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6 avenue du Champ de Mars, 7000 Mons (Belgium)

Abstract

Quadratic, second-order, non-local actions for tensor gauge fields transforming in arbitrary irreducible

representations of the general linear group in D-dimensional Minkowski space are explicitly written in

a compact form by making use of Levi-Civita tensors. The field equations derived from these actions

ensure the propagation of the correct massless physical degrees of freedom and are shown to be equivalent

to non-Lagrangian local field equations proposed previously. Moreover, these actions allow a frame-like

reformulation à la MacDowell–Mansouri, without any trace constraint in the tangent indices.
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1 Introduction

Combing the principle of relativity with the rules of quantum mechanics implies that linear relativistic

wave equations describing the free propagation of first-quantized particles in Minkowski space are in one-

to-one correspondence with unitary representations of the Poincaré group. Using the method of induced

representations, Wigner showed in 1939 that the unitary irreducible representations (UIRs) of the Poincaré

group ISO0(3, 1) are completely characterized by two real numbers : the mass-squared m2 and the spin2

s of the corresponding particle [1]. Physical considerations3 further impose m2 > 0 (no tachyon) and

2s ∈ N (discrete spin). The Barmann-Wigner programme amounts to associating, with any given UIR of

the Poincaré group, a manifestly covariant differential equation whose positive energy solutions transform

according to the corresponding UIR. In 1948, this programme was completed in four dimensions when, for

each UIR of ISO0(3, 1) , a relativistic wave equation was written whose positive energy solutions transform

according to the corresponding UIR [2].

This programme is the first step towards the completion of the Fierz-Pauli programme which consists

in writing a manifestly covariant quadratic action for each first-quantized elementary particle propagating

in Minkowski spacetime. In four spacetime dimensions, the latter programme was initiated in 1939 [3] and

completed in the seventies by Singh and Hagen for the massive case (m2 > 0) [4] and by Fronsdal and Fang

for the massless case (m2 = 0) [5, 6]. The description of free massless (massive) gauge fields in D = 4 has thus

been known for a long time and is tightly linked with the representation theory of SO(2) ∼= U(1) (respectively

Spin(3) ∼= SU(2) ). This case is very particular because all non-trivial irreducible representations (irreps)

of these compact groups are exhausted by the completely symmetric tensor-spinors, pictured by a one-row

Young diagram with [s] columns for a spin-s particle (where [n] denotes the integer part of n).

The Bargmann–Wigner programme generalizes to the Poincaré group ISO0(D−1, 1). When D > 4 , more

complicated Young diagrams appear whose analysis requires appropriate mathematical tools, as introduced

in [7, 8, 9, 10]. For tensorial representations, the word “spin” will denote the number of columns possessed

by the corresponding Young diagram. From now on, we restrict the analysis to massless UIRs induced

by representations of the “little group” SO(D − 2) for D > 5 , because each massive representation in

D− 1 dimensions may actually be obtained as the first Kaluza–Klein mode in a dimensional reduction from

D down to D − 1 . There is no loss of generality because the massive little group SO(D − 2) in D − 1

dimension is identified with the D-dimensional massless little group. Such a Kaluza–Klein mechanism leads

to a Stückelberg formulation of the massive field [11].

An analysis of the gauge structure for arbitrary mixed-symmetry tensor gauge fields φ
Y

was undertaken

in [9, 10]. The results of Dubois-Violette and Henneaux [8] for rectangle-shaped Young-diagram tensor

representations were extended to arbitrary tensor representations of GL(D, R) . Guided by the duality

symmetry principle, through a systematic study, in [9] we proposed a general local field equation which

2In the massless case, the discrete label s is more accurately called helicity, but we use the naming “spin” whenever the mass

of the particle is positive or zero.
3In this paper, we will not consider infinite-dimensional representations of the little group.
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applies to tensor gauge fields φ
Y

in arbitrary irreps of GL(D, R) and generalizes the Bargmann–Wigner

equations [2] of D = 4 to any spacetime dimension D > 3 . The fermionic case goes along the same lines

[12], for this reason, we will restrict ourselves to tensorial representations of the Poincaré group in this paper.

In a work [13] on completely symmetric higher-spin (s > 2) tensor gauge fields φs, Francia and Sagnotti

discovered that foregoing locality allows to relax the trace conditions of the Fronsdal formulation. They

wrote a non-local field equation which involves the de Wit–Freedman curvature [14] and which was shown

to be equivalent to Fronsdal’s field equation, after gauge-fixing.4

The authors of [15] followed another path: For completely symmetric tensor fields φs of rank s > 0 they

constructed field equations derived from actions S ∼
∫

dDx φs · G(φs) , where the “Einstein tensor” G(φs)

is higher-derivative and divergence-free, ∂ · G(φs) = 0 . It contains 2[s+1
2 ] = s + ε(s) derivatives of the field

(where ε(n) denotes the parity of the natural number n ∈ N: its values is zero if n is even, or one if n is

odd).

Subsequently, in [16] we proved that, restricted to completely symmetric tensor gauge fields φs, the

field equation proposed in [9] was equivalent to Fronsdal’s field equation and we further conjectured the

validity of the same field equation in the arbitrary mixed-symmetry tensor gauge field φ
Y

case. This

conjecture was verified explicitly on a simple mixed-symmetry higher-spin tensor gauge field example.5 In

the same work [16], we then showed that both works [13] and [15] were actually equivalent, provided one

multiplied the higher-derivative Einstein-like tensor G(φs) of [15] by an appropriate power of the non-local

inverse d’Alembertian operator 2
−1 , thereby recovering the non-local action of [13]. At the light of this

observation, the authors of [15] reconsidered their previous work in [19] and inserted the fermionic case

along the lines of [13]. They also conjectured a schematic form of the Einstein-like tensor G(φ
Y
) where φ

Y

transforms in an arbitrary irrep. of GL(D, R) .

In the present work we pursue this investigation and provide the explicit expression for the higher-

derivative Einstein-like tensor G(φ
Y
) corresponding to a field transforming in an arbitrary irrep. of GL(D, R) .

The field equation derived from the action (s > 0)

S[φ
Y
] =

∫
dDx φ

Y
·

1

2
[ s−1

2
]
G(φ

Y
) (1)

is then shown to be equivalent to the field equation of [9, 16, 17] which propagates the correct massless

physical degrees of freedom. The quadratic Lagrangian is always of second order but non-local for fields

of higher-spin s > 2. The corresponding field equation sets to zero all traces of the generalized curvature

tensor KY introduced in [9]: Tr KY ≈ 0 , where the weak equality X ≈ 0 means “X is equal to zero on the

surface of the field equations” (or, “on-shell”).

As a preliminary result of the present work, the non-local quadratic action [13] of Francia and Sagnotti

is rewritten in a compact and suggestive form by using Levi-Civita tensors. Moreover, we express these

4Actually, Fronsdal’s action S4[φs] =
R

d4xLF (φs) trivially extends to D dimensions [14]: SD[φs] =
R

dDxLF (φs). The

Lagrangian LF (φs) is independent of the dimension D .
5That the aforementioned field equation is correct for an arbitrary mixed-symmetry tensor gauge field φ

Y
was finally proved

in [17], thereby generalizing Bargmann–Wigner’s programme to arbitrary dimension D > 4 . Actually, the latter programme

had previously been completed in [18] with different equations.
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actions in a frame-like fashion thereby providing a bridge between the local constrained approach of Vasiliev

[20] and the non-local unconstrained approach. Indeed, we show that the latter action may be obtained

as a flat spacetime limit of a MacDowell–Mansouri-like action in constant-curvature background, where the

gauge fields and parameters are unconstrained, in contrast with Vasiliev’s formalism.

The plan of the paper is as follows. In Section 2, we first review the various approaches to higher-spin

symmetric tensor gauge fields in flat spacetime. The subsection 2.2.3 proposes an extension of the non-

local action for the unconstrained frame-like approach to constant-curvature spacetimes. Mixed-symmetry

tensor gauge fields φ
Y

are studied in Section 3 where we recall our results (Theorem 1) on the completion

of the Bargmann–Wigner programme, writing in details most of the intermediate steps in the proof.6 Our

main result (Theorem 2) is presented in the subsection 3.2.2 where a non-local second-order covariant

quadratic action is given for each inequivalent UIR of the Poincaré group, thereby completing the Fierz–

Pauli programme in arbitrary dimension D > 4 .

Three appendices follow. In the appendix A, we systematically introduce our notation by reviewing all

the mathematical machinery on irreps necessary for our purpose. We also summarize some former results on

the gauge structure of mixed-symmetry tensor fields. The proofs of some technical lemmas are relegated to

Appendix B while the appendix C contains the proof of Theorem 1 which states that the Bargmann–Wigner

equations presented in [9, 16, 17] restrict the physical components of a tensor gauge field φ
Y

to an UIR of

the little group O(D − 2) .

2 Completely symmetric tensor gauge fields

Completely symmetric tensors φµ1...µs = φ(µ1...µs) of rank s correspond to a Young tableau7 made of one

row with s cells. This is the simplest case of irreducible tensors under GL(D, R) associated with a Young

diagram made of s columns, thus we fix the main ideas on this specific example since it already exhibits the

prominent properties of the general case.

Einstein’s gravity theory is a non-Abelian massless spin-2 field theory, the two main formulations of which

are the “metric” and the “frame” approaches. In a very close analogy, there exist two main approaches to

higher-spin (i.e. spin s > 2) field theories that are by-now referred to as “metric-like” [5, 14] and “frame-

like” [21, 20]. In the former approach, the components of the massless field φs transform in the irreducible

representation of the general linear group which is labeled by a Young diagram Y made of s columns.

Both metric-like and frame-like approaches may be divided into two subclasses called the “constrained” and

“unconstrained” approaches according to whether trace constraints are imposed or not on the gauge fields

and parameters.

6Because these lemmas and other intermediate results were either spread in the literature or not yet published in full details.
7The reader unfamiliar with Young tableaux may read the brief introduction to the tensorial irreps of GL(D, R) in Subsection

A.1.1.
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2.1 Bargmann–Wigner programme

Not all covariant wave equations that would describe proper physical degrees of freedom are Euler-Lagrange

equations for some Lagrangian. Therefore, we prefer to separate the discussion of the linear field equations

from the discussion on quadratic Lagrangians for symmetric tensor gauge fields.

2.1.1 Local, constrained approach of Fronsdal

The local spin-s field equation of [5, 14] states that the Fronsdal tensor F vanishes on-shell

Fµ1...µs ≡ 2φµ1...µs − s ∂α∂(µ1
φµ2...µs)α +

s(s − 1)

2
∂(µ1

∂µ2Tr φµ3...µs) ≈ 0 , (2)

where Tr stands for the trace operator and curved (respectively square) brackets denote complete sym-

metrization (antisymmetrization) with strength one. The gauge transformations are

δφµ1...µs = s ∂(µ1
ǫµ2...µs) . (3)

Since (3) transforms F as

δFµ1...µs =
s(s − 1)(s − 2)

2
∂(µ1

∂µ2∂µ3 Tr ǫµ4...µs) , (4)

the gauge parameter ǫµ2...µs is constrained to be traceless, Tr ǫ = 0 , in order to leave the field equation (2)

invariant. Eventually, the standard de Donder gauge-fixing condition

Dµ2...µs ≡ ∂αφαµ2...µs −
(s − 1)

2
∂(µ2

Tr φµ3...µs) = 0 (5)

is used to reduce the Fronsdal equation (2) to its canonical form 2φµ1...µs ≈ 0 . In order that Dµ2...µs = 0

contains as many conditions as the number of independent components of the gauge parameter ǫ , the gauge

potential φ must be double-traceless, Tr2 φ = 0 . As shown in [14], this gauge theory leads to the correct

number of physical degrees of freedom, that is, the dimension of the irrep. of the little group O(D − 2)

corresponding to the one-row Young diagram of length s.

The main advantage of the Fronsdal approach to free massless fields is that it respects the following two

requirements of orthodox quantum field theory :

(i) Locality,

(ii) Second-order field equations (for bosonic fields).

Theories for which the second requirement is violated, i.e. the field equations contain the nth derivatives

of the bosonic field with n > 2, are called “higher-derivative”. Roughly speaking, non-local theories are

a particular case of higher-derivative theories where the order in the derivatives is infinite, n = ∞. Both

requirements (i) and (ii) are related to the no-go theorem of Pais and Uhlenbeck on free quantum field

theories with higher-derivative kinetic operator for the propagating degrees of freedom [22]. They proved

that for such a kinetic operator, the quantum field theory cannot be simultaneously stable (bounded energy

spectrum), unitary and causal. In modern language, one would say that the field theory contains “ghosts”.
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Notice that the Pais–Uhlenbeck no-go theorem does not imply that all higher-derivative theories are

physically ill-behaved. For instance, at least three harmless violations of the requirements (i) or (ii) have

been suggested in the physics literature:

(a) “Gauge artifact” : The ghosts associated with the higher-derivatives correspond to spurious “gauge”

degrees of freedom. More precisely, in a proper gauge, the physical degrees of freedom propagate

according to local second-order field equations. For instance, the worldsheet non-local action of the

non-critical bosonic string is obtained from the Polyakov action by integrating out the the massless

scalar fields describing the coordinates of the string in the target space [23]. In the conformal gauge,

it reduces to the local Liouville action for the scalar field associated with the conformal factor.

(b) “Perturbative cure” : The theory admits a perturbative expansion with an orthodox free limit. One can

prove that, if the higher-derivatives are present in the perturbative interaction terms only, then they

may be replaced with lower-derivative terms order by order [24]. This perturbative cure is perfectly

justified when the higher-derivative theory is the effective field theory of a more fundamental orthodox

theory, the higher-derivative terms corresponding to perturbative corrections. A good example of

perturbatively non-local effective field theory is Wheeler–Feynman’s electrodynamics in which the

degrees of freedom of the electromagnetic field are frozen out. Another one is the α′-expansion in

string theory.

(c) “Non-perturbative miracle” : The possibility remains that the higher-derivative quantum field theory is

consistent in the non-perturbative regime but does not admit a reasonable free limit. Such a possibility

has been raised for conformal gravity [25] which is of fourth order, but it has never been proved that

such a scenario indeed works.

2.1.2 Curvature tensors of de Wit, Freedman and Weinberg

The main drawback of Fronsdal’s approach is the presence of algebraic constraints on the fields. They

introduce several technical complications and are somewhat unnatural. To get rid of these trace constraints,

it is necessary to relax one of the two requirements (i) or (ii) of orthodox quantum field theory in one of the

harmless ways explained in the previous subsection. This is the path followed by higher-spin gauge fields in

order to circumvent the conclusions of the Pais–Uhlenbeck no-go theorem. Indeed, all known formulations

of free massless higher spin fields exhibit new features with respect to lower-spin (s 6 2) fields (e.g. trace

conditions, non-locality or higher-derivative kinetic operators, auxiliary fields, etc). These unavoidable

novelties of higher spins are deeply rooted in the fact that the curvature tensor, that is presumably the

central object in higher-spin theory, contains s derivatives. A major progress of the recent approaches to

higher-spin fields was to produce “geometric” field equations, i.e. equations written explicitly in terms of

the curvature.

The curvature tensor Rµ1...µs ; ν1...νs of de Wit and Freedman [14] and the curvature tensor Kµ1ν1 |... |µsνs

of Weinberg [26] are essentially the projection of ∂µ1 . . . ∂µsφν1...νs , the sth derivatives of the gauge field, on

7



the tensor field irreducible under GL(D, R) with symmetries labeled by the Young tableau

µ1 µ2 . . . µs

ν1 ν2 . . . νs
. (6)

The Weinberg and de Wit–Freedman tensors are simply related by a choice of symmetry convention. In the

case s = 2, the de Wit–Freedman curvature tensor precisely is the Jacobi tensor while the Weinberg tensor

coincides with the Riemann tensor. In the case s = 3, they are related by

Rµ1ν1ρ1
; µ2ν2ρ2 = Kµ1 ν1 ρ1

(µ2 | ν2 | ρ2)
, (7)

and

Kµ1ν1 |µ2ν2 |µ3ν3
= 2R[µ1[µ2[µ3 ; ν1]ν2]ν3] , (8)

where the three antisymmetrizations are taken over every pair of indices (µi, νi). (We refer to Appendix

A.1.1 for the notations.) The Weinberg tensor is in the antisymmetric convention for which the projection

is more easy to perform because, since ∂µ1 . . . ∂µsφν1...ν2 is already symmetric in all indices of the two rows

of the Young tableau (6), it only remains to antisymmetrize over all pairs (µi, νi). This corresponds to

taking s curls of the symmetric tensor field φs . On the one hand, the Weinberg tensor is, by construction,

antisymmetric in each of the s sets of two indices

K[µ1ν1] |... |µsνs
= . . . = Kµ1ν1 |... | [µsνs] = Kµ1ν1 |... |µsνs

. (9)

Moreover, the complete antisymmetrization over any set of three indices gives zero, so that the Weinberg

tensor indeed belongs to the space irreducible under GL(D, R) characterized by a two-row rectangular Young

diagram of length s . On the other hand, the de Wit–Freedman tensor is, by definition, symmetric in each

of the two sets of s indices

R(µ1...µs) ; ν1...νs
= Rµ1...µs ; (ν1...νs) = Rµ1...µs ; ν1...νs . (10)

Moreover, it obeys the algebraic identity

R(µ1...µs ; ν1)ν2...νs
= 0 , (11)

so that it also belongs to the space irreducible under GL(D, R) characterized by a two-row rectangular

Young diagram of length s. Both definitions of the curvature tensor are equivalent, in the sense that they

define the same tensor space invariant under the action of GL(D, R).

