

(a) FilmTrust dataset

0 0.2 0.4 0.6 0.8 1
Recall

0

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ec

is
io

n

WRMF
BPRMF
BPRSLIM
MostPopular
Our approach

(b) Ciao dataset

0 0.2 0.4 0.6 0.8 1
Recall

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Pr
ec

is
io

n

WRMF
BPRMF
BPRSLIM
MostPopular
Our approach

(c) MovieLens dataset

0 0.2 0.4 0.6 0.8 1
Recall

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Pr
ec

is
io

n

WRMF
BPRMF
MostPopular
Our approach

(d) Netflix dataset

Fig. 3: Precision-recall curves for different approaches

The maximum-frequency algorithm serves as a reference to appreciate the
quality of the methods.

– A method based on weighted matrix factorization is proposed in (Hu et al,
2008). The authors did not try to predict a rating but they worked with
implicit feedback. They treated the data as indication of positive prefer-
ence, just as we do in the present work. In the following, this method is
referred as WRMF (Weighted Regularized Matrix Factorization) method.

– Still in the context of item recommendation based on implicit feedback,
authors in (Rendle et al, 2009) presented a generic optimization criterion
for personalized ranking which is derived from a Bayesian analysis of the
problem. In the following, this method is referred as BPRMF.

– In the recommender system library MyMediaLite (Gantner et al, 2011),
developers extended the BPRMF method using the optimization method
described in (Ning and Karypis, 2011). In the following, this method is
referred as BPRSLIM.



Collaborative Recommendation Using a Covariance-Based Regularizer 21

Table 2: Values of the parameters used for WRMF, BPRMF, and BPRSLIM

Method Dataset Parameters

WRMF

regularization alpha
FilmTrust 10 10

Ciao 10 10
MovieLens 0.001 1

Netflix 0.1 1

BPRMF

reg u reg i reg j learn rate
FilmTrust 10 0.0001 0.1 0.01

Ciao 0.01 10 0.0001 0.01
MovieLens 0.0001 0.0001 0.001 0.1

Netflix 0.001 0.0001 0.001 0.1

BPRSLIM

reg i reg j learn rate
FilmTrust 0.001 1 0.01

Ciao 0.0001 0.0001 0.1
MovieLens 0.0001 1 0.01

Let us note that the aforementioned methods were implemented using the
recommender system library MyMediaLite (Gantner et al, 2011). For meth-
ods based on matrix factorization (WRMF and BPRMF), we chose the same
number of components than for our approach, i.e., 20 components for the
FilmTrust dataset, 30 components for the Ciao dataset, 28 components for
the MovieLens dataset, and 30 components for the Netflix dataset. The other
parameters (regularization parameters and learning rates) of each approach
were fixed by choosing the value providing the best NDCG for the first test
set among these values: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100. These chosen values
are presented in Table 2.

In order to compare those methods with our approach, we plotted on Fig.
3 precision-recall curves for all the methods and all the datasets. Concerning
the Netflix dataset, BPRSLIM did not provide a solution after more than 24
hours. Given the number of parameters and the fact that the experiments are
performed on 10 test sets, we decided not to continue experiments for this
method on this dataset. We refer the reader to (Shani and Gunawardana,
2011) for more information on precision-recall curves. What is important to
keep in mind is that the best method have the uppermost precision-recall curve
on the graph.

Logically, the method based on MaxF (MostPopular) obtains among the
worst results. On the FilmTrust dataset, we observe that method based on
MaxF (MostPopular) is not that bad. It can be explained by the fact that
for this dataset, recommending very popular items is efficient, as suggested by
Fig. 2a.

If we look at the two best methods for each dataset, we have:

– FilmTrust dataset: Our approach and BPRSLIM.
– Ciao dataset: WRMF and our approach.
– MovieLens dataset: BPRSLIM and WRMF.
– Netflix dataset: WRMF and our approach.



22 Fabian Lecron, François Fouss

These observations are also made when evaluating the Normalized Dis-
counted Cumulative Gain (NDCG) for the different datasets. NDCG is a pop-
ular metric for evaluating ranked results (Järvelin and Kekäläinen, 2002). We
computed NDCG in the same way as in the MyMediaLite library. Table 3 pro-
vides values of NDCG obtained for the different methods on the four datasets.

Table 3: Values of NDCG (in %) obtained for the different datasets. Values
for the two best methods are in bold.