Due to these symmetries, the curvature tensors are strictly invariant under gauge transformations (3)

with unconstrained gauge parameter ǫµ1...µs−1 . Indeed, if the indices of two partial derivatives appear in the

same column, the corresponding irreducible tensor vanishes. For the same reason, the irreducible components

of the partial derivative of the de Wit–Freedman tensor ∂ρRµ1...µs ; ν1...νs which are labeled by the Young

tableau

µ1 µ2 . . . µs

ν1 ν2 . . . νs

ρ
,

8



identically vanish. In terms of the Weinberg tensor, this translates into the “Bianchi identity”

∂[ρKµ1ν1] |... |µsνs
= 0 . (12)

A generalization of the Poincaré lemma states that the differential Bianchi-like identity (12) together with

the previous algebraic irreducibility conditions on K imply that the Weinberg tensor is the sth derivative

of a symmetric tensor field of rank s [7, 8]. The same theorem states that the most general pure-gauge

tensor field for which the curvature vanishes identically is a symmetrized derivative of a symmetric tensor

field of rank s − 1. The gauge structure of symmetric tensor gauge fields was elegantly summarized by

Dubois-Violette and Henneaux in terms of generalized cohomologies [8] (see Section A.2 for a brief review

of these concepts).

2.1.3 Non-local, unconstrained approach of Francia and Sagnotti

The field equations proposed by Francia and Sagnotti [13] for unconstrained completely-symmetric tensor

gauge fields are non-local, but they are invariant under gauge transformations (3) where the trace of the

completely-symmetric tensor gauge parameter ǫ is not constrained to vanish. They read





ηµ1µ2 . . . ηµs−1µs 2
− s−2

2 Rµ1...µs ; ν1...νs ≈ 0 for s even ,

ηµ1µ2 . . . ηµsµs+1 2
− s−1

2 ∂µs+1Rµ1...µs ; ν1...νs ≈ 0 for s odd ,
(13)

where Rµ1...µs ; ν1...νs is the spin-s curvature tensor introduced by de Wit and Freedman. Putting it in words,

the geometric equations (13) for completely symmetric tensor gauge fields φs are easily constructed: When

s is odd one takes one divergence together with s−1
2 trace(s) of the tensor Rµ1...µs ; ν1...νs and when s is

even one just takes s/2 trace(s) [13]. So one constructs a gauge-invariant object with the symmetries of the

field of rank s but containing s + ε(s) derivatives. Consequently, the authors of [13] further multiplied by

2
1− s+ε(s)

2 in order to get second-order field equations.

Via algebraic manipulations, the field equations (13) for rank-s completely symmetric tensor fields have

been shown [13] to be equivalent to

Fµ1µ2µ3µ4...µs − ∂(µ1
∂µ2∂µ3Hµ4...µs) ≈ 0 , (14)

where the tensor Hµ1...µs−3 is a non-local function of the field φµ1...µs and its derivatives, whose gauge

transformation is proportional to the trace of the gauge parameter. The gauge-fixing condition Hµ1...µs−3 = 0

leads to the Fronsdal equation (2). Therefore, this geometric formulation of higher-spin gauge fields falls into

the class (a) of harmless non-locality. Basically, the main additional subtlety arising for spin s > 4 is that

the usual de Donder condition is reachable with a traceless gauge parameter if and only if the double trace

of the field vanishes. Therefore, in the Fronsdal approach the field is constrained to have vanishing double

trace (which is consistent with the invariance of the double trace of the field under gauge transformations

with traceless parameter). As pointed out in [27], more work is therefore required in order to obtain the

double-trace condition for spin s > 4 in the unconstrained approach. A solution is to take a modified

9



identically traceless de Donder gauge [27]. After this further gauge-fixing, the field equation implies the

vanishing of the double trace of the field, thereby recovering the usual de Donder condition.

Heuristically, one can also argue that the non-local field equations (13) are equivalent to local ones (2)

by going in a traceless-transverse gauge (i.e. Tr φ = 0 and ∂ · φ = 0), because both equations reduce to the

Klein–Gordon equation 2φ ≈ 0 since the powers of the d’Alembertian cancel in the non-local approach. Of

course, rigorously speaking, we should prove that this rule applies for the formal object 2
−1. We take this

opportunity to briefly discuss the meaning given to the inverse d’Alembertian in the non-local unconstrained

approach, and in which sense local higher-derivative field equations may be equivalent to non-local second-

order field equations. Regarding 2
−1, we note that an obvious way of defining a pseudodifferential operator

(such as 1/2) is through its Fourier transform, because the latter simply is a non-polynomial function of

the momentum (such as −1/p2), a much less frightening object. The second comment is that any linear

application A on a vector space V is invertible on the quotient V/KerA ∼= ImA (More concretely, let w = Av

be in ImA, then one may write v = A−1w+u with u ∈ KerA). The third comment is that the representatives

in the quotient Ker2n/Ker2 for n > 1 are usually called “runaway solutions” because they are unbounded

at infinity. These solutions are the classical counterparts of the ghosts in the quantum theory, so one

rejects them on physical ground. In mathematical terms, one requires the solutions to be in an appropriate

functional class such that Ker2n = Ker2 (for all n > 1). In this restricted sense, the non-local equations

(13) and the following higher-derivative equations





ηµ1µ2 . . . ηµs−1µs Rµ1...µs ; ν1...νs ≈ 0 for s even ,

ηµ1µ2 . . . ηµsµs+1 ∂µs+1Rµ1...µs ; ν1...νs ≈ 0 for s odd ,
(15)

are thus equivalent at the level of sourceless free field equations. Nevertheless, this equivalence of the

equations of motion does not imply the equivalence of the variational principle of course and, thus, does not

contradict the Pais-Uhlenbeck no-go theorem on higher-derivative Lagrangians [22]. This being said, from

now on we refer to (13) or (15) without any distinction.

It is convenient to rewrite the Francia–Sagnotti equations (15) in terms of the Weinberg tensor in order

to generalize them to mixed-symmetry tensor gauge fields more easily:





η(ν1ν2 . . . ηνs−1νs) Kµ1ν1 |... |µsνs
≈ 0 for s even ,

η(ν1ν2 . . . ηνsνs+1) ∂νs+1Kµ1ν1 |... |µsνs
≈ 0 for s odd ,

(16)

where the symmetrization over all indices ν of the Minkowski metrics is important in order to have the

proper symmetries on the free indices µi , 1 6 i 6 s .

2.1.4 Higher-derivative, unconstrained approach

The compensator field equation for symmetric tensor fields [13, 27] (generalized later to completely symmetric

tensor-spinor fields [28])

Fµ1µ2µ3µ4...µs −
s(s − 1)(s − 2)

2
∂(µ1

∂µ2∂µ3αµ4...µs) ≈ 0 (17)
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is the same as (14) except that the symmetric tensor αµ1...µs−3 of rank s − 3 is an independent field, called

“compensator”. It is a pure-gauge field whose gauge transformation

δαµ1...µs−3 = (Tr ǫ)µ1...µs−3 (18)

precisely cancels the contribution (4) coming from the Fronsdal tensor so that (17) is invariant under gauge

transformations with unconstrained gauge parameter. The compensator field may be gauged away by using

the freedom (18), which gives the Fronsdal equation (2). Fixing α = 0 is called the “Fronsdal gauge”, where

the constraint Tr ǫ = 0 is imposed on the gauge parameter. Again, in order to recover the double trace

constraint Tr2φ = 0 on the gauge field more work is necessary [28].

The “Ricci curvature tensor” (TrR)µ1...µs ; ν1...νs−2 is the trace of the de Wit–Freedman tensor. Its

symmetries are encoded in the Young tableau

µ1 µ2 . . . µs−2 µs−1 µs

ν1 ν2 . . . νs−2 . (19)

The Damour–Deser identity [29] schematically written TrK = ds−2F relates the Ricci-like tensor TrR to

the (s − 2)th curl of the Fronsdal tensor F . These curls are obtained by projecting the (s − 2)th partial

derivative ∂ν1 . . . ∂νs−2Fµ1...µs of the Fronsdal tensor on the irreducible component labeled by (19) via the

antisymmetrization over the pairs (µi, νi) for 1 6 i 6 s − 2 . Consequently, the compensator equation (17)

implies the higher-derivative “Ricci-flat” equation

(TrR)µ1...µs ; ν1...νs−2 ≈ 0 ⇐⇒ (TrK)µ1ν1 |...... |µs−2νs−2 |µs−1 |µs
≈ 0 . (20)

Conversely, the equation (20) and the Damour–Deser identity imply that the s − 2th curl of the Fronsdal

tensor F vanishes on-shell. As was explained in [16], the generalized Poincaré lemma of [7, 8] shows8 the

equivalence of this “closure” condition ds−2F ≈ 0 of the Fronsdal tensor to its “exactness” expressed by

the compensator equation (17). In other words, the field equations (17) and (20) are strictly equivalent

in a flat spacetime with trivial topology. Notice that both of them are higher-derivative when s > 2, the

compensator equation being of third order and the Ricci-flat-like equation being of sth order.

Furthermore, the Ricci-flat-like equation (20) is equivalent to a set of first-order field equations. In D = 4,

they correspond to the Bargmann–Wigner equations [2], originally expressed in terms of two-component

tensor-spinors in the representation (s, 0)⊕ (0, s) of SL(2, C) . They were generalized to D > 4 in [9, 16] for

arbitrary tensorial UIRs of the Poincaré group, and in [12] for spinoral UIRs. The main idea is to start with

a tensor field that is (on-shell) irreducible under the Lorentz group O(D − 1, 1) with symmetries labeled

by the Young tableau depicted by (6). The antisymmetric convention proves to be more convenient so one

considers a (on-shell) traceless tensor field whose components Kµ1ν1 |... |µsνs
obey the GL(D, R) irreducibility

conditions explained in Subsection 2.1.2. One then requires that it also obeys the Bianchi-like identity (12),

8We insist on the fact that it was not necessary to make use of the de Wit–Freedman connections to derive this result since

the Poincaré lemma allows a direct jump from the Ricci-flat-like equation to the compensator equation.
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which is equivalent to the fact that the tensor K is the Weinberg curvature of a completely-symmetric tensor

gauge field φs of rank s . The on-shell tracelessness TrK ≈ 0 of the irreducible tensor is therefore equivalent

to the Ricci-flat-like equation (20) if the tensor K obeys the differential Bianchi identity (12). Finally, one

can also show that the (on-shell) O(D−1, 1)-irreducibility conditions combined with the differential Bianchi

identity imply that the tensor field is divergenceless on-shell ∂ · K ≈ 0 .

In summary, the equations





∂[ρKµ1ν1] |µ2ν2 |... |µsνs
= 0

∂ρKρν1 |µ2ν2 |... |µsνs
≈ 0

, (21)

imposed on a tensor field K taking values in an irreducible representation of the group O(D − 1, 1), are

equivalent to the Ricci-flat-like equations (20) and thereby to all other field equations of symmetric tensor

gauge fields alike.

2.2 Fierz–Pauli programme

Fronsdal was able to write down a local second-order action, quadratic in the double-traceless gauge field

φ and invariant under the gauge transformations (3) with traceless parameter ǫ [5]. Moreover, Curtright

pointed out that these requirements fix the Lagrangian uniquely, up to an overall factor [30]. The Euler-

Lagrange equation derived from Fronsdal’s action is equivalent to (2).

Notice that by introducing a pure gauge field (sometimes refered to as “compensator”), it is possible to

write a local (but higher-derivative) action for spin-3 [13, 27] that is invariant under unconstrained gauge

transformations. Very recently, this action was generalized to the completely symmetric spin-s case by

further adding an auxiliary field associated with the double trace of the gauge field [31]. Retrospectively,

the reference [32] may be interpreted as an older “non-minimal” version of it, as explained in more details

in [28] (see also [33] for the fermionic counterpart of [32]).

2.2.1 Non-local actions of Francia and Sagnotti

In this subsection, we introduce a compact expression for the “Einstein tensors” of [13] by using Levi-

Civita “epsilon” tensors. In this way, it is much simpler to write the Einstein-like tensor, and the Noether

(sometimes referred to as “Bianchi”) identity is automatically satisfied without explicitly introducing the

trace expansion as in [13].

Since the Levi-Civita tensors are involved it is natural to use the antisymmetric convention for Young

tableaux, so the starting point are the Francia–Sagnotti equations (16) in terms of the Weinberg tensor K .

It turns out to be convenient to introduce the symmetric tensor ηµ1...µ2n
of rank 2n defined by

ηµ1 µ2 µ3 µ4 ... µ2n−1µ2n
:= η(µ1µ2

ηµ3µ4
. . . ηµ2n−1µ2n) , (22)

for all integers n ∈ N, corresponding to the product of n metrics with all indices symmetrized. The Einstein-
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like tensor

Gµ1µ2...µs−1µs :=



εµ1ν1...ρ1σ1τ1 . . . εµsνs...ρsσsτs ην1... νs . . . ηρ1...ρs Kσ1τ1 |... |σsτs
s even ,

εµ1ν1...ρ1σ1τ1 . . . εµs+1νs+1...ρs+1σs+1τs+1 ην1... νs+1 . . . ηρ1...ρs+1 ηµs+1τ1 ∂σ1Kσ2τ2 |... |σs+1τs+1
s odd ,

(23)

is defined via traces of the Hodge dual on every set of antisymmetric indices of the Weinberg tensor. In

the even spin case, the symmetry under the exchange of two µi indices is a consequence of the symmetry

properties of the curvature tensor K under the exchange of pairs (σi, τi) of antisymmetric indices together

with the symmetry properties of the tensor η defined in (22). In the odd spin case, the symmetry is not

automatic and, actually, one must understand that there is an implicit symmetrization over the µ indices in

the second line of (23). By taking traces, etc, one may show that the Einstein-like equations Gµ1µ2...µs ≈ 0

are algebraically equivalent to the equations (16) of Francia and Sagnotti [13]. The Einstein-like tensor

(23) is automatically gauge invariant under (3) because it is a linear combination of the curvature tensor.

The Noether identity corresponding to the gauge transformations (3) with unconstrained parameters is the

divergencelessness of the Einstein-like tensor, ∂µ1G
µ1µ2...µs = 0 , which follows from the Bianchi-like identity

(12) obeyed by the Weinberg tensor. The Einstein-like tensor contains a product of D−3 symmetric tensors

ην1...νs+ε(s)
. One may rewrite the traces over the Levi-Civita tensors as products of Kronecker symbols

δ
ν1...νp
µ1...µp ≡ δ[ν1

µ1
. . . δ

νp]
µp = δν1

[µ1
. . . δ

νp

µp]

via the identity

εµ1...µp ρ1...ρD−p
εν1...νp ρ1...ρD−p = − p ! (D − p)! δ

ν1...νp
µ1...µp . (24)

This leads to an expansion of the Einstein-like tensor as a sum of product of metrics times traces of the

[ s
2 ]th trace of the curvature tensor written in (16):

Gµ1...µs ∝





ην1...νs Kµ1ν1 |... |µsνs
+ . . . for s even ,

ην1...νs+1 ∂νs+1Kµ1ν1 |... |µsνs
+ . . . for s odd .

(25)

The coefficients in the expansion of the Einstein-like tensor were determined uniquely in [13] by imposing

that the Noether identity be obeyed. Therefore, the Einstein-like tensor (23) must correspond to the one of

Francia and Sagnotti, up to an overall coefficient.

The conclusion of the discussion on the negative powers of the d’Alembertian in Subsection 2.1.3 is that

one cannot remove them in the Lagrangian of the non-local approach without introducing ghosts, but that

one can remove them in the Euler-Lagrange equations provided that the ghosts are eliminated “by hand”

by choosing an appropriate functional space of allowed solutions. The authors of [13] proposed an action of

the form
∫

dDx φ · 1

2
[ s−1

2 ]
G(φ) . In the form chosen here, this prescription leads to

S[φs] =

∫
dDx εµ1ν1...ρ1σ1τ1 . . . εµsνs...ρsσsτsην1...νs . . . ηρ1...ρs φµ1...µs

1

2
s
2
−1

∂σ1 . . . ∂σsφτ1...τs , (26)
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for even spin s, and to

S[φs] =

∫
dDx εµ1ν1...ρ1σ1τ1 . . . εµs+1...τs+1 ητ1µs+1 ην1...νs+1 . . . ηρ1...ρs+1 φµ1...µs

1

2
s−1
2

∂σ1 . . . ∂σs+1φτ2...τs+1 , (27)

for odd spin s.

The kinetic operator is self-adjoint, thus the Einstein-like equations Gµ1...µs ≈ 0 are the Euler-Langrange

equations of the quadratic action, and the action is manifestly gauge invariant. The fact that these properties

are manifest allows a straightforward generalization to any mixed-symmetry tensor gauge field, as we explain

in Section 3.

2.2.2 Non-local actions in terms of differential forms

Introducing letters from the beginning of the Latin alphabet in order to denote tangent space indices, one may

rewrite the actions (26) and (27) in a frame-like fashion. In flat spacetime of course, the distinction between

tangent and curved indices is somewhat irrelevant since the background coframe reads, in components,

(e0)
a
µ = δa

µ . However, making this distinction may suggest a natural generalization of the quadratic actions

to curved spacetimes by using differential forms.

To start with, we write the action for a symmetric spin-s field φs featuring only “tangent” indices except

for D suitably chosen “exterior form” indices:

S[φ] =

∫
dDx εµν...ρστ εa1b1...c1d1f1 . . . εas−1bs−1...cs−1ds−1fs−1 ηνb1...bs−1 . . . ηρc1...cs−1 ×

× φµ a1...as−1

1

2
s
2
−1

Kστ | d1f1|...|ds−1fs−1
, (28)

for s even, and

S[φs] = −

∫
dDx εa1b1...c1d1f1 εµν...ρστ εa2b2...c2d2f2 . . . εasbs...csdsfs ηf1as

ηνb1b2...bs
. . . ηρc1c2...cs ×

× ∂d1φµa1a2...as−1

1

2
s−1
2

Kστ | d2f2|...|dsfs
, (29)

for s odd. The action (29) has been obtained from (27) after one integration by part, all the other operations

being mere change of labels.

Now, we introduce some tensor-valued differential forms. For instance the Weinberg tensor field K defines

a tensor-valued two-form R1 via

(R1)a1b1|...|as−1bs−1
=

1

2
Kµν|a1b1|...|as−1bs−1

dxµ ∧ dxν , (30)

while the symmetric tensor gauge field φs defines a tensor-valued one-form e ∈ ⊙s−1(RD∗) ⊗ Ω1(RD) by

ea1...as−1 = φµ a1...as−1 dxµ . (31)

Also, the background coframe defines a vector-valued one-form

(e0)
a = δa

µ dxµ . (32)
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It is tempting to treat the spin-s field one-form ea1...as−1 as a sort of “vielbein” for higher-spins perturbing

the pure spin-two flat background ea
0, as suggested by Vasiliev [21]. In this way, the curvature two-form (30)

can be thought as the generalization of the linearized Riemann two-form in the moving-frame formulation

of gravity [20]. Actually, one may also introduce a “Lorentz connection” one-form

(ω1)a1b1| a2...as−1
= ∂[a1

φb1]µ a2...as−1
dxµ . (33)

(The notations has been chosen in such a way as to easily make contact with the materials reviewed in

Section 2 of [34].)

In the even-spin case, the action can be written in the following “Einstein–Cartan–Weyl” form by making

use of the former differential forms:

S[φs] = εa1b1...c1d1f1 . . . εas−1bs−1...cs−1ds−1fs−1 ηb2...bs−1 . . . ηc2...cs−1 ×

×

∫
eb1
0 ∧ . . . ∧ ec1

0 ∧ ea1...as−1 ∧
1

2
s
2
−1

R
d1f1|...|ds−1fs−1

1 , (34)

while the odd-spin case goes as follows:

S[φs] = εa1b1...c1d1f1 εa2b2...c2d2f2 . . . εasbs...csdsfs
ηf1as ηb1b3...bs . . . ηc1c3...cs ×

×

∫
eb2
0 ∧ . . . ∧ ec2

0 ∧ ω
a1d1| a2a3...as−1

1 ∧
1

2
s−1
2

R
d2f2|...|dsfs

1 . (35)

We implicitly understood everywhere that a symmetrization over all indices labeled by the same Latin letter

should be performed.

The writing of the actions (34) and (35) suggests that they might make sense in an arbitrary curved

background at the condition that the linearized curvature be replaced with its full non-Abelian counterpart.

As a preliminary step in this direction, we show in the next subsection that the above Einstein–Cartan–

Weyl actions can be seen as a flat spacetime limit of a MacDowell–Mansouri-like [35] action quadratic in

curvatures and torsions taking value in some (A)dSD higher-spin algebra when D > 4. (For D = 3, the

action looks more like a Chern–Simons action, in agreement with the fact that the theory is “topological”

in the sense that there are no local physical degrees of freedom in three dimensions for s > 1 .)

2.2.3 Non-local actions à la MacDowell and Mansouri

The isometry algebra of (A)dSD manifold is presented via its translation-like generators Pa and Lorentz

generators Mab (a, b = 0, 1, . . . ,D − 1) together with their commutation relations

[Mab , Mcd ] = i (ηac Mdb − ηbc Mda − ηad Mcb + ηbd Mca) , (36)

[Pa , Mbc] = i (ηab Pc − ηac Pb) , (37)

[Pa, Pb] = iΛMab . (38)

By defining MD̂ a := (Λ)−1/2 Pa, it is possible to collect all generators into the generators MAB where

A = 0, 1, . . . ,D − 1, D̂. These generators MAB span a pseudo-orthogonal algebra since they satisfy the
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commutation relations

[MAB ,MCD] = i (ηACMDB − ηBCMDA − ηADMCB + ηBDMCA) ,

where ηAB is the mostly minus invariant metric of the corresponding pseudo-orthogonal algebra. This is

easily understood from the geometrical construction of (A)dSD as the hyperboloid defined by XAXA =
(d−1)(d−2)

2Λ which is obviously invariant under the pseudo-orthogonal group. It is possible to derive the

Poincaré algebra io(D−1, 1) from the (A)dSD isometry algebra by performing the Inönü-Wigner contraction

Λ → 0 , in which limit the generators Pa become commuting genuine translation generators. The constant-

curvature spacetime algebras can be uniformly realized as follows

MAB = −iX[A

∂

∂XB]
, (39)

if one takes ∂

∂XD̂
∼ 0 and XD̂ ∼ 0 in the flat case Λ → 0 .

Since the gauge fields and parameters are unconstrained in the non-local formulation, it is natural to

make use of the so-called off-shell constant-curvature spacetime higher-spin algebras which were discussed

recently in [36, 34] and which we will now review in many details according to the present perspective.

These higher-spin algebras can be easily defined as the Lie algebras of polynomials in the operators (39)

endowed with the commutator as Lie bracket. In more abstract terms, they are the Lie algebras coming

from the realization of the universal enveloping algebra induced by the unitary representation (39) of the

constant-curvature spacetime isometry algebra. In more concrete terms, we will consider the Weyl-ordered

monomials in the isometry algebra generators defined by (39)

Ta1b1|...|atbt|at+1... as−1
= Ma1b1 . . . Matbt

Pat+1 . . . Pas−1 + perms (40)

as the most convenient basis of generators for our purpose (t ∈ N and s ∈ N0 ), where “perms” stands for

the sum of all nontrivial permutations of the generators M and P . The symbol of the differential operators

(40) is a tensor irreducible under GL(D, R) with symmetries labeled by the two-row Young tableau

a1 . . . at at+1 . . . as−1

b1
. . . bt

.
(41)

In order to mimic MacDowell–Mansouri formulation, one defines a connection one-form ω taking values in

the higher-spin algebra

ω(xµ, dxν ,MAB) = −i dxν ωa1b1|...|atbt|at+1... as−1
ν Ta1b1|...|atbt|at+1... as−1

and whose non-Abelian curvature is the two-form R = dω + ω2 . The component of ω linear in Pa is the

moving frame ea of the spacetime manifold while the component linear in Mab is its Lorentz connection ωab.

In the pure gravity case, the coefficient Rab of Mab in R is the sum Rab = Rab + Λ ea ∧ eb of the Riemann

two-form plus cosmological terms while the coefficient T a of Pa in R is the torsion. The components

ωa1b1|...|atbt|at+1... as−1 of the connection ω are assumed to be irreducible tensors under GL(D, R) described

by the Young diagram (41), as can be done without loss of generality.
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In general, if a connection one-form is decomposed as a sum ω = ω0 + ω1 of a vacuum solution ω0

plus a small fluctuation ω1, then its curvature can also be expanded in powers of the fluctuation: at

order zero, one has R0 = dω0 + ω2
0 = 0 by assumption, and at order one, the linearized curvature reads

R1 = D0ω1 = dω1 + [ω0, ω1]+ , where the background covariant derivative D0 = d + [ω0, ]± is nilpotent,

D2
0 = R0 = 0. The linearization of the gauge transformations δǫω = dǫ + [ω, ǫ]− reads δω1 = D0ǫ and leaves

the linearized curvature invariant. In the present case, the background higher-spin connection is assumed

to be purely gravitational in the sense that

ω0 = −i (ea
0 Pa + ωab

0 Mab) . (42)

Moreover, if the gravitational background is assumed to be a vacuum solution of the constant-curvature

spacetime algebra, then the background connection one-form describes the corresponding constant-curvature

spacetime manifold, since R0 = 0 decomposes as Rab
0 = −Λ ea

0 ∧ eb
0 and T a

0 = 0 . In order to evaluate the

action of the covariant derivative with respect to this background, it is sufficient to compute the commutator

of P and M with any monomial T . A nice property of the Weyl ordering is that the commutator of a Lie

algebra element with a Weyl-ordered element of the universal enveloping algebra preserves the Weyl ordering.

Therefore the generators T transform as tensors under the adjoint action of the Lorentz algebra spanned by

the Mab’s and it is convenient to split the background covariant derivative into the sum D0 = DL
0 + [e0, ]±

where DL
0 is the covariant derivative with respect to the background Lorentz connection. The commutator

between a translation-like generator P and any generator T is easily computed

[
Pa , Tb1c1|......|btct|bt+1... bs−1

]
= 2i

t∑

i=1

Tb1c1|......|bi−1ci−1|bi+1ci+1|......|btct|bt+1... bs−1 [ci
η bi] a

+ iΛTb1c1|......|btct|abt+1|bt+2... bs−1

+ . . . + iΛTb1c1|......|btct|abs−1|bt+1... bs−2
. (43)

While the background one-form (42) is assumed to contain the spin-two gauge fields (ea
0 , ω

ab
0 ) only, the

fluctuation one-form may contain the infinite tower of symmetric tensor gauge fields. In particular, the

components along the pure translation-like generators in

ω1 = ea1...as−1 Pa1 . . . Pas−1 + O(Mab) (44)

are frame-like one-forms ea1...as−1 given by (31) in some proper gauge. More precisely, the linearized gauge

transformations δω1 = D0ǫ read in components

δǫe
a1...as−1 = DL

0 ǫa1...as−1 + (e0)c ǫc(a1|a2... as−1) (45)

and

δǫω
a1b1|...|atbt|at+1... as−1

1 = DL
0 ǫa1b1|...|atbt|at+1... as−1 + (e0)c ǫa1b1|...|atbt|c(at+1... as−1)

−ΛY
A

(
ǫa2b2|...|atbt|at+1... as−1 [a1e

b1]
0

− . . . + ǫa1b1|...|at−1bt−1|at+1... as−1 [ate
bt]
0

)
(46)
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for t > 0, due to the commutation relations (43). The frame-like one forms e
a1...as−1
µ can be seen as rank-s

tensors reducible under GL(D, R) which can be decomposed into the sum of two tensors irreducible under

GL(D, R) respectively labeled by the Young tableau

a1 . . . as−1 µ

and
a1 . . . as−1

µ (47)

The gauge variation ηµcǫ
c(a1|a2... as−1) can be chosen in such a way as to precisely cancel the “hook” part in

e
a1...as−1
µ labeled by the Young tableau (47). In this metric-like gauge, the identification (31) holds. Pursuing

the analogy with gravity, the other components of ω1 should be expressed in terms of these dynamical fields

e via some torsion constraints on the curvature R . These constraints are only known at linearized order

where they take the form

R
a1b1|...|atbt|at+1... as−1

1 = 0 , for 0 6 t < s − 1 . (48)

The commutation relations (43) lead to the following expression for the linearized curvatures,

R
a1... as−1

1 = DL
0 ea1... as−1 + (e0)c ∧ ω

c(a1|a2... as−1)
1

and

R
a1b1|...|atbt|at+1... as−1

1 = DL
0 ω

a1b1|...|atbt|at+1... as−1

1

+ (e0)c ∧ ω
a1b1|...|atbt|c(at+1... as−1)
1

+ ΛY
A

ω
a2b2|...|atbt|at+1... as−1 [a1

1 ∧ e
b1]
0

+ . . . + ΛY
A

ω
a1b1|...|at−1bt−1|at+1... as−1 [at

1 ∧ e
bt]
0 (49)

for t 6= 0.

Therefore, the torsion constraints (48) are solved as

(ω1)
a1b1|...|atbt|
[µ ν]

(at+1... as−1) = (DL
0 )[µ(ω1)

a1b1|...|atbt|at+1... as−1

ν] + O(Λ) . (50)

In the metric-like gauge, these relations may be used recursively to express the auxiliary one forms with

mixed symmetries in terms of the frame-like field. For instance, when t = 0 and Λ = 0, Equation (50)

reproduces (33). Moreover, then the Riemann-like two-form (R1)
a1b1|...|as−1bs−1
µν may be identified with the

Weinberg tensor according to (30).

By using the expression (49) together with the former remarks, one can check that the MacDowell–

Mansouri-like action

S[φs] =
1

Λ
εa1b1...c1d1f1 . . . εas−1bs−1...cs−1ds−1fs−1 ηb2...bs−1 . . . ηc2...cs−1 ×

×

∫
eb1
0 ∧ . . . ∧R

c1a1|a2...as−1

1 ∧
1

2

s
2
−1

(A)dS

R
d1f1|...|ds−1fs−1

1 , (51)
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reproduces the Einstein–Cartan–Weyl-like action (34) at order zero in Λ, in the metric-like gauge. More

precisely, one should first take the Λ → 0 limit in the action (51) and then one uses the zero-torsion

constraints to express the auxiliary one-forms in terms of the frame-like field. In the pure gravity case s = 2,

one recovers MacDowell–Mansouri action [35]. In the odd spin case, it is the action

S[φs] =
1

2Λ
εa1b1...c1d1f1 εa2b2...c2d2f2 . . . εasbs...csdsfs

ηf1as ηb1b3...bs . . . ηc1c3...cs ×

×

∫
eb2
0 ∧ . . . ∧R

a1d1|c2a2| a3...as−1

1 ∧
1

2

s−1
2

(A)dS

R
d2f2|...|dsfs

1 . (52)

which can reproduce the action (35). We implicitly understood everywhere that a symmetrization over all

indices labeled by the same Latin letter should be performed. The “d’Alembertian” in (anti) de Sitter is

not determined uniquely from its flat spacetime limit. In general,

2(A)dS = ∇2 + O(Λ) ,

where the term O(Λ) is an operator acting on the spin degrees of freedom. A convenient requirement in order

to remove this ambiguity could be that 2(A)dS should commute with the (A)dS covariant derivative, hence

it is tempting to define 2(A)dS as the anticommutator [D0 , D†
0 ]+ because it commutes with the differential

D0.

The MacDowell–Mansouri-like actions (51)-(52) are automatically gauge invariant since the Lagrangian

is quadratic in the linearized curvatures. Notice that these MacDowell–Mansouri-like actions may provide

quadratic actions in constant-curvature spacetime within the unconstrained approach. This issue should

be investigated further. We should also point out that these quadratic actions are of the same MacDowell-

Mansouri form as the Lopatin–Vasiliev action [20] but the latter is local and has a different structure for

the contraction of indices. This is possible because the tangent indices are not constrained to be traceless

here and so more freedom is allowed in the contraction of indices.

Let us conclude this subsection with some speculative observations. The appealing feature of the

quadratic actions (51)-(52) is that the starting point of Vasiliev et al. in their construction [37] of cubic

vertices, invariant under non-Abelian gauge transformations associated with the constrained (“on-shell”)

higher-spin algebra, was the formulation of symmetric tensor gauge fields à la MacDowell–Mansouri via a

local constrained frame-like formulation [20]. Therefore, by analogy, our result suggests that a non-linear La-

grangian for the non-Abelian higher-spin gauge theory with unconstrained (“off-shell”) higher-spin algebra

– if any – could be of the non-local MacDowell–Mansouri-like form presented here. Although elusive, such

a non-local expression quadratic in the curvatures has some precedents. Indeed, the expressions (51)-(52)

are reminiscent of the two-dimensional non-local action S[g], quadratic in the worldsheet scalar curvature,

which is obtained from the Polyakov action SP [g,X] by integrating out the D massless Klein–Gordon scalars

Xµ(σ) describing the position of the bosonic string in the target space [23]. The harmless non-locality of

this action and of the free higher-spin actions fall into the same category. An analogous picture for the full

MacDowell–Mansouri-like actions would be in agreement with the folklore stating that a non-Abelian gauge

theory of higher-spin fields might be interpreted as the effective theory of some more fundamental theory
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describing extended objects. In any case, we believe that the frame-like actions presented here deserve to

be explored further.

3 Mixed-symmetry tensor gauge fields

In the present section we generalize the gauge theory of free rank-s symmetric tensor fields to the case

of massless gauge fields with components transforming in an arbitrary irrep. of the general linear group,

labeled by a Young diagram Y made of s columns. The reader is now assumed to have read the appendix A

because the fundamental definitions are not repeated here. Following the terminology introduced in Section

A.2.2, we say that the gauge field φ
Y

is a (differential) hyperform of ΩY
(s)(R

D).