MostPopular BPRSLIM BPRMF WRMF Our approach
FilmTrust 63.25 65.15 62.31 65.14 66.73

Ciao 18.86 19.23 18.34 21.38 20.37
MovieLens 35.88 53.00 45.44 50.87 49.05

Netflix 36.56 / 42.44 48.03 45.16

Clearly, Fig. 3 and Table 3 state that our approach is very competitive
with other methods of the literature based on matrix factorization in the
context of item recommendation with implicit feedback. It is also interesting
to evaluate the complexity of our solution. In Table 4, computational and space
complexities are provided for the 4 main steps of the proposed approach. This
analysis is made for the user-based formulation and considering NMF as a
reduction technique. With another dimensionality reduction technique, only
the computational complexity of the first step needs to be adapted (but clearly,
PCA computed with SVD is not a good candidate for very large datasets). The
following parameters are used in Table 4: K is the number of known elements
in matrix M, r is the number of components provided by matrix factorization,
m is the number of rows of matrix M, and n is the number of columns of
matrix M. In order to illustrate the impact of the computational complexity,
the last column of Table 4 provides the execution times for each of the steps
when performing our approach on the largest dataset, the Netflix one.

Obviously, matrix factorization is the most time-consuming part of the
approach. HALS algorithm used for factorizing matrix M has a o(Kr) com-
putational complexity (Gillis and Glineur, 2012). Other steps of the algorithm
are performed on small matrices (typically (r × r)) such as Σ−1 and LΦ. Fi-
nally, let us note that the last step of the algorithm needs to be performed for
each user. The other steps are performed only once for all the users.

Concerning the execution times of Table 4, tests were performed on an Intel
Xeon E5-2630 v3 (2.40GHz). In real applications involving a recommender
system, the recommendations are provided to one user at a time. For the user-
based formulation of our approach, the recommendations for one user can be
computed online (given the results presented at Table 4). For the item-based
formulation, the recommendations can be computed offline and then provided
online in real-time to a user. As a consequence, our approach is transposable
to a real practice.



Collaborative Recommendation Using a Covariance-Based Regularizer 23

Table 4: Computational and space complexities of the proposed approach

Step
Comput.

Complexity
Space Complexity

Exec.
Time (s)

Factorizing M with HALS
algorithm

o(Kr)

M is a sparse matrix with
K elements

Φ is a (m× r) matrix
B is a (r × n) matrix

97.4

Computing the inverse
covariance matrix Σ−1 on

B
o(r3) Σ−1 is a (r × r) matrix

9.4 ×
10−3

Decomposing Σ−1 with
Cholesky method to obtain

LΦ

o(r3)
Σ−1 and LΦ are (r × r)

matrices
5.2 ×
10−5

Using operator \ to solve
Equation (13)

o(r3)

Equation (13) involves LΦ

and the rows of Φ related
to items already considered

by the user

8.1 ×
10−4

4 Conclusion

This paper suggests a convex optimization model to produce recommenda-
tions, which is adaptable, fast, and scalable - while remaining very competitive
to state-of-the-art methods in terms of accuracy.

The adaptability of the model refers to two different dimensions. Firstly,
the model can be viewed from a user-based perspective or from an item-based
perspective, allowing to choose, depending on the context, the formulation
with fewer decision variables. Secondly, additional constraints, depending on
the context, can easily be added to the optimization model. In this paper,
two cases are presented. In the first one, we added a constraint so that a
group of very close neighbors (of a user or an item) has a stronger influence
on the recommendations. We showed through experiments performed on four
datasets of different sizes (i.e., FilmTrust, Ciao, MovieLens, and Netflix) that
this constraint can improve the accuracy of the recommendations. The second
additional constraint shown in this paper tries to penalize popular items and
thus helps preserving diversity in the recommendations. We showed that the
proportion of users with recommended popular items at each ranking position
can be greatly reduced.

Fast and scalable as the number of decision variables can be drastically
reduced by coupling our optimization model with matrix factorization tech-
niques, such as the two ones considered in this paper: Principal Component
Analysis and Nonnegative Matrix Factorization. Experiments have highlighted
that only about 20 to 30 components computed by matrix factorization are
useful in the datasets to get accurate results. This trend is valid both for the
user-based and the item-based formulations of our approach, regardless the
number of constraints. As a consequence, average computing time to solve the
optimization problem is less than 1ms in general, for 1 user/item.



24 Fabian Lecron, François Fouss

Accurate as we have compared our approach to state-of-the-art methods
based on matrix factorization, showing that our approach is very competitive
regarding the precision-recall curve and NDCG metric.

In the future, it could be interesting to link additional constraints based on
rich objects such as multimedia objects. Our system could be thereby designed
for social media-driven personalization. Therefore, the most challenging task
will be to write these constraints with a convex form.

Acknowledgements The authors would like to thank Marco Saerens, Nicolas Gillis, and
Arnaud Vandaele for insightful comments on this work.

References

Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. Knowledge
and Data Engineering, IEEE Transactions on 17(6):734–749

Agarwal D, Chen BC, Elango P, Wang X (2011) Click shaping to optimize
multiple objectives. In: Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’11), pp 132–
140

Armstrong J (2001) Principles of Forecasting, A Handbook for Researchers
and Practitioners. Kluwer Academic

Bennett J, Lanning S (2007) The Netflix prize. In: KDD Cup and Workshop
in conjunction with KDD

Boyd S, Vandenberghe L (2004) Convex Optimization. Cambridge University
Press

Cremonesi P, Koren Y, Turrin R (2010) Performance of recommender algo-
rithms on top-n recommendation tasks. In: Proceedings of the Fourth ACM
Conference on Recommender Systems (RecSys ’10), pp 39–46

Devooght R, Kourtellis N, Mantrach A (2015) Dynamic matrix factorization
with priors on unknown values. In: Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp 189–
198

Deza M, Deza E (2014) Encyclopedia of distances, 3rd edn. Springer
Feldman S (2012) Multi-Task Averaging: Theory and Practice. PhD thesis,

University of Washington
Fouss F, Francoisse K, Yen L, Pirotte A, Saerens M (2012) An experimental

investigation of kernels on graphs for collaborative recommendation and
semi-supervised classification. Neural Networks 31:53–72

Fouss F, Saerens M, Shimbo M (2016) Algorithms and Models for Network
Data and Link Analysis. Cambridge University Press

Gantner Z, Rendle S, Freudenthaler C, Schmidt-Thieme L (2011) MyMedi-
aLite: A free recommender system library. In: Proceedings of the 5th ACM
Conference on Recommender Systems (RecSys 2011)

Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press



Collaborative Recommendation Using a Covariance-Based Regularizer 25

Gillis N (2011) Nonnegative Matrix Factorization: Complexity, Algorithms and
Applications. PhD thesis, Université catholique de Louvain

Gillis N (2014) The Why and How of Nonnegative Matrix Factorization.
ArXiv e-prints URL http://adsabs.harvard.edu/abs/2014arXiv1401.

5226G, 1401.5226
Gillis N, Glineur F (2012) Accelerated multiplicative updates and hierarchical

Als algorithms for nonnegative matrix factorization. Neural Computation
24(4):1085–1105

Gu Q, Zhou J, Ding C (2010) Collaborative filtering: Weighted nonnegative
matrix factorization incorporating user and item graphs. In: Proceedings of
the 2010 SIAM International Conference on Data Mining, pp 199–210

Guo G, Zhang J, Yorke-Smith N (2013) A novel bayesian similarity measure
for recommender systems. In: Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI), pp 2619–2625

Herlocker J, Konstan J, Riedl J (2002) An empirical analysis of design choices
in neighborhood-based collaborative filtering algorithms. Information Re-
trieval 5:287–310

Hill W, Stead L, Rosenstein M, Furnas G (1995) Recommending and evalu-
ating choices in a virtual community of use. Proceedings of ACM CHI’95
Conference on Human Factors in Computing Systems pp 194–201

Hsieh CJ, Olsen P (2014) Nuclear norm minimization via active subspace
selection. In: Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pp 575–583

Hu Y, Koren Y, Volinsky C (2008) Collaborative filtering for implicit feedback
datasets. In: Proceedings of the Eighth IEEE International Conference on
Data Mining (ICDM), pp 263–272

Jambor T, Wang J (2010) Optimizing multiple objectives in collaborative fil-
tering. In: Proceedings of the Fourth ACM Conference on Recommender
Systems (RecSys ’10), pp 55–62

Järvelin K, Kekäläinen J (2002) Cumulated gain-based evaluation of ir tech-
niques. ACM Trans Inf Syst 20(4):422–446

Johnson R, Wichern D (2002) Applied multivariate statistical analysis, 5th
edn. Prentice Hall

Kannan R, Ishteva M, Park H (2012) Bounded matrix low rank approximation.
In: Proceedings of the 12th IEEE International Conference on Data Mining
(ICDM), pp 319–328