3.1 Bargmann–Wigner programme

3.1.1 Local, constrained approach of Labastida

It is natural to try to generalize the work of Fronsdal (briefly reviewed in Subsection 2.1.1) to arbitrary

mixed-symmetry tensor gauge fields. In [38], Labastida conjectured some gauge invariances and determined

a local gauge-invariant wave operator which was supposed to describe the proper degrees of freedom, but

he was not able to prove that one may reach a gauge where the on-shell physical degrees of freedom provide

the appropriate UIR of O(D − 2) .

Labastida used a set of commuting oscillators [38] and thereby chose the symmetric convention for

Young tableaux. Nevertheless, it turns out to be convenient for our later purposes to deal with fields in the

antisymmetric convention. So, throughout the present section 3.1, the gauge field φ
Y

is understood to be

a (differential) multiform of Ωℓ1,...,ℓs

[s] (RD) whose components are in the irrep. of GL(D, R) labeled by the

Young diagram Y = (ℓ1, . . . , ℓs) . Each basis element dix
µ of each exterior algebra ∧(RD∗) plays the role of

a graded oscillator. We introduce the Labastida operator defined by

F := 2 − di d†i +
1

2
di djTrij , (53)

where there is always an implicit summation from 1 to s over all repeated Latin indices. Each term on the

right-hand side commutes with the operator Trij∗i, hence the Labastida operator F preserves the GL(D, R)-

irreducibility conditions (104). In other words, the Young symmetrizer Y
A

commutes with the operator F,

so that if φ
Y
∈ ΩY

(s)(R
D) , then the mixed-symmetry Labastida tensor F

Y
:= Fφ

Y
also belongs to ΩY

(s)(R
D).

It is natural to postulate that the field equation is

F
Y
≈ 0 , (54)

and that the gauge transformations take the form

δǫφY
= Y

A
diǫi , (55)
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where ǫi are differential multiforms belonging to Ωℓ1 , ... , ℓi−1 , ... , ℓs

[s] (RD) . The gauge transformation of the

Labastida tensor under (55) is given by

δǫFY
=

1

2
Y

A
di dj dk (Trijǫk) , (56)

due to the identity (112). The equation (56) is the analogue of (4). The commutation relations (113) suggest

to require that Tr(ijǫk) = 0 . Notice that this condition is weaker than the tracelessness of every parameter

independently. The gauge invariance of the wave equation (54) was one of the requirements of Labastida in

order to determine uniquely his relativistic wave operator in the symmetric convention [38]. One may easily

check that the translation of Labastida’s requirements in the antisymmetric convention also fixes uniquely

the wave operator. Hence the Labastida tensor in the symmetric convention of [38] must be equal to a linear

combination of the Labastida tensor F
Y

in the antisymmetric convention.

The main technical problems in the local approach are of course the trace conditions to be imposed on

the gauge field and the gauge parameters. Translating from the symmetric to the antisymmetric convention,

the double-trace constraints that Labastida imposed on an arbitrary mixed-symmetry gauge field φ
Y

read

[38, 43] Tr(ijTrkl)φY
= 0 . But the identity

Tr(ijTrkl)

(
dmǫm

)
= 4 d†(i

(
Trjkǫl)

)
± dm

(
Tr(ijTrkl)ǫm

)

shows that the former double-trace constraint is in general preserved by gauge transformations (55) where the

parameters are subject to the trace constraint Tr(ijǫk) = 0 . Indeed, the latter trace constraint is equivalent

to the condition Trklǫm = −2Trm(lǫk) , hence Tr(ijTrkl)ǫm = −2Trm(lTrijǫk) = 0 . As we demonstrate in the

following of the present section, the Labastida equation F
Y
≈ 0 propagates the physical degrees of freedom

transforming in the appropriate UIR of O(D − 2) . Because the hermitian extension of the differential

operator F was built in [38], the problem of constructing a local action principle for arbitrary gauge fields

φ
Y

is thus successfully achieved, thereby completing the local Fierz–Pauli programme.

3.1.2 Higher derivative, unconstrained approach

The curvature tensor of Weinberg was appropriately generalized in [9] by extending the cohomological results

of [8] to arbitrary mixed-symmetry tensor fields. The definitions and main properties of the curvature

tensors in the general case under consideration are reviewed in Section A.2.2. The curvature tensor field

K
Y

∈ ΩY
(s)(R

D) for the mixed-symmetry tensor gauge field φ
Y

∈ ΩY
(s)(R

D) is obtained by taking s curls,

K
Y

= d1 . . . dsφY
and Y is the Young diagram obtained by adding a row of length s on top of the Young

diagram Y . The curvature tensor is invariant under the gauge transformations (55) without any trace

constraint on the gauge parameters ǫi. The Bianchi-like identities are the set of equations diK
Y

= 0

(i = 1, . . . , s).

The commutation relation

[Trij , didj ]− = 2 − did
†
i − djd

†
j , (57)

21



where no sum on the indices i and j is understood, follows from (112) and implies in turn the opera-

torial identity Tr12 d1 . . . ds = d3 . . . dsF . Applied on the gauge field φ
Y

, this last identity leads to the

generalization of the Damour–Deser identity for arbitrary mixed-symmetry fields

Tr12 K
Y

= d3 d4 . . . ds FY
. (58)

Therefore, the Labastida equation (54) implies the Ricci-flat-like equation

TrK
Y

≈ 0 , (59)

stating that the curvature tensor is traceless on-shell, in agreement with (105). In analogy with the situation

reviewed in Subsection 2.1.4, the Ricci-flat-like equation (59) implies the compensator equation

F
Y

≈
1

2
Y

A
di dj dk αijk , (60)

where αijk = α(ijk) are some (differential) hyperforms associated with the Young diagrams obtained by

removing three boxes in distinct columns of Y . The compensator fields αijk are pure-gauge fields expected

to vary according to

δǫαijk = Tr(ijǫk) (61)

in order to compensate the variation (56) of the Fronsdal tensor in the third-order field equation (60). As

one can see, the Labastida equation (54) arises as a partial gauge-fixing of the compensator equation.

The results explained in the previous paragraph were announced in [17] but the complete proof was not

presented there because of the lack of space. For the sake of completeness, we now sketch the subtle use of

Poincaré lemmas that enables to relate the Ricci-flat-like equation (59) with the compensator equation (60)

via the Damour–Deser identity (58). The argument is deeply rooted in the following lemma, the proof of

which is given in Appendix B.1

Lemma 1. Let P be a differential hyperform of Ω(s)(R
D) . Then,

dsP = 0 =⇒ diP = 0 , ∀ i ∈ {1, . . . , s} . (62)

As a corollary of the lemma 1, we have the implication

( k∏

i=1

ds−k+i

)
P = 0

Lemma 1
=⇒

( ∏

i∈I

di

)
P = 0 , ∀I ⊂ {1, 2, . . . , s} | #I = k , (63)

for any integer k ∈ {1, . . . , s}, which can easily been proved by induction. The properties (63) and (118)

combined together prove the following

Proposition 1. Let P be a differential hyperform of Ω(s)(R
D) . Then,

( k∏

i=1

ds−k+i

)
P = 0 =⇒

( ∏

i∈I

d{i}
)
P = 0 , ∀ I ⊂ {1, 2, . . . , s} | #I = k , (64)
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In other words, the proposition 1 provides a sufficient condition for the cocycle condition dkP = 0 of

the generalized cohomology group (k)H(i1,...,is)(d) associated with the operator d = d{1} + . . . + d{s} acting

on the space of hyperforms Ω(s)(R
D) . The generalized Poincaré lemma of [9] proves the triviality of the

generalized cohomology groups (k)H(ℓ1,...,ℓs)(d) for 1 6 k 6 s, 0 < ℓs and ℓ1 < D . The Ricci-flat-like

equation (59) combined with the Damour–Deser identity (58) states that the Fronsdal tensor obeys the

equation d3d4 . . . dsFY
≈ 0 . The proposition 1 for k = s − 2 implies that ds−2F

Y
≈ 0 . The triviality of

(2)HY (d) implies the exactness of the on-shell Fronsdal tensor, F
Y
≈ d3α , as expressed by the compensator

equation (60).

3.1.3 Non-local, unconstrained approach of de Medeiros and Hull

As was pointed out in [16], the equations (16) of Francia and Sagnotti were generalized by Hull and de

Medeiros in [15] as follows

Tr(12Tr34 . . . Trs−1 s) KY
≈ 0 , (65)

for s even. The sum of products of all possible traces over indices all belonging to distinct columns in (65)

correspond in (16) to the contraction with the symmetrized powers η(µ1µ2
. . . ηµs−1µs) of the metric tensor.

For s odd, the equation may be written in two ways

Tr(12 . . . Trs−2 s−1Trs s+1) ds+1KY
= Tr(12 . . . Trs−2 s−1 d†s)KY

≈ 0 , (66)

because of the fact that K
Y

is of degree zero in the s + 1th set of antisymmetric indices. One can check

explicitly that the operators Trij∗i commute with the operator Tr(12 . . . Tr2n−1 2n) when i and j belong

to the set {1, . . . , 2n} [19]. Therefore, the equations (65)-(66) have the same symmetry properties as the

corresponding tensor gauge field φ
Y
. As they are, it is not obvious that they describe the proper physical

degrees of freedom because the light-cone gauge is hard to reach since the gauge transformations (55) involve

many parameters and are highly reducible in general. As a preliminary, we show in the next paragraph that

the equations (65)-(66) are equivalent to the following compensator-like equation

F
Y

≈
1

2
Y

A
di dj dk Hijk , (67)

generalizing the equation (14). The essential difference between (67) and the compensator equation (60) is

that the tensor fields Hijk are non-local functions of the gauge field φ
Y

and its partial derivatives. Never-

theless, their gauge transformations are proportional to Tr(ijǫk) so that the gauge-fixing condition Hijk = 0

leads to the Labastida equation (54).

To prove the on-shell equivalence between the deMedeiros–Hull equations (65)-(66) and (67) we need a

crucial identity.

Lemma 2. For any given natural number n ∈ N,

Tr(12 . . . Tr2n−1 2n) d1d2 . . . d2n−1d2n = 2
n−1

F −
n − 1

2n − 1
2

n−2 djdk Trjk F + didjdkOijk ,
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where there is an implicit sum from 1 to 2n over every repeated index and Oijk denotes a set of differential

operators (1 6 i, j, k 6 2n).

The proof is given in Appendix B.2. Applying the operator appearing in Lemma 2 for n = [s+1
2 ] on the

gauge field φ
Y
, one gets the on-shell equality

2
n−1 F

Y
−

n − 1

2n − 1
2

n−2 djdk Trjk FY
+ didjdkΣijk ≈ 0 , (68)

for the multiforms Σijk := OijkφY
, by virtue of the equations (65)-(66). Taking a trace of both sides of the

equation (68), leads to

2
n−1 TrijFY

≈ dkσk , (69)

for some multiforms σk. Inserting (69) into (68) gives (67).

3.1.4 Bargmann–Wigner equations

Following the discussion in the subsection 2.1.4, we stress that the sth-order Ricci-flat-like equation (59) is

equivalent to a set of first-order field equations for KY . Indeed, the vanishing of the Ricci-like tensor means

that the on-shell Weinberg tensor field K
Y

takes values in an irrep. of O(D − 1, 1). The Bargmann–Wigner

equations are somehow the converse statement. Let K
Y

be a differential hyperform with components in a

tensorial irrep. of the Lorentz group O(D − 1, 1) whose symmetries are labeled by the Young diagram Y

(in the antisymmetric convention). As explained in the appendix A.2.2, the Bianchi-like identities (119)

imply that the hyperform K
Y

is exact, which means that it is precisely the curvature tensor of a gauge

field φ
Y

taking values in an irreducible representation of GL(D, R) labeled by the Young diagram Y . This

proves the equivalence between the Ricci-flat-like equation (59) obeyed by the Weinberg tensor field, and the

Bianchi-like equations (119) obeyed by an O(D− 1, 1)-irreducible tensor fields with the same symmetries as

the Weinberg tensor. Moreover, due to the commutation relation (112) the compatibility condition between

the Bianchi-like identities (119) and the tracelessness property (59) are the transversality conditions

d†iKY
≈ 0 (i = 1, . . . , s) . (70)

The equations (70) and (119) are called the Bargmann–Wigner equations since they generalize (21). They

were proposed in [9, 16] as field equations for mixed-symmetry tensor gauge fields. By definition, the

Bargmann–Wigner equations state that the differential hyperform K
Y

is harmonic on-shell.

Up to now, we have achieved to prove the equivalence of the Labastida equation (54), the Ricci-flat

equations (59), compensator (60), the deMedeiros–Hull equations (65)-(66) and the Bargmann–Wigner

equations (70) and (119). In order to prove that they describe the proper physical degrees of freedom, it

is sufficient to do so for one of these equations: this is done in the appendix C for the Bargmann–Wigner

equations. As a corollary, this completes the Bargmann–Wigner programme for arbitrary finite-component

fields in any dimension, as summarized in the following theorem.
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Theorem 1. (Bargmann–Wigner’s programme) [17]

Let Y be an allowed Young diagram (ℓ̄1, . . . , ℓ̄s) with at least two rows of equal length s and Y :=

(ℓ̄1 − 1, . . . , ℓ̄s − 1) be the Young diagram (ℓ1, . . . , ℓs) obtained by removing the first row of Y .

Any tensorial irreducible representation of the group O(D−1, 1) with finite-dimensional representation space

V
O(D−1,1)

Y
where V = RD, provides a massless unitary irreducible representation of the group IO(D − 1, 1)

associated with the Young diagram Y : Its infinite-dimensional representation space is the space of harmonic

differential multiforms K
Y

of spin s taking values in V
O(D−1,1)

Y
. The latter space is isomorphic to the Hilbert

space HY of physical states ϕ
Y
∈ L2(RD) ⊗ V

O(D−2)
Y that are solutions of 2ϕ

Y
≈ 0 .

Any single-valued massless unitary irreducible representation of IO(D−1, 1) induced from a finite-dimensional

irreducible representation of O(D − 2) is equivalent to a representation obtained in this way.

3.2 Fierz–Pauli programme

In the first subsection, we discuss the state of the art in order to clarify what is new in the present work

with respect to the extensive literature on the subject. In the second subsection, a non-local Lagrangian

for any mixed-symmetry tensor gauge field is written in compact form, two particular cases of which are

exhibited in the third subsection.

3.2.1 Local actions

Local covariant Lagrangians have already been obtained for gauge fields labeled by the most general “hook”

diagrams (ℓ1, 1, . . . , 1) [39], “two-row” diagrams (2, . . . , 2, 1, . . . , 1) [40] and “two-column” diagrams (ℓ1, ℓ2)

[41, 42] in approaches where trace constraints are imposed on the higher-spin fields. On the one hand,

a decisive step towards the explicit completion of the Fierz–Pauli programme has been performed in the

OSp(1, 1|2) formalism [18]. The drawback of this formalism is that it requires some technically involved

computations in order to write the quadratic action only in terms of the Sp(2) singlet variables (i.e. the

constrained mixed-symmetry gauge field). This last step has never been performed explicitly for the mixed-

symmetry case to our knowledge. On the other hand, in [43] Labastida introduced an explicit self-adjoint

Einstein-like tensor corresponding to his field equation and conjectured that this Einstein-like tensor would

provide the local constrained quadratic action for a tensor gauge field labeled by an arbitrary Young diagram.

The problem of this approach was that the author did not prove in full generality that his choice of trace

constraints and field equations do indeed lead to the proper physical degrees of freedom. This proof is

completed here.

More recently, an algorithm for the construction of quadratic actions for mixed-symmetry tensor gauge

fields was given in the BRST approach [44]. Finally, de Medeiros and Hull conjectured in [19] the rough form

of a non-local Einstein-like tensor but they did not give the precise coefficients of its expansion in powers

of traces, neither did they prove that their Einstein-like equation describes the proper physical degrees of

freedom.

In this sense, the non-local second-order action that we write in Theorem 2 provides the first explicit
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realization of the Fierz–Pauli programme in full generality. More accurately, our analysis is restricted to

Minkowski spacetime and to fields with a finite number of components. Incidentally, we should mention that

for “massless” mixed-symmetry tensor gauge fields, the Bargmann–Wigner programme for the anti de Sitter

group SO(D − 1, 2) has already been examined in many details [45] and the Fierz–Pauli programme has

recently experienced considerable progresses [46]. Also, the completion of the Bargmann–Wigner programme

has recently been extended to all massless irreps (including infinite-component ones) of the Poincaré group

ISO(D − 1, 1) [47]. The non-locality property of the action proposed here remains elusive and it would be

pleasant to explicitly derive its local counterparts. Actually, the BRST algorithm of [44] indirectly ensures

the existence of a local action invariant under unconstrained gauge transformations, but with many auxiliary

fields.

3.2.2 Non-local actions

The main idea is that the use of the Levi-Civita tensors enables a straightforward generalization of the

results of Subsection 2.2.1 to the mixed-symmetry case. Still, one should make sure to take the appropriate

traces and that the result is projected on the proper symmetry.

Our main results are summarized in compact form in the following theorem. Subsequently, we provide

two examples and then describe in more details the construction of the non-local Lagrangian for arbitrary

mixed-symmetry tensor gauge fields.

Theorem 2. (Fierz–Pauli’s programme)

Let s be a positive integer. The smallest even integer that is not smaller than s is denoted by s :=

2[s+1
2 ] = s + ε(s) . Let Y := (ℓ1, . . . , ℓs) be a Young diagram with first row of length s (that is to say, ℓs = 0

when s is odd) and such that ℓ1 + ℓ2 6 D − 2 . Let φ
Y

be a gauge field with components in the tensorial

irreducible representation of the group GL(D, R) with (finite-dimensional) representation space V
GL(D,R)
Y

where V = RD.

The second-order quadratic action

S [φ
Y
] = 〈 φ

Y
| K | φ

Y
〉

defined by the self-adjoint kinetic operator

K = Tr (D−1) s
2
−|Y| ◦ ∗s ◦

1

2
s
2

◦
( s∏

i=1

di

)
, (71)

with

Tr (D−1) s
2
−|Y| :=

s
2∏

j=1

(
Trj s−j+1

)D−1−ℓj−ℓs−j+1 ,

is manifestly gauge-invariant under the transformations

δǫ | φ
Y
〉 =

s∑

i=1

di | ǫi 〉 , (72)
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where ǫi are differential multiforms belonging to Ωℓ1 , ... , ℓi−1 , ... , ℓs

[s] (RD).

Let Y be the Young diagram obtained by adding one row of length s to the Young diagram Y . The

equation of motion derived from this action may be cast into the form

δS [φ
Y
]

δ 〈 φ
Y
|
≈ 0 ⇐⇒ | G

Y
〉 ≈ 0 , (73)

where the Einstein tensor G
Y

is defined by

G
Y

:=





Y
A

Tr (D−1) s
2
−|Y| K̃

e
Y

≈ 0 for s even ,

Y
A

Tr (D−1) s+1
2

−|Y| d†s+1K̃e
Y

≈ 0 for s odd ,
(74)

with K̃
e
Y

the dual of the curvature tensor K
Y

and Ỹ the dual of the Young diagram Y .

The (infinite-dimensional) space of field configurations extremizing the action S[φ
Y
] carries the massless

unitary irreducible representation of the group IO(D − 1, 1) associated with the Young diagram Y : it is

isomorphic to the Hilbert space HY of physical states ϕ
Y
∈ L2(RD)⊗V

O(D−2)
Y that are solutions of 2ϕ

Y
≈ 0.

In order to help the reader to get used to the notations involved in the theorem 2 and to provide some

flavor of the general proof, we present two particular examples with mixed symmetry gauge fields (one for

each parity of the spin s).

An odd-spin example

We first consider the gauge field φ
Y
∈ V

GL(D,R)
Y with the associated Young diagram Y = (ℓ1, ℓ2, ℓ3, 0) =

(2, 1, 1, 0). The spin is s = 3, hence 3 = 2[3+1
2 ] = 3 + ε(3) = 4. The tensor gauge field components read

φµ1
1µ2

1µ3
1 ;µ1

2
. The only algebraic constraint that is imposed on the components of φ

Y
at this stage is that,

in each group of indices separated by semicolons, total symmetrization is understood. In the case at hand,

it means that φµ1
1µ2

1µ3
1 ;µ1

2
is totally symmetric in (µ1

1 , µ2
1 , µ3

1) but may not obey φ(µ1
1µ2

1µ3
1 ;µ1

2) = 0 . In the

action, upon appropriately contracting the indices of φ
Y

with indices of Levi-Civita symbols as we will

show, φµ1
1µ2

1µ3
1 ;µ1

2
will be projected on the GL(D, R) irrep associated with the following Young tableau, in

the manifestly antisymmetric convention:

Y =
µ1

1 µ2
1 µ3

1

µ1
2

.
(75)

The curvature tensor KY will have components Kµ1
1µ1

2µ1
3 |µ2

1µ2
2 |µ3

1µ3
2

described by the Young tableau

Y =

µ1
1 µ2

1 µ3
1

µ1
2 µ2

2 µ3
2

µ1
3 (76)

that is, as a Young diagram, Y = (3, 2, 2, 0) = (2, 1, 1, 0) + (1, 1, 1, 0). The curvature tensor is expressed in

the antisymmetric convention because of the presence in the Lagrangian of the s = 4 Levi-Civita tensors

εµ1
1µ1

2... µ1
D εµ2

1µ2
2... µ2

D εµ3
1µ3

2... µ3
D εµ4

1µ4
2... µ4

D (77)
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contracted with the s = 3 derivatives of the gauge field components

∂µ1
3
∂µ2

2
∂µ3

2
φµ1

1µ2
1µ3

1 ;µ1
2
.

In order for the Ricci-flat-like equation TrKY ≈ 0 to define a nontrivial theory, we must have D > ℓ1+ℓ2+2 =

5. We choose here D = 5 .

Continuing the construction of the Lagrangian, we have to act with ε(3) = 1 extra derivative ∂µ4
1

on the

gauge field φµ1
1µ2

1µ3
1 ; µ1

2
. The components of the bra 〈 φ

Y
| are written as φµ4

5µ3
5µ2

5 ;µ4
4
. As for the ket, the

only constraint on the components of the bra is that, in each group of indices separated by semicolons, total

symmetrization is understood. After contraction with the Levi-Civita symbols entering the Lagrangian, the

bra is projected on the irreducible GL(D, R) symmetry corresponding to the following Young tableau, in

the manifestly antisymmetric convention:

µ4
5 µ3

5 µ2
5

µ4
4

.
(78)

Finally, the trace operator Tr (D−1) s
2
−|Y | = (Tr14)

2(Tr23)
2 reads, in components,

(ηµ1
5µ4

2
ηµ1

4µ4
3
) (ηµ2

3µ3
3
ηµ2

4µ3
4
) . (79)

Summarizing, the action is explicitly written as

S[φ
Y
] =

1

2

∫
d5x

[
φµ4

5µ3
5µ2

5 ; µ4
4
(ηµ1

5µ4
2
ηµ1

4µ4
3
ηµ2

3µ3
3
ηµ2

4µ3
4
)(εµ1

1... µ1
5 . . . εµ4

1... µ4
5)

1

2
∂µ4

1
∂µ1

3
∂µ2

2
∂µ3

2
φµ1

1µ2
1µ3

1 ;µ1
2

]
.

At this stage, it is instructive to draw the GL(5, R) Young diagram Z corresponding to the product (77),

in which we mark by a “×” the cells corresponding to the components of the bra 〈 φ
Y
| (and ket | φ

Y
〉 )

and by a “−” the cells corresponding to the partial derivatives. The components of the metric tensors are

marked by a “◦”. It gives

Z =

µ1
1 µ2

1 µ3
1 µ4

1

µ1
2 µ2

2 µ3
2 µ4

2

µ1
3 µ2

3 µ3
3 µ4

3

µ1
4 µ2

4 µ3
4 µ4

4

µ1
5 µ2

5 µ3
5 µ4

5

=

× × × −

× − − ◦

− ◦ ◦ ◦

◦ ◦ ◦ ×

◦ × × ×

.

(80)

The differential multiform dsKY = d4KY is labeled by the Young diagram Y + := Y +(1, 1, 1, 1) = (3, 2, 2, 1) .

The ket ∗s ds | KY 〉 = (∗1∗2∗3∗4) d4 | KY 〉 enters in the Lagrangian with the following tensorial components,

in the antisymmetric convention,

( ∗1 ∗2 ∗3 ∗4 d4 KY )µ
1
4µ1

5 |µ2
3µ2

4µ2
5 |µ3

3µ3
4µ3

5 |µ
4
2µ4

3µ4
4µ4

5 .

Only one GL(5, R)-irreducible component of the above tensor, also denoted by (d̃4K)gY +
, survives inside the

action. It is labeled by the Young diagram Ỹ + = (5, 5, 5, 5, 5)−(1, 2, 2, 3) = (4, 3, 3, 2) and the corresponding
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Young tableau reads

Ỹ + =

µ4
5 µ3

5 µ2
5 µ1

5

µ4
4 µ3

4 µ2
4 µ1

4

µ4
3 µ3

3 µ2
3

µ4
2

=

× × × ◦

× ◦ ◦ ◦

◦ ◦ ◦

◦

.

(81)

It may be obtained by rotating Z y by 180 degrees and removing the cells of the Young tableau Y +

corresponding to d4KY . In terms of SL(5, R)-irreducible representations, this tensor is equivalent to d4 KY .

The Euler-Lagrange derivatives are proportional to

Y
S

[
(Tr1 4)

2(Tr2 3)
2 (d̃4 K)gY +

]
≈ 0 (82)

or, in components,

δS

δφµ4
5µ3

5µ2
5 ;µ4

4

∝ Y
S

[
(ηµ1

5µ4
2
ηµ1

4µ4
3
ηµ2

3µ3
3
ηµ2

4µ3
4
)(d̃4K)µ4

2µ4
3µ4

4µ4
5 |µ3

3µ3
4µ3

5 |µ2
3µ2

4µ2
5 |µ1

4µ1
5

]

where Y
S

is the Young projector associated with the Young tableau (78) in the symmetric convention. In

the field equations (and also in the Lagrangian), only one GL(5, R)-irreducible component of the tensor

product ηµ1
5µ4

2
ηµ1

4µ4
3
ηµ2

3µ3
3
ηµ2

4µ3
4

will contribute. It is the irreducible component characterized by the Young

tableau X such that the product X · Y contains Ỹ + in its decomposition. We find that X = (2, 2, 2, 2).

Drawing the tableau,

X = .
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

Indeed, it is easy to check, using the Littlewood–Richardson rules, that

·
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

× × ×

×
⊃

× × × ◦

× ◦ ◦ ◦

◦ ◦ ◦

◦

.

According to the definitions introduced in the appendix A.1.1, one may say that, on-shell, the field (d̃4 K)gY +

takes values in a tensorial representation of SL(5, R) labeled by the difference Ỹ + − Y of Y where the

subtraction of the Young diagram Y corresponds to the trace constraints (82) imposed by the equations of

motion. Due to the isomorphism V
SL(5,R)

gY +

∼= V
SL(5,R)

Y +
, the former tensorial representation is equivalent to a

tensorial representation labeled by the difference Y + − Y corresponding to the field (d4 K)Y +
on which are

imposed the trace constraints

Y
S

[
Tr1 4Tr2 3 d4 KY

]
≈ 0 , (83)
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labeled by Y . This provides a group-theoretical proof of the fact that the Einstein-like equations (82) are

equivalent to the deMedeiros–Hull equations (83). They respectively are particular instances of (73) and

(66).

An even-spin example

We next consider the gauge field φ
Y
∈ V

GL(D,R)
Y with the associated Young diagram Y = (ℓ1, ℓ2, ℓ3, ℓ4) =

(3, 2, 2, 2). We choose the dimension D = 7. The spin is s = 4, hence 4 = 2[4+1
2 ] = 4 + ε(4) = 4. The

tensor gauge field components read φµ1
1µ2

1µ3
1µ4

1 ;µ1
2µ2

2µ3
2µ4

2 ; µ1
3
. It is totally symmetric in each group of indices

separated by semicolons, but no further constraints are imposed. Appropriate contractions with Levi-Civita

symbols will project the tensor components on the symmetry of the following Young tableau

µ1
1 µ2

1 µ3
1 µ4

1

µ1
2 µ2

2 µ3
2 µ4

2

µ1
3

.

(84)

The curvature tensor KY has components Kµ1
1µ2

1µ3
1µ4

1 ; µ1
2µ2

2µ3
2µ4

2 ;µ1
3µ2

3µ3
3µ4

3 ;µ1
4

described by the Young tableau

µ1
1 µ2

1 µ3
1 µ4

1

µ1
2 µ2

2 µ3
2 µ4

2

µ1
3 µ2

3 µ3
3 µ4

3

µ1
4

.

(85)

where Y = (4, 3, 3, 3) = (3, 2, 2, 2) + (1, 1, 1, 1). The curvature tensor is expressed in the antisymmetric

convention because of the presence in the Lagrangian of the s = 4 Levi-Civita tensors

εµ1
1µ1

2... µ1
7 εµ2

1µ2
2... µ2

7 εµ3
1µ3

2... µ3
7 εµ4

1µ4
2... µ4

7 (86)

contracted with the s = 4 derivatives of the gauge field components

∂µ2
3
∂µ3

3
∂µ4

3
∂µ1

4
φµ1

1µ2
1µ3

1µ4
1 ;µ1

2µ2
2µ3

2µ4
2 ;µ1

3
.

With D = 7, the Ricci-flat-like equation TrKY ≈ 0 defines a nontrivial theory, since ℓ1 + ℓ2 + 2 6 D.

The components of the bra 〈 φ
Y
| are written as φµ1

7µ2
7µ3

7µ4
7 ; µ1

6µ2
6µ3

6µ4
6 ;µ4

5
. As for the ket, the only constraint

on the above components is manifest symmetry in each group of indices separated by semicolons. Finally,

the trace operator Tr (D−1) s
2
−|Y | = Tr14(Tr23)

2 reads, in components,

ηµ1
5µ4

4
ηµ2

4µ3
4
ηµ2

5µ3
5

.

Summarizing, the action is explicitly written as

S[φ
Y
] =

1

2

∫
d7x

[
φµ1

7µ2
7µ3

7µ4
7 ; µ1

6µ2
6µ3

6µ4
6 ;µ4

5
(ηµ1

5µ4
4
ηµ2

4µ3
4
ηµ2

5µ3
5
) (εµ1

1... µ1
7 . . . εµ4

1... µ4
7)

1

2
Kµ1

1µ2
1µ3

1µ4
1 ;µ1

2µ2
2µ3

2µ4
2 ; µ1

3µ2
3µ3

3µ4
3 ;µ1

4

]
.
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This construction is more transparent when drawing the GL(7, R) Young diagram Z corresponding to the

product (86), in which we mark by a “×” the cells corresponding to the components of the bra 〈 φ
Y
| (and

ket | φ
Y
〉 ) and by a “−” the cells corresponding to the partial derivatives. The components of the metric

tensors are marked by a “◦”. It gives

Z =

µ1
1 µ2

1 µ3
1 µ4

1

µ1
2 µ2

2 µ3
2 µ4

2

µ1
3 µ2

3 µ3
3 µ4

3

µ1
4 µ2

4 µ3
4 µ4

4

µ1
5 µ2

5 µ3
5 µ4

5

µ1
6 µ2

6 µ3
6 µ4

6

µ1
7 µ2

7 µ3
7 µ4

7

=

× × × ×

× × × ×

× − − −

− ◦ ◦ ◦

◦ ◦ ◦ ×

× × × ×

× × × ×

.

Only one GL(7, R)-irreducible component of the differential multiform ∗1 ∗2 ∗3 ∗4 KY survives inside the

action. The corresponding differential hyperform is denoted by K̃eY
and is labeled by the Young diagram

Ỹ = (7, 7, 7, 7) − (3, 3, 3, 4) = (4, 4, 4, 3). The associated Young tableau reads

µ4
7 µ3

7 µ2
7 µ1

7

µ4
6 µ3

6 µ2
6 µ1

6

µ4
5 µ3

5 µ2
5 µ1

5

µ4
4 µ3

4 µ2
4

=

× × × ×

× × × ×

× ◦ ◦ ◦

◦ ◦ ◦

.

(87)

It has been obtained by rotating Z y by 180 degrees and removing the cells corresponding to the Young

diagram Y . In terms of SL(7, R)-irreducible representations, the tensor K̃eY
is equivalent to KY .

The Euler-Lagrange equations are

0 ≈
δS

δφµ1
7µ2

7µ3
7µ4

7 ; µ1
6µ2

6µ3
6µ4

6 ;µ4
5

∝ Y
S

[
(ηµ1

5µ4
4
ηµ2

4µ3
4
ηµ2

5µ3
5
) K̃µ4

7µ4
6µ4

5µ4
4 |µ3

7µ3
6µ3

5µ3
4 |µ2

7µ2
6µ2

5µ2
4 |µ1

7µ1
6µ1

5

]
(88)

where Y
S

is the projector on the symmetries of φµ1
7µ2

7µ3
7µ4

7 ;µ1
6µ2

6µ3
6µ4

6 ;µ4
5
. In the field equations (and thus

in the Lagrangian), only one GL(7, R)-irreducible component of the tensor product ηµ1
5µ4

4
ηµ2

4µ3
4
ηµ2

5µ3
5

will

contribute. It is the irreducible component characterized by the Young tableau X such that the tensor

product X · Y contains Ỹ in its decomposition. We find X = (2, 2, 1, 1). Drawing the diagram,

X = .
◦ ◦ ◦ ◦

◦ ◦

It is easy to check, using the Littlewood–Richardson rule, that

·
◦ ◦ ◦ ◦

◦ ◦

× × × ×

× × × ×

×

⊃

× × × ×

× × × ×

× ◦ ◦ ◦

◦ ◦ ◦

.
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Due to the isomorphism V
SL(7,R)
eY

∼= V
SL(7,R)

Y
, the Einstein-like equations (88) are equivalent to the deMedeiros–

Hull equations

Y
S

[
Tr1 4Tr2 3 KY

]
≈ 0 . (89)

The equations (88) and (89) respectively provide a particular example of (73) and (65).

3.2.3 Proof of Theorem 2

The proof may be divided in three distinct parts. Firstly, we show that our definition of the action produces

a result different from zero, which is a non-trivial statement due to the numerous contractions of various

irreducible tensors. Secondly, the kinetic operator (71) is proven to be self-adjoint, which implies that the

equations of motion indeed are (73). Thirdly, the Euler–Lagrange equations (73) are shown to be equivalent

to the equations of Hull and de Medeiros. At the light of the results of Section 3.1, this step ends the

proof of Theorem 2. The simpler way to start the proof of Theorem 2 is to explicit the construction of

the Lagrangian step by step and exhibit the Young tableaux corresponding to the diverse objects involved,

because the procedure is very simple even though the multiplicity of indices somehow casts a shadow on

this quality.

(1◦) The starting point is the product of the s Levi-Civita tensors corresponding to the operator ∗1 . . . ∗s

in (71). In components, this product reads

εµ1
1µ1

2... µ1
D εµ2

1µ2
2... µ2

D . . . εµs
1µs

2... µs
D . (90)

Obviously, this product defines an irreducible representation of GL(D, R) labeled by the following Young

tableau

Z =

µ1
1 µ2

1
. . . µs

1

µ1
2 µ2

2
. . . µs

2

...
...

µ1
D

...

µ2
D

. . . µs
D

. . .

(91)

All other indices present in the Lagrangian have to be contracted with the contravariant indices of the Levi-

Civita tensors in (90), therefore we will have to “store” into the tableau (91) the indices of the components

of the gauge fields, partial derivatives and metric tensors.

Since the components of the tensor gauge field in the bra and in the ket are contracted with the Levi-

Civita tensors in the action, the antisymmetrization is automatic so that one may assume without loss of

generality that the only algebraic constraints on the gauge field is that it is totally symmetric in the indices
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appearing in the rows of Y . Only the GL(D, R)-irreducible components of φ
Y

will appear in the Lagrangian,

and the gauge field will naturally appear in the manifestly antisymmetric convention. For the ket | φ
Y
〉 , the

tensor gauge field components read

φ
µ1

1µ2
1... µs

1 ; µ1
2µ2

2 ... µ
r2
2 ; ...... ; µ1

ℓ1
µ2

ℓ1
... µ

rℓ1
ℓ1

where ra is the length of the ath row in Y . The Young tableau (101) corresponding to the gauge field can

be obtained by looking at the Young tableau Y included in the left upper corner of (91).

The s partial derivatives in the operator d1 . . . ds read in components

∂µ1
ℓ1+1

∂µ2
ℓ2+1

. . . ∂µs
ℓs+1

(∂µs+1
1

)ε(s) .

The contraction of the components

∂µ1
ℓ1+1

∂µ2
ℓ2+1

. . . ∂µs
ℓs+1

(∂µs+1
1

)ε(s)φ
µ1

1µ2
1... µs

1 ; µ1
2µ2

2 ... µ
r2
2 ; ...... ; µ1

ℓ1
µ2

ℓ1
... µ

rℓ1
ℓ1

(92)

with the Levi-Civita tensors (90) in the Lagrangian projects the derivatives of the gauge field on the

components of the curvature tensor whose symmetry properties are characterized by the Young diagram

Y := (ℓ1 + 1, ℓ2 + 1, . . . , ℓs + 1) and Young tableau (121). This explains the appearance of the curvature

tensor in the ket of the Euler-Lagrange equations (73). In the odd-spin case where ε(s) = 1 and s = s+1, an

extra partial derivative ∂µs+1
1

is applied on the curvature tensor. The index of this extra partial derivative is

not antisymmetrized with the index of any other partial derivative, as can be seen in (92) by the fact that

no other partial derivative index µi
ℓi+1 possesses the same column index: i 6= s. Therefore the contraction

of (92) with (90) is nonzero. The first derivative of the odd-spin curvature tensor is characterized by the

Young diagram Y + := (ℓ1 + 1, ℓ2 + 1, . . . , ℓs + 1, 1) .

An important point to understand next is that the components corresponding to the bra 〈φ
Y
| can be

chosen as

φ
µs

D
µs−1

D
...µ

1+ε(s)
D

; µs
D−1µs−1

D−1...µ
s−r2+1
D

; ... ;µs
D−ℓ1+1...µ

s−rℓ1
+1

D−ℓ1+1

, (93)

where the only algebraic constraints on the bra is that it should be totally symmetric with respect to each

group of indices separated by a semicolon. Upon contraction with the epsilon tensors in the action, it

will be projected on the appropriate GL(D, R) irrep, in the manifestly antisymmetric convention as was

the case for the ket field | φ
Y
〉 . It is easier to state the preceding points in terms of Young tableaux and

diagrams. The previous ordering of the indices of the bra φ
Y

can be read off from (91): One rotates the

Young diagram Y corresponding to φ
Y

by 180 degrees (y in the plan of the sheet of paper) and places it at

the right-bottom corner of (91). The indices appearing in the cells of the rotated Y Young diagram coincide

with the components of 〈φ
Y
|.

The indices that remain uncontracted in (91) are traced by the operator Tr (D−1) s
2
−|Y | , as indicated in

(71). The resulting action is nonvanishing because no two indices µi
j and µi′

j with the same row index j are

contracted by the same epsilon tensor. In the Lagrangian, all the indices with the same row label i could be
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totally symmetrized without giving a vanishing result. In fact, by construction of the Lagrangian, such an

operation would be redundant. We have explained how the curvature tensor KY appeared in the Lagrangian,

as well as the action of an extra derivative ∂µs+1
1

when ε(s) = 1. By contraction with the epsilon-tensors

(90), the curvature tensor KY is dualized on every column, giving ∗s K
Y

for s even and ∗s+1 ds+1 K
Y

for s

odd.

By construction, for s even, only the GL(D, R)-irreducible component of the differential multiform ∗s K
Y

which is labeled by the Young diagram Ỹ ∈ Ys will survive in the action. [See Appendix A.1.2 for the general

definition of the dual Young diagram Ỹ and tensor.] The corresponding differential hyperform is denoted

by K̃eY
∈ V GLD

eY
and V = RD. The coordinates of Ỹ are (D − ℓs − 1,D − ℓs−1 − 1, . . . ,D − ℓ1 − 1). One

can read the components of K̃eY
and understand its appearance in the Lagrangian by inspecting the Young

tableau (91): Mark with a “•” the cells of (91) which correspond to KY . Then rotate (91) y by 180 degrees.

The empty cells now sit at the top of the rotated tableau and give the Young tableau Ỹ associated with the

components of K̃eY
. Now consider the Young tableau Y included in the left upper-corner of Ỹ . From (93)

and the paragraph below (93), it corresponds to the Young tableau associated with the components of the

bra 〈 φ
Y
|. The remaining indices of Ỹ correspond to the components of the operator Tr (D−1) s

2
−|Y | . Note

that the cells in which these remaining indices appear do not constitute a Young diagram.

In the odd-spin case, the GL(D, R)-irreducible component of the differential multiform ∗s+1 ds+1 K
Y

which survives in the Lagrangian is labeled by Ỹ +. The corresponding differential hyperform is denoted

(d̃s+1K)gY +
and transforms in V GLD

gY +

with V = RD. The coordinates of Ỹ + ∈ Ys+1 are (D−1,D−ℓs−1,D−

ℓs−1−1, . . . ,D−ℓ1−1). Similarly as in the even-spin case, the Young tableau associated with the components

of (d̃s+1K)gY +
is obtained from (91) by marking with a “•” the cells of (91) which correspond to (ds+1K)Y +

and rotating (91) y by 180 degrees. The empty cells which sit now at the top of the rotated tableau give

the Young tableau Ỹ + associated with the components of (d̃s+1K)gY +
. Again, the Young tableau Y included

in the left upper-corner of Ỹ + corresponds to the components of the bra 〈 φ
Y

| in (93). The remaining

indices which sit below and at the right of the Young tableau Y ⊂ Ỹ + correspond to the components of

the operator Tr (D−1) s+1
2

−|Y | . The cells in which these remaining indices appear do not constitute a Young

diagram.

(2◦) The detailed construction of the Lagrangian explained above enables us to provide a Young-

diagramatic proof of the self-adjoint property of the kinetic operator, K
† = K. Take the rectangular

Young diagram with D rows and s columns which underlies (91). Mark with a “×” the cells corresponding

to | φ
Y
〉 and 〈 φ

Y
| and fill with the symbol “−” the cells corresponding to the partial derivatives. Finally,

mark with the symbol “◦” the cells that remain, which correspond to the trace operators Tr (D−1) s
2
−|Y | .

Denote the resulting rectangular Young tableau by the symbol Z. Now rotate Z by 180 degrees y. What

appears is not yet Z, since each symbol “−” has to jump upward over the symbols “◦”. Because there is

an even number s of “−” and because to each “◦” in the ith column there is a corresponding “◦” in the

(s− i+1)th column, there is an even number of jumps. The rotation of Z corresponds to taking the adjoint

of 〈 φ
Y

| K | φ
Y
〉. A jump in a column corresponds to a transposition in the indices of a Levi-Civita
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tensor, therefore an even number of transposition brings a factor +1. Finally, there is an even number of

integrations by part because s is even. We have thus showed that K
† = K. Moreover, it is now obvious

that the action is invariant under the gauge transformations (72) because it depends on the ket | φ
Y
〉 only

through the curvature.

(3◦) The Euler-Lagrange equations
δS [ φ

Y
]

δ 〈 φ
Y
| ≈ 0 are obtained by varying the action with respect to the

bra 〈 φ
Y

| , so by definition they have the symmetries of | φ
Y
〉 . In the odd-spin case, it means that

one sets (on-shell) to zero the component of
[
Tr (D−1) s+1

2
−|Y |

]
(d̃s+1K)gY +

which belongs to V GLD

Y . In the

even-spin case, one sets (on-shell) to zero the components of
[
Tr (D−1) s

2
−|Y |

]
K̃eY

which belong to V GLD

Y .

The operator between square brackets is in general reducible, it decomposes under GL(D, R) into a sum of

irreducible powers of the metric tensor. However, only a certain GL(D, R)-irreducible component labeled

Xeven for s even (Xodd for s odd) will survive in the field equation, the component for which the division

Ỹ /Xeven contains Y and the component for which the division Ỹ +/Xodd contains Y (see Appendix A.1.1

for the division rule with Young diagrams). As recalled in Appendix A.1.2, with respect to SL(D, R), the

irreducible representations Y and Ỹ are equivalent: V SLD

eY

∼= V SLD

Y
(V = RD). Similarly, Ỹ + and Y + are

equivalent irreps of SL(D, R). The dual SL(D, R)-irreducible representation Ỹ (respectively Ỹ +) is called

the contragredient SL(D, R)-irreducible representation of Y (of Y +), see e.g. the third reference of [48].

Consequently, the field equations for s even imply that the component of the trace Tr
s
2 KY which belongs to

V
SL(D,R)
Y is set to zero. In the odd-spin case, it means that the field equations set to zero the component of

the trace Tr
s+1
2 ds+1KY which belongs to V

SL(D,R)
Y . The latter two field equations are therefore equivalent

to the equations (65) and (66), which in turn are equivalent to the Ricci-flat-like equations TrKY ≈ 0.
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A Notation and conventions

In this section, we review former results, introduce the fundamental definitions and take the opportunity to

fix the notation.

A.1 Young diagrams and tensorial representations

We essentially extracted the standard definitions and properties on irreps and Young diagrams from various

“textbook” references such as [48] (see also [49] and the appendix of the second reference of [8]).
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A.1.1 Young diagrams and irreducible representations

A Young diagram Y is a diagram which consists of a finite number s > 0 of columns of identical squares

(referred to as the cells) of finite non-increasing lengths ℓ1 > ℓ2 > . . . > ℓs > 0. The total number of cells

of the Young diagram Y is denoted by |Y | =
∑s

j=1 ℓj. The set of Young diagrams with at most s columns

is denoted by Ys. We identify any Young diagram Y with its “coordinates” (ℓ1, . . . , ℓs). For instance,

Y ≡ ∈ Y3

is identified with the triple (4, 3, 1) ∈ N3. A Young tableau is a Young diagram where each cell contains

an index.

Let Y be the Abelian group made of all formal finite sums of Young diagrams with integer coefficients.

This group is N-graded by the number |Y | of boxes: Y =
∑

n∈N
Yn. The famous “Littlewood–Richardson

rule” defines a multiplication law which endows Y with a structure of graded commutative ring. The product

of two Young diagrams X and Y is defined as

X · Y =
∑

Z

mX Y |Z Z ,

where the coefficients mX Y |Z = mY X |Z are the number of distinct labeling of the Young diagram Z

obtained from the Littlewood–Richardson rule. As one can see, |X · Y | = |X| + |Y |. A related operation in

Y is the “division” of Z by Y defined as

Z/Y =
∑

X

mX Y |Z X ,

where the sum is over Young diagrams X such that the product X ·Y contains the term Z (with coefficient

mX Y |Z).

Multilinear applications with a definite symmetry are associated with a definite Young tableau, while

the symmetry in itself is specified by the Young diagram. Let V be a finite-dimensional vector space of

dimension D over a field K and V ∗ its dual. The dual of the nth tensor power V ⊗n of V is canonically

identified with the space of multilinear forms of rank n: (V ⊗n)∗ ∼= (V ∗)⊗n. Let Y be a Young diagram

whose first column has length ℓ1 < D and let us consider that each of the |Y | copies of V ∗ in the tensor

product (V ∗)⊗|Y | is labeled by one cell of Y . The Schur module V GLD

Y is defined as the vector space of

all multilinear forms T in (V ∗)⊗|Y | such that :

(i) T is completely antisymmetric in the entries of each column of Y ,

(ii) complete antisymmetrization of T in the entries of a column of Y and another entry of Y

that is on the right-hand side of the column vanishes.

The space V GLD

Y is an irreducible subspace invariant for the natural action of GLD on (V ∗)⊗|Y |. Its elements

were called hyperforms by P. J. Olver [7].
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Let Y be a Young diagram and T an arbitrary multilinear form in (V ∗)⊗|Y |, one defines the multilinear

form Y
A
(T ) ∈ (V ∗)⊗|Y | by

Y
A
(T ) = T ◦ AY ◦ SY

with

AY =
∑

c∈C

(−)ε(c)c , SY =
∑

r∈R

r ,

where C is the group of permutations which permute the entries of each column, ε(c) is the parity of the

permutation c, and R is the group of permutations which permute the entries of each row of Y . It can

be proved that any Y
A
(T ) belongs to V GLD

Y and that the application Y
A

of End
(
(V ∗)⊗|Y |

)
satisfies the

condition Y2
A

= λY
A

for some number λ 6= 0 . Thus Y
A

= λ−1Y
A

is a projection of (V ∗)⊗|Y | onto itself, i.e.

Y2
A

= Y
A
, with image Im(Y

A
) = V GLD

Y . The projector Y
A

is referred to as the Young symmetrizer in

the antisymmetric convention for the Young diagram Y .

Actually the construction of the Young symmetrizer introduced above by first symmetrizing the intries

of the rows and then antisymmetrizing the entries of the columns of a given Young tableau could as well have

been defined with antisymmetrization first followed by symmetrization. The corresponding irreducible GLD-

modules are isomorphic and the corresponding projector is called the Young symmetrizer in the symmetric

convention for the Young diagram Y and is denoted by Y
S
. The changes of convention Y

S
◦Y

A
and Y

A
◦Y

S

are mere changes of basis in the Schur module V GLD

Y . Notice that for Young diagrams Y made of one row (or

one column), it is not necessary to specify the choice of convention because both symmetrizers produce the

same result; and the corresponding hyperforms of the Schur module V GLD

Y are usually said to be completely

(anti)symmetric tensors. In all other cases, the hyperforms are also called mixed-symmetry tensors

in the literature.

Example: The simplest instance of a mixed-symmetry tensor is the tensor T
A

µν|ρ of rank three associated

with the “hook” tableau
µ ρ

ν identified with the couple (2, 1) ∈ N2. We chose the antisymmetric convention

so that T
A

µν|ρ = T
A

[µν]|ρ and T
A

[µν|ρ] = 0 , where square brackets always denote complete antisymmetrization

over all indices with strength one. In the symmetric convention, we would have a tensor T
S

µρ ; ν such that

T
S

µρ ; ν = T
S

(µρ) ; ν and T
S

(µρ ; ν) = 0 , where curved brackets always denote complete symmetrization over all

indices with strength one. We can switch from one convention to the other by the following changes of basis

T
S

µρ ; ν = −T
A

ν(µ ; ρ) and T
A

µν ; ρ = T
S

ρ[µ ; ν] .

If the vector space V is endowed with a non-degenerate symmetric bilinear form (i.e. a metric) with

signature (p, q) where p + q = D, then the subspace V
O(p,q)
Y of traceless hyperforms in the Schur module

V GLD

Y is irreducible under the group O(p, q). Whenever the sum of the lengths of the first two columns of

Y is greater than D, ℓ1 + ℓ2 > D, then the irreducible space is identically zero: V
O(p,q)
Y = {0}. So Young

diagrams such that ℓ1 + ℓ2 6 D are said to be allowed. All non-zero finite-dimensional irreps of O(p, q) are

uniquely characterized by the datum of an allowed Young diagram.

Let Y> 0 be the Abelian monoid made of all formal finite sums of Young diagrams with non-negative

integer coefficients. Finite direct sums of irreps of GLD may therefore be labeled by elements of Y> 0 via
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the rule

V GLD

m X +n Y = m V GLD

X ⊕ n V GLD

Y ,

where the positive integer coefficients m,n ∈ N must be interpreted as the multiplicity of the corresponding

representations. The same is true for the groups O(p, q) . The evaluation of the Kronecker product of two

irreps of GLD can be done by means of the Littlewood–Richardson rule which gives

V GLD

X ⊗ V GLD

Y = V GLD

X·Y =
⊕

Z

mX Y |Z V GLD

Z . (94)

A related operation is that of contraction of one set of contravariant indices of symmetry Z with a subset of

a set of covariant tensor indices of symmetry Y to yield a sum of covariant tensors with indices of symmetry

X given by the division rule

V GLD

Z /V GLD

Y = V GLD

Z/Y =
⊕

X

mX Y |Z V GLD

X .

The irreps of GLD may be reduced to direct sums of irreps of O(p, q) by extracting all possible trace

terms formed by contraction with products of the metric tensor and its inverse. The reduction is given by

the branching rule

GLD ↓ O(p, q) : V GLD

Y ↓ V
O(p,q)
Y/∆ , (95)

where ∆ is the formal infinite sum

∆ = 1 + + + + + + + . . .

corresponding to the sum of all possible powers of the metric tensor. The decomposition (95) actually has

a useful converse

O(p, q) ↑ GLD : V
O(p,q)
Y ↑ V GLD

Y/∆−1 , (96)

because the series ∆ has an inverse

∆−1 = 1 − + − − + . . .

The operation (96) leads to a formal finite sum of irreps, some of which with strictly negative integer

coefficients that have to be interpreted as constraints on some trace of the corresponding tensor basis.

(Remark: These constraints are not preserved by the full GLD group.)

A.1.2 Multiform and hyperform algebras

The elements of the algebra ⊙
(
∧ (V ∗)

)
of symmetric tensor products of antisymmetric forms ∈ ∧(V ∗) are

called multiforms. The subspace ⊙s
(
∧ (V ∗)

)
of sums of symmetric products of s antisymmetric forms is

denoted by

∧[s](V ) ≡ ∧(V ∗) ⊙ . . . ⊙ ∧(V ∗)︸ ︷︷ ︸
s factors

. (97)
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The D generators of the ith factor ∧(V ∗) are written dix
µ ( i = 1, 2, . . . , s ). By definition, the multiform

algebra ∧[s](R
D) is presented by the commutation relations

dix
µ djx

ν = (−)δij djx
ν dix

µ , (98)

where the wedge and symmetric products are not written explicitly.

Let G be an Abelian group. The direct sum V∗ = ⊕gVg is called the G-graded space associated with

the family of vector spaces {Vg}g∈G. Moreover, if V is an algebra such that for any two elements α ∈ Vg

and β ∈ Vh the product α β ∈ Vg·h, then V is said to be a G-graded algebra. As an example, the algebra

∧[s](V ) is Ns-graded

∧[s](V ) =
⊕

(ℓ1,...,ℓs)∈Ns

∧ℓ1,ℓ2,...,ℓs

[s] (V ) , (99)

where an element α of ∧ℓ1,ℓ2,...,ℓs

[s] (V ) reads

α =
1

ℓ1! . . . ℓs!
α[µ1

1...µ1
ℓ1

] | ...... | [µs
1...µs

ℓs
] d1x

µ1
1 ∧ . . . ∧ d1x

µ1
ℓ1 ⊙ . . . . . . ⊙ dsx

µs
1 ∧ . . . ∧ dsx

µs
ℓs . (100)

Each exterior algebra is Z2-graded by the parity of the antisymmetric form. This induces a Z2-grading of

the algebra ∧[s](V ) given by the parity ε(ℓ1 + . . . + ℓs) of the multiform α ∈ ∧ℓ1,ℓ2,...,ℓs

[s] (V ). The algebra of

multiforms is therefore graded commutative [see Equation (98)].

If (ℓ1, . . . , ℓs) defines a Young diagram Y , then one can form a Young tableau by placing all the µi
j

indices in (100) corresponding to the ith exterior algebra ∧(V ∗) in the ith column of Y :

µ1
1 µ2

1
. . . µr2

1
. . . µs

1

µ1
2 µ2

2
. . . µr2

2

...

µ1
ℓ2

...

µ2
ℓ2

...

µ1
ℓ1

...

. . .

(101)

So the space ∧ℓ1,ℓ2,...,ℓs

[s] (V ) of multiforms is an eigenspace of the operator AY antisymmetrizing over the

indices placed in the same column. Conversely, any hyperform in the antisymmetric convention can be seen

as a multiform. This induces a natural product on the space of hyperforms.

From now on, we will assume that V is equipped with a metric. Then the Hodge dual operations

∗i : ∧ℓ1,...,ℓi,...,ℓs

[s] (V ) → ∧ℓ1,...,D−ℓi,...,ℓs

[s] (V ) , 1 6 i 6 s (102)
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in each subspace ∧ℓi(V ∗) may be defined. In practice, the operator ∗i acts as the Hodge operator on the ith

antisymmetric form in the tensor product. To remain in the space ⊗(V ∗) of covariant tensors requires the

use of the metric in order to lower contravariant indices.

Using the metric, another simple operation that can be defined is the trace. The convention is that we

always take the trace over indices in two different columns, say the ith and jth. We denote this operation

by

Trij : ∧
ℓ1,...,ℓi,...,ℓj ,...,ℓs

[s] (V ) → ∧
ℓ1,...,ℓi−1,...,ℓj−1,...,ℓs

[s] (V ) , i 6= j . (103)

Using the previous definitions of multiforms, Hodge dual and trace operators, we may reformulate the

definition of the Schur module as follows: Let α be a multiform in ∧ℓ1,...,ℓs

[s] (V ). If

ℓj 6 ℓi < D , ∀ i, j ∈ {1, . . . , s} : i 6 j ,

then one obtains the equivalence

Trij { ∗i α } = 0 ∀ i, j : 1 6 i < j 6 s ⇐⇒ α ∈ V GLD

(ℓ1,...,ℓs)
. (104)

Indeed, the condition (i) is satisfied since α is a multiform and the condition (ii) is simply rewritten in terms

of tracelessness conditions.

Let Y be an allowed Young diagram, ℓ1 + ℓ2 6 D. The further irreducibility condition obeyed by a

multiform α ∈ V
O(D−1,1)
Y ⊂ V GLD

Y , is the vanishing of all possible traces. Using the irreducibility conditions

(104) under GLD one may show that the vanishing of the trace over the indices placed in the first two

columns implies the vanishing of all other possible traces:

If α ∈ V GLD

Y , then: Trα = 0 ⇐⇒ Trij α = 0 ∀ i, j ∈ {1, . . . , s} ⇐⇒ α ∈ V
O(p,q)
Y , (105)

where we defined Tr ≡ Tr12.

Let Y = (ℓ1, . . . , ℓs) be any Young diagram in Ys. We define the dual Young diagram Ỹ := (ℓ̃1, . . . , ℓ̃s)

by the following lengths of its columns: ℓ̃i := D − ℓs+1−i for i ∈ {1, . . . , s} . Let α be a multiform of

∧ℓ1,...,ℓs

[s] (V ). One denotes by α̃ ∈ ∧ℓ̃1,...,ℓ̃s

[s] (V ) the dual multiform defined by

α̃ := ∗s α , where ∗s ≡

s∏

i=1

∗i .

The dual multiform α̃ belongs to the same representation space of SLD as α . If α
Y
∈ V GLD

Y is a hyperform

labeled by the Young diagram Y , then the dual multiform α̃eY is in the irrep. of GLD associated with the

dual Young diagram Ỹ , i.e. α̃eY ∈ V GLD

eY
, called the contragredient representation of V GLD

Y . Actually,

the representations are equivalent under SLD.

If Y = (ℓ1, ℓ2, . . . , ℓs) is an allowed Young diagram, ℓ1 + ℓ2 6 D, then the Young diagram Y ∗ =

(D − ℓ1, ℓ2, . . . , ℓs) is also an allowed Young diagram called associated Young diagram. In such case,

if α
Y

∈ V
O(p,q)
Y is a hyperform in the irrep. of O(p, q) corresponding to the Young diagram Y , then the

multiform ∗1αY
is in the irrep. of O(p, q) labeled by the associated Young diagram Y ∗, i.e. ∗1αY

∈ V
O(p,q)
Y ∗ .
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The two irreps of O(p, q) become equivalent when they are restricted to SO(p, q). Notice that, for an allowed

Young diagram, all columns but the first one have length ℓi < D/2 (2 6 i 6 s). Therefore each inequivalent

finite-dimensional irreps of SO(p, q) is uniquely characterized by a Young diagram with columns of length

smaller than D/2.

The metric on V allows to endow the space ∧[s](V ) of multiforms with a non-degenerate symmetric

bilinear form

( , ) : ∧[s](V ) ⊙ ∧[s](V ) −→ K (106)

called scalar product defined by taking the scalar product in each of the s exterior algebras ∧(V ∗). More

explicitly,

(α , β ) =
1

ℓ1! . . . ℓs!
αµ1

1...µ1
ℓ1

| ... | µs
1...µs

ℓs
β

µ1
1...µ1

ℓ1
| ... | µs

1...µs
ℓs .

for two multiforms α and β which read in components as in (100). The scalar product is positive definite if

and only if the metric on V is. Via the left multiplication in ∧[s](V ) the generators dix
µ can be interpreted

as operators. Their adjoint (dix
µ)† for the scalar product reproduces the interior product in each exterior

algebra because the operators dix
µ and (djx

ν)† satisfy the canonical graded commutation relations

[dix
µ, (djx

ν)†]± = δij ηµν , (107)

where [ , ]± stands for the Z2-graded commutator, ηµν are the components of the (pseudo-Riemannian)

metric on V and ηµληλν = δµ
ν . The anticommutation relations (107) also imply that ∧[s](V ) is isomorphic to a

Fock space whose creation operators would be the dix
µ’s and the destruction operators the (dix

µ)†’s. In terms

of the latter operators, the trace operators Trij defined in (103) can be written as Trij = ηµν(dix
µ)†(djx

ν)†.

A.2 Differential complexes

The objective of the works presented in [7, 8, 9, 10] was to construct complexes for irreducible tensor fields

of mixed symmetries, thereby generalizing to some extent the calculus of differential forms.

A.2.1 Multicomplex of differential multiforms

We start with basic definitions from homological algebra. A differential complex is defined to be an

N-graded space V∗ = ⊕i∈NVi with a nilpotent endomorphism d of degree one, i.e. there is a chain of linear

transformations

. . .
d

−→ Vi−1
d

−→ Vi
d

−→ Vi+1
d

−→ . . .

such that d2 = 0. A well-known example of such structure is the de Rham complex for which the vector

space is the set Ω∗(Rd) of differential forms graded by the form degree. The role of the nilpotent operator

is played by the exterior derivative d = dxµ∂µ. One can now define the quotient H∗(d) := Kerd

Imd
called the
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cohomology of d. This space inherits the grading of V∗. The elements of H(d) are called (co-)cycles.

Elements of Imd are said to be trivial or exact (co)-cycles.

A straightforward generalization of the previous definitions is to consider a more complicated grading.

More specifically, one takes Ns as Abelian group (s > 2). A multicomplex of order s ∈ N is defined to be

an Ns-graded space V(∗,...,∗) =
⊕

(i1,...,is)∈Ns

V(i1,...,is) with s nilpotent endomorphisms dj (1 6 j 6 s) such that

djV(i1,...,ij ,...,ns) ⊂ V(i1,...,ij+1,...,is).

A multicomplex of order one is a usual differential complex. A concrete realization of this definition is the

space of differential multiforms whose elements are sums of products of the generators djx
µ with smooth

functions as coefficients.

More precisely, the space of differential multiforms is the graded tensor product of C∞(RD) with s

symmetrized copies of the exterior algebra ∧(RD∗) where RD∗ is the dual space with basis dix
µ (1 6 i 6 s,

thus there are s times D of them). We denote this multigraded space C∞(RD) ⊗ ∧[s](R
D) as

Ω[s](R
D) =

⊕

(ℓ1,...,ℓs)∈Ns

Ωℓ1,ℓ2,...,ℓs

[s] (RD) , (108)

by analogy with the de Rham complex Ω∗(RD) = Ω[1](R
D). The tensor field αµ1

1...µ1
ℓ1
|...|µs

1...µs
ℓs

(x) defines a

multiform α ∈ Ωℓ1,...,ℓs

[s] (RD) which explicitly reads

α =
1

ℓ1! . . . ℓs!
αµ1

1...µ1
ℓ1

| ... | µs
1...µs

ℓs
(x) d1x

µ1
1 ∧ . . . ∧ d1x

µ1
ℓ1 ⊙ . . . ⊙ dsx

µs
1 ∧ . . . ∧ dsx

µs
ℓs . (109)

In the sequel, when we refer to the differential multiform α we speak either of (109) or of its components.

More generally, we call (smooth covariant) tensor field any element of the space
⊗

(RD∗) ⊗ C∞(RD) .

We endow Ω[s](R
D) with the structure of a multicomplex by defining s exterior derivatives

di : Ωℓ1,...,ℓi,...,ℓs

[s] (RD) → Ωℓ1,...,ℓi+1,...,ℓs

[s] (RD) , 1 6 i 6 s , (110)

defined by taking the exterior derivative with respect to the ith set of antisymmetric indices. Naturally, for

each label i (1 6 i 6 s) one can define the cohomology group H∗(di) ≡
Kerdi

Imdi

. The nilpotent operators

dj ≡ djx
µ∂µ generalize the exterior differential of the de Rham complex.

If the manifold RD is endowed with a metric then, by using the Hodge operators ∗i introduced previously,

one may also define the coderivatives

d†i := (−)q+1+ℓi(D−ℓi+1) ∗i di ∗i : Ωℓ1,...,ℓi,...,ℓs

[s] (RD) → Ωℓ1,...,ℓi−1,...,ℓs

[s] (RD) , 1 6 i 6 s . (111)

As usual, the Laplacian or d’Alembertian may be defined by the anticommutator 2 = [di, d
†
i ]+ . A multiform

α in Ω[s](R
D) is said to be harmonic if it is closed (diα = 0) and coclosed (d†iα = 0) for all i ∈ {1, . . . , s} .

Notice the very useful identities

[ Trij , dk ]± = 2 δk(i d†j) , (112)

and

[ di , dj ]± = 0 , [ di , d†j ]± = δij 2 . (113)
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A.2.2 Generalized complex of differential hyperforms

Let N be a natural number not smaller than 2. An N-complex is defined as a graded space V∗ = ⊕iVi

equipped with an endomorphism d of degree 1 that is nilpotent of order N > 2: dN = 0. The generalized

cohomology of the N -complex V∗ is the family of N − 1 graded spaces (k)H(d) with 1 6 k 6 N − 1 defined

by (k)H(d) = Ker(dk)/Im(dN−k), i.e. (k)H∗(d) = ⊕i
(k)H i(d) where

(k)H i(d) =
{
α ∈ Vi | dkα = 0, α ∼ α + dN−kβ, β ∈ Vi+k−N

}
.

Proposition 2. [10] Any multicomplex structure of order N −1 possesses a canonical N -complex structure.

This fact plays a crucial role in the gauge structure of mixed-symmetry tensor gauge fields. The proof

is rather simple.

Proof: In order to connect the two definitions one has to build an N-grading from the Ns-grading of the

multicomplex V(∗,...,∗) =
⊕

(i1,...,is)∈Ns

V(i1,...,is) endowed with the s nilpotent endomorphisms dj. A simple

choice is to consider the total grading defined by the sum i ≡
∑s

j=1 ij . We introduce the operator

dT ≡

s∑

j=1

dj

which possesses the nice property of being of total degree one. Two convenient cases arise:

• [ di , dj ]+ = 0 : Usually the nilpotent operators dj are taken to be anticommuting and therefore d is

nilpotent. This case is rather standard in homological perturbation theory.

• [ di , dj ]− = 0 when i 6= j and di
2 = 0 : From our present perspective, commuting dj ’s are indeed

quite interesting because, in that case, dT is in general nilpotent of order s + 1 and the space V is

endowed with a (s + 1)-complex structure. Indeed, every term in the expansion of ds+1
T contains at

least one of the dj twice.

Due to the (anti)commutation relations (113), the second case in the proof is illustrated by the multicomplex

Ω[s](R
D) of differential multiforms.

The total cohomology group [10] is the generalized cohomology group (k)H(i1,...,is)(dT ) associated

with the operator dT and the Ns-grading, whose elements α ∈ V(i1,...,is) satisfy the set of cocycle conditions

∏

i∈I

di α = 0 , ∀ I ⊂ {1, 2, . . . , s} | #I = k , (114)

with the equivalence relation

α ∼ α +
∑

J ⊂ {1, 2, . . . , s}

#J = s − k + 1

∏

j∈J

dj βJ , (115)
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where βJ belongs to V(j1,...,js) with

jk ≡





ik if k 6∈ J ,

ik − 1 if k ∈ J .

This can be easily seen by decomposing the cocycle condition dk
T α = 0 and the equivalence relation α ∼

α + ds−k+1
T β in Ns degree.

A differential hyperform [7] is a GL(D, R)-irreducible tensor field, that is, an element of C∞(RD) ⊗

V
GL(D,R)
Y . We denote by ΩY

(s)(R
D) the space of differential hyperforms associated with the Young diagram

Y made of s columns. We also introduce the Ys-graded space

Ω(s)(R
D) =

∑

Y ∈Ys

ΩY
(s)(R

D) . (116)

In order to endow the space Ω(s)(R
D) with a structure of multicomplex, one may introduce the maps [9, 10]

d{i} : Ω
(ℓ1,...,ℓi,...,ℓs)
(s) (RD) → Ω

(ℓ1,...,ℓi+1,...,ℓs)
(s) (RD) , (117)

for 1 6 i 6 s and ℓi+1 > ℓi. This operator is defined as follows: take the derivative of a differential hyperform

of ΩY
(s) and consider the image in ΩY {i}

(s) where Y {i} is the Young diagram obtained from Y by adding one

more cell in the ith column. In other words, d{i} ≡ Y{i}
A

◦ ∂. Since hyperforms in the antisymmetric

convention may also be seen as multiforms, the action of an operator d{i} may be expressed as a linear

combination of the action of the exterior derivatives dj. So we have the obvious property that, for any

differential hyperform α of Ω(s)(R
D) ,

(∏

i∈I

di

)
α = 0 , ∀I ⊂ {1, 2, . . . , s} | #I = k

=⇒
( ∏

i∈I

d{i}
)
α = 0 , ∀I ⊂ {1, 2, . . . , s} | #I = k . (118)

We proved in [9] the triviality of the generalized cohomology groups (k)H(ℓ1,...,ℓs)(d) for 1 6 k 6 s, 0 < ℓs

and ℓ1 < D, in the space of differential hyperforms Ω(s)(R
D) with d = d{1} + . . . + d{s}, thereby extending

the results of [7, 8]. In particular, for (1)HY (d) where Y ∈ Ys is a Young diagram made of s columns, one

may show9 that the closure conditions of a hyperform K
Y
∈ ΩY

(s)(R
D) are equivalent to

diKY
= 0 , (i = 1, . . . , s) (119)

and that imply the following exactness of the differential hyperform

K
Y

= d1 . . . dsφY
, (120)

where φ
Y

is a differential hyperform belonging to ΩY
(s)(R

D) with Y the Young diagram obtained by removing

the first row of Y . Such an exact hyperform K
Y

is called the curvature tensor of the gauge field φ
Y
.

9See Corollary 1 of [9] for more details.
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If the components φµ1
1...µ1

ℓ1
| ... | µs

1...µs
ℓs

of the gauge field are characterized by the Young tableau (101), then

the components Kµ1
1...µ1

ℓ1+1 | ... | µs
1...µs

ℓs+1
are described by the Young tableau

µ1
1 µ2

1
. . . µr2

1
. . . µs

1

µ1
2 µ2

2
. . . µr2

2
. . . µs

2

µ1
3 µ2

3
. . . µr2

3

...

µ1
ℓ2+1

...

µ2
ℓ2+1

...

µ1
ℓ1+1

...

. . .

(121)

Analogously, for (s)HY (d) where Y is a Young diagram made of s columns, one may show that the

closure condition of a hyperform φ
Y
∈ ΩY

(s)(R
D) is equivalent to

d1 . . . dsφY
= 0 , (122)

and they imply the following exactness of the differential hyperform

φ
Y

= SY

s∑

i=1

diǫi =
s∑

i=1

d{i}ǫ{i} , (123)

where the ǫi are differential multiforms belonging to Ωℓ1,...,ℓi−1,...,ℓs

[s] (RD) while the ǫ{i} are differential hyper-

forms (or zero if they are not well-defined) belonging to Ω
(ℓ1,...,ℓi−1,...,ℓs)
(s) (RD). Such an exact hyperform φ

Y

is called the a pure gauge field.

The norm of the functions in L2(RD) together with the scalar product on ∧[s](R
D) define a natural non-

degenerate symmetric bilinear form on the space Ω[s](R
D) of differential multiforms, so that the codifferential

d†i in (111) becomes the adjoint of the exterior derivative di . This implies that one may define the following

scalar product on the space of differential hyperforms

〈 , 〉 : ΩY
(s)(R

D) ⊙ ΩY
(s)(R

D) → R (124)

defined by

〈α | β 〉 :=

∫
dDx (α , β )Y , (125)

where (α , β )Y is the scalar product (106) naturally extended to V
GL(D,R)
Y .
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Given a non-degenerate symmetric bilinear form 〈 , 〉 on a functional space, a quadratic action for

the field φ is a bilinear functional S[φ] = 〈φ | K | φ 〉 entirely determined by the datum of a self-adjoint

(pseudo)differential operator K called kinetic operator. Because of the non-degeneracy of the bilinear

form, the action S[φ] is extremized for configurations obeying the field equation K | φ 〉 = 0. Translation

invariance requires the kinetic operator K to be independent of the coordinates x, hence the field equation is

a linear partial differential equation (PDE) with constant coefficients. Boundary conditions and regularity

requirements should be specified when solving PDEs.10 For instance, in order to convert linear PDEs into

algebraic equations by going to the momentum representation, we consider the gauge field φ
Y

either as a

rapidly decreasing smooth function or as a tempered distribution, that is the ket | φ
Y
〉 ∈ S(RD)⊗V

GL(D,R)
Y

and the bra 〈φ
Y
| ∈ S ′(RD) ⊗ V

GL(D,R)
Y . The action S [φ

Y
] is said to be gauge invariant under (72) if

〈diǫi | K | φ
Y
〉 = 0 for all ǫi and φ

Y
. This gauge invariance property is equivalent to the Noether identity

d†iK = 0 since the bilinear form is non-degenerate.

B Technical lemmas

B.1 Proof of Lemma 1

We consider any two adjacent columns of the differential hyperform P...|µ1...µr |ν1...νq|... , and we want to show

that the following implication holds (without expliciting the other columns this time; they play no role in

the proof)

Pµ1...µr |[ν1...νq,ρ] = 0 =⇒ ∂[ρPµ1...µr ]|ν1...νq
= 0 , (126)

where a coma stands for a derivative. In the case where q = r , the above implication is trivial (P is then

symmetric under the exchange of the two columns), so we assume q < r from now on.

(A) Since P ∈ Ω(s)(R
D) , one has P[µ1...µr |ν1]ν2...νq

≡ 0 which gives Pµ1...µr |ν1...νq
≡ r(−)rPν1[µ1...µr−1|µr]ν2...νq

.

Without bothering about coefficients, we write

Pν1[µ1...µr−1|µr ]ν2...νq
∝ Pµ1...µr |ν1...νq

. (127)

(B) We antisymmetrize on the first (r+2) indices of the differential hyperform P , yielding K[µ1...µr |ν1ν2]ν3...νq
≡

0 . Decomposing this identity, we see three classes of terms appearing, where ν1 and ν2 are

1. both in the first column,

2. one in the first column, the second in the other,

3. both in the second column.

10Throughout this article, we are sometimes sloppy concerning such technical issues of functional analysis because our main

concern is algebraic. Practically, this means that we always implicitly assume that the functional space we work with is such

that the objects we talk about and the operations we perform on them, are well defined. There is no lack of rigor in such

assumption because they may be legitimated and we refer to textbooks such as [50] for details.
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Explicitly one finds

0 ≡ a
(
Pν1[µ1...µr−1|µr ]ν2ν3...νq

−Pν2[µ1...µr−1|µr ]ν1ν3...νq

)

+ bPν1ν2[µ1...µr−2|µr−1µr ]ν3...νq
+ cPµ1...µr |ν1...νq] , (128)

for some non-vanishing coefficients a, b, c ∈ N0 . This allows us to write Pν1ν2[µ1...µr−2|µr−1µr ]ν3...νq
as a linear

combinaison of Pµ1...µr |ν1...νq
and

(
Pν1[µ1...µr−1|µr ]ν2ν3...νq

− Pν2[µ1...µr−1|µr ]ν1ν3...νq

)
. Using (127) one obtains

Pν1ν2[µ1...µr−2|µr−1µr ]ν3...νq
∝ Pµ1...µr |ν1...νq

. (129)

(C) Starting this time from P[µ1...µr |ν1ν2ν3]ν4...νq
≡ 0 and using the relations (127) and (129), one obtains

similarly Pν1ν2ν3[µ1...µr−3|µr−2µr−1µr ]ν4...νq
∝ Pµ1...µr |ν1...νq

. At the end of the day one gets

Pν1...νq[µq+1...µr |µ1...µq ] ∝ Pµ1...µr |ν1...νq
. (130)

As a consequence of our starting hypothesis Equation (126), we have Pν1...νq[µq+1...µr |µ1...µq , ρ] = 0 , and

finally, using Relation (130), ∂[ρPµ1...µr ]|ν1...νq
= 0 .

B.2 Proof of Lemma 2

The proof is somewhat tedious because it requires some care with the combinatorial gymnastic.

By definition,

Tr(12 . . . Tr2n−1 2n) =
1

(2n)!

∑

π∈S2n

( ∏

i∈{1,...,n}

Trπ(2i−1)π(2i)

)
.

To start with, one makes use of (112) for i 6= j in order to rearrange the factors in the following sum over

all permutations π of the set {1, . . . , 2n}

Tr(12 . . . Tr2n−1 2n) d1d2 . . . d2n−1d2n =

=
1

(2n)!

∑

π∈S2n

( n∏

i=1

Trπ(2i−1)π(2i)dπ(2i−1)dπ(2i)

)
. (131)

Then, one evaluates each factor

Trπ(2i−1)π(2i)dπ(2i−1)dπ(2i) = 2 − dπ(2i−1)d
†
π(2i−1) − dπ(2i)d

†
π(2i) + dπ(2i−1)dπ(2i)Trπ(2i−1)π(2i) , (132)

by using (57). Now, one inserts (132) into the products

n∏

i=1

Trπ(2i−1)π(2i)dπ(2i−1)dπ(2i)

= 2
n + 2

n−1
(
−

2n∑

j=1

djd
†
j +

n∑

i=1

dπ(2i−1)dπ(2i)Trπ(2i−1)π(2i)

)

+ 2
n−2

2n−2∑

j=1

2n∑

k=j+1+ε(j)

dπ(j)dπ(k)d
†
π(j)d

†
π(k) +

2n∑

i,j,k=1

didjdk(. . .) , (133)

We evaluated and grouped the terms in (133) according to the number of d’Alembertians and curls, by mak-

ing use of the commutation relation (113). More precisely, the decomposition in powers of the d’Alembertian

goes as follows.
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2
n : The leading term comes from picking the d’Alembertian in each of the n factors in the product.

2
n−1 : The terms come from choosing a factor and taking d’Alembertian in the n − 1 remaining factors.

Still, one may either choose in the right-hand side of (132) one of the term of the form djd
†
j or the last

term with the trace.

2
n−2 : In degree n−2, the terms are of two types: either they contain two curls and are of the form djdkd

†
jd

†
k

or they contain at least three curls. The first type of terms comes from choosing two factors in the

product and one term of the form d d† in each of them. All other choices give rise to terms of the

second type.

2
n−3 : All terms of degree n − 3 or lower in the d’Alembertian include at least three curls. All such terms

have been put together in the last term of (133).

Eventually, one should perform the sum over all permutations of the 2n elements in the set {1, . . . , 2n}. The

result is

1

(2n)!

∑

π∈S2n

( n∏

i=1

Trπ(2i−1)π(2i)dπ(2i−1)dπ(2i)

)

= 2
n + 2

n−1
(
−

2n∑

j=1

djd
†
j +

1

2(2n − 1)

2n∑

j,k=1

djdkTrjk

)
(134)

+
n − 1

2n − 1
2

n−2
2n∑

j,k=1

djdkd
†
jd

†
k +

2n∑

i,j,k=1

didjdk(. . .) ,

because of the two identities

∑

π∈S2n

n∑

i=1

dπ(2i−1)dπ(2i)Trπ(2i−1)π(2i) = n
∑

π∈S2n

dπ(1)dπ(2)Trπ(1)π(2) ,

and

∑

π∈S2n

2n−2∑

j=1

2n∑

k=j+1+ε(j)

dπ(j)dπ(k)d
†
π(j)d

†
π(k) = 2n(n − 1)

∑

π∈S2n

dπ(1)dπ(2)d
†
π(1)d

†
π(2) ,

supplemented by the fact that for any object sjk symmetric in its indices j and k,

∑

π∈S2n

sπ(1)π(2) = (2n − 2)!

2n∑

j,k=1

sjk . (135)

Finally, by making use of the definition (53) in (134) and going back to the departure equation (131), one

obtains by straightforward algebra

Tr(12 . . . Tr2n−1 2n) d1 . . . d2n = 2
n−1

F +
n − 1

2n − 1
2

n−2
2n∑

j,k=1

djdk

(
− 2Trjk + d†jd

†
k

)

+

2n∑

i,j,k=1

didjdk(. . .) ,

The commutation relation (112) ends the proof the lemma 2.
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C Light-cone

The proof of the theorem was already sketched in the appendix A of [42] but we present it here in full details

in order to be self-contained. In physical terms, the proof amounts to show that, on-shell fieldstrengths are

essentially gauge fields in the light-cone gauge [18, 51].

Indeed, in order to prove the theorem 1 it is convenient to introduce a light-cone basis associated with

any light-like vector pµ: we define it as a basis of RD−1,1 such that the light-like direction + is normalized

along the vector while the light-like direction − is orthogonal and the remaining space-like directions define

the transverse hyperplane RD−2. Hence, p+ = 1 is the only non-vanishing component of the vector pµ in

this basis.

Lemma 3. Let pµ be a given vector on the lightcone (defined by p2 = 0) in Minkowski space RD−1,1.

This vector defines the operators pi = pµdix
µ and their adjoint p†i = pµ(dix

µ)† . Any multiform | α 〉 of

the Fock space ∧ℓ1,ℓ2,...,ℓs

[s] (RD) with ℓs > 0 such that

pi | α 〉 = 0 , p†i | α 〉 = 0 , ∀ i ∈ {1, . . . , s}

reads in the light-cone basis

| α 〉 = p1p2 . . . ps | β 〉 ,

where | β 〉 ∈ ∧ℓ1−1,ℓ2−1,...,ℓs−1
[s] (RD−2) is a multiform on the transverse hyperplane RD−2.

Proof of Lemma 3 : As explained in Appendix A.1.2, the space ∧[s](R
D) is isomorphic to a Fock space

whose creation operators are the dix
µ and the destruction operators the (dix

µ)†. In the light-cone basis,

the condition p†i | α 〉 = (dix
−)† | α〉 = 0 states that the ith Fock space ∼= ∧(RD) is in the vacuum for the

creation operator dix
+.11 Thus the occupation number of dix

+ is zero for all integers i from 1 to s.

On the one hand, the condition pi | α 〉 = dix
− | α 〉 = 0 states that the ith Fock space ∼= ∧(RD) has

maximal occupation number for the creation operator dix
−. For any fixed i, this operator is Grassmann-

odd, thus its maximal occupation number is equal to one. This is true for all integers i, hence | α 〉 =

d1x
−d2x

− . . . dsx
− | β 〉 for some multiform | β 〉 ∈ ∧ℓ1−1,ℓ2−1,...,ℓs−1

[s] (RD) . On the other hand, we have also

shown that the occupation number is zero for all creation operators dix
+, thus | β 〉 is transverse and belongs

to ∧[s](R
D−2) .

Proof of Theorem 1 : The on-shell harmonicity of the differential hyperform KY implies that the massless

Klein–Gordon equation 2K
Y
≈ 0 is obeyed. Let us Fourier transform the tensor field components K

Y
(x)

in such a way that the harmonicity conditions become algebraic.12 The d’Alembert equation implies that

11Because the metric is off-diagonal in the light-cone directions.
12Boundary conditions and regularity requirements should be specified when solving PDEs. In Theorem 1, we implicitly

assumed that the “ket” | ϕ
Y
〉 ∈ L2(RD) ⊗ V

O(D−2)
Y . This choice is convenient because (a) it provides an obvious norm for

HY , (b) it selects solutions such that | ϕ
Y

(x) |
|x|→∞
−→ 0, and (c) if we consider ϕ

Y
as a temperate distribution (since the “bra”

〈 ϕ
Y

| ∈ S ′(RD) ⊗ V
O(D−2)

Y ) then we are always allowed to convert linear PDEs into algebraic equations by going to the

momentum representation.
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the support of the Fourier transform KY (p) is on the mass-shell p2 ≈ 0, so that the momentum vector pµ is

light-like on-shell. For each Fourier mode of the tensor field K
Y
(p) associated with a momentum vector pµ,

let us introduce a light-cone basis. As follows from Lemma 3, the harmonicity conditions impose that the

components of each Fourier mode are on-shell equal to

K
Y
(p) ≈ p1 . . . psφY

(p)

for some transverse multiform φ
Y
(p) labeled by the Young diagram Y . It is now easy to prove that the

on-shell O(D − 1, 1)-irreducibility conditions of the components K
Y
(p) imply the O(D − 2)-irreducibility

condition of the components of φ
Y
(p) . Therefore the harmonicity conditions restrict the hyperform K

Y
(p)

to carry an UIR of O(D−2) labeled by the Young diagram Y . This conclusion is true for any Fourier mode,

therefore it applies to the complete Fourier transform as well.
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