Kim D, Yum BJ (2005) Collaborative filtering based on iterative principal
component analysis. Expert Systems with Applications 28(4):823 – 830

Koren Y (2008) Factorization meets the neighborhood: A multifaceted collab-
orative filtering model. In: Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD’08), pp
426–434

Koren Y (2009) Collaborative filtering with temporal dynamics. In: Proceed-
ings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’09), pp 447–456



26 Fabian Lecron, François Fouss

Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for rec-
ommender systems. Computer 42(8):30–37

Lilien G, Smith B, Moorthy K (1992) Marketing Models. Prentice Hall
Lü L, Medo M, Yeung CH, Zhang YC, Zhang ZK, Zhou T (2012) Recom-

mender systems. Physics Reports 519:1–49
Luo X, Zhou M, Xia Y, Zhu Q (2014) An efficient non-negative matrix-

factorization-based approach to collaborative filtering for recommender sys-
tems. Industrial Informatics, IEEE Transactions on 10(2):1273–1284

Murthi B, Sarkar S (2003) The role of the management sciences in research
on personalization. Management Science 49(10):1344–1362

Ning X, Karypis G (2011) SLIM: Sparse linear methods for top-n recommender
systems. In: Proceedings of the IEEE International Conference on Data
Mining (ICDM), pp 497–506

Ning X, Desrosiers C, Karypis G (2015) A Comprehensive Survey of
Neighborhood-Based Recommendation Methods, Springer US, pp 37–76

Paterek A (2007) Improving regularized singular value decomposition for col-
laborative filtering. Proceedings of KDD Cup and Workshop pp 39–42

Rao N, Yu HF, Ravikumar PK, Dhillon IS (2015) Collaborative filtering with
graph information: Consistency and scalable methods. In: Advances in Neu-
ral Information Processing Systems 28, Curran Associates, Inc., pp 2107–
2115

Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L (2009) BPR:
Bayesian personalized ranking from implicit feedback. In: Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (AUAI),
pp 452–461

Resnick P, Neophytos I, Mitesh S, Bergstrom P, Riedl J (1994) GroupLens:
An open architecture for collaborative filtering of netnews. Proceedings of
the Conference on Computer Supported Cooperative Work pp 175–186

Rich E (1979) User modeling via stereotypes. Cognitive Science 3(4):329–354
Rodriguez M, Posse C, Zhang E (2012) Multiple objective optimization in

recommender systems. In: Proceedings of the Sixth ACM Conference on
Recommender Systems (RecSys ’12), pp 11–18

Salakhutdinov R, Mnih A (2008) Bayesian probabilistic matrix factorization
using Markov chain Monte Carlo. In: Proceedings of the 25th International
Conference on Machine Learning (ICML ’08), pp 880–887

Salton G (1989) Automatic Text Processing. Addison-Wesley
Shan H, Banerjee A (2010) Generalized probabilistic matrix factorizations

for collaborative filtering. In: Proceedings of the 10th IEEE International
Conference on Data Mining (ICDM), pp 1025–1030

Shani G, Gunawardana A (2011) Evaluating recommendation systems. Rec-
ommender Systems Handbook pp 257–297

Shardanand U, Maes P (1995) Social information filtering: Algorithms for au-
tomating ’word of mouth’. Proceedings of the Conference on Human Factors
in Computing Systems pp 210–217

Smola AJ, Kondor R (2003) Kernels and regularization on graphs. In: Learning
Theory and Kernel Machines, Lecture Notes in Computer Science, vol 2777,



Collaborative Recommendation Using a Covariance-Based Regularizer 27

Springer Berlin Heidelberg, pp 144–158
Tang J, Gao H, Liu H (2012) mTrust: Discerning multi-faceted trust in a

connected world. In: Proceedings of the fifth ACM international conference
on Web search and data mining, pp 93–102

Yu K, Zhu S, Lafferty J, Gong Y (2009) Fast nonparametric matrix factor-
ization for large-scale collaborative filtering. In: Proceedings of the 32nd
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval (SIGIR ’09), pp 211–218

Zhang S, Wang W, Ford J, Makedon F (2006) Learning from incomplete rat-
ings using non-negative matrix factorization. In: Proceedings of the 2006
SIAM International Conference on Data Mining, pp 549–553

Zhang Y, Chen W, Yin Z (2013) Collaborative filtering with social regulariza-
tion for TV program recommendation. Knowledge-Based Systems 54:310–
317


