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How mad are you 

willing to be?



Let’s send 
c � 0

Great idea! May I add a 
spoon of higher spins?

???



Higher spins: another missed opportunity?

E. Majorana, Nuovo Cimento 9 (1932) 335

T E O R IA R E LAT IVIS T IC A D I P AR T IO E LLE  

C O N  ) / [O ME N T O  IN T R IN S E C O  AR B IT R AR IO  

N o r a  d i E TTO a E  ~AJORANA 

S unto .  - L~autore  s tabilis ce  equaz io~vi d 'onda line ari ne ll'e ne rg ia  e  re lati- 
v is ticam e n te  invarian ti pe r partice lle  ave n ti m om e nto  angolare  in trins e co  
co~nunque  pre fis s a to . 

La  te o ria  d i DIRAC de ll'e le ttrone  fa  us o, come  ~ noto, d i una  
funzione  d 'o n d a  a  q u a ttro  compone n ti de lle  qua li, qua ndo  s i cons i- 
de rino  movime nti le nti, due  ha nno  va lori tra s cu ra b ili m e n tre  le  
a ltre  due  obbe dis cono in  p rima  a ppros s ima zione  a ll'e qua z ione  d i 
S C H R O DING E R .  

In  modo a na logo una  pa rtice lla  con momcnto a n g o la re  in trin - 
1 

seeo s  s  = 0, ~, 1, ,... ~ de s c ritta  ne lla  me cca nica  qua n tis tie a  

me dia n te  un  comple s s o d i 2 s +  1 funz ion i d 'o n d a  che  s oddis fa no 
s e pa ra ta me n te  a ll'e qua z ione  d i ScHRSDING~R. Ta le  ra pp re s e n ta z ione  

n a tu ra lm e n te  va lida  finch~ s i tra s c u ra n o  gli e ffe tti re la tivis tie i, 
e  cib ~ le cito  p e r pa rtice lle  mobili con ve locit~ piccola  d i fro n te  a  
que lla  de lla  luce . Un a ltro  ca s o in  cui la  te oria  e le me nta re  ~ a ncora  
utilizza bile  ~ ovvia me nte  que llo in  cui la  ve locit~ de lla  pa rtice lla  
p u r e s s e ndo compa ra bile  con c rima ne  qua s i e os ta nte  in  d ire z ione  
e  gra nde zza , poich~ a llora  ~ pos s ibile  rie ondurs i a llo s tud io  d i movi- 
me nti le n ti s ce glie ndo oppo rtuna me n te  il s is te ma  d i rife rime n to .  

I1 ca s o inve ce  in cui la  ve locits  de lle  pa rtie e lle  p u r e s s e ndo qua s i 
cos ta nte  e n tro  re g ioni s ufficie nte me nte  e s te s e  de l con tinuo  s pa zio- 
te mpo va ria  d a  ~na  re gione  a ll'  a ltra  le n ta me nte  ma  fra  va lori 
e s tre mi lon ta n i, s o tto  l'a z ione  d i e a mpi e s te rn i de boli, non  s i la s cia  
tra tta re  imme dia ta me nte  con l'e qua z ione  non  re la tivis tie a  .di Scm~5- 
DING E R .  

Una  ge ne ra lizza zione  re la tivis tie a  de lla  te oria  p re e e de n te  de ve  
s oddis fa re  s uce e s s iva me nte  a lle  condizioni s e gue nti a l e re s ~e re  de l 
s uo gra do  d i a ~cura te zza : 

(a ) La  te o ria  pe rme tte  lo sCudio d i pa rtice lle  a ve n ti ve locit~ 
qua s i d e te rm in a ta  'in g ra nde zza  e  dire zione , da ndo  ris u lta ti e qui- 

Summary. - The author establishes wave equations that are linear
in energy and relativistically invariant for particles with a fixed 
intrinsic angular momentum.
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(Massless) higher spins in a nutshell

Andrea Campoleoni - UMONS

Irreps of the Poincaré group and free field theory: OK!

1980’s: cubic vertices in Minkowski & (A)dS

Wigner (1939); Fronsdal (1978)

1930’s: difficulties in coupling to electromagnetism

1960’s: extra problems & "no-go theorems” 

• Soft theorems for higher-spin particles ⇒ trivial S-matrix 

• No minimal coupling (∂! → ∇!) with gravity

1990’s: Vasiliev’s theory in (A)dS

2000’s: AdS/CFT (holographic duals of weakly coupled CFT’s)

Fierz, Pauli (1939)

Weinberg (1964); 
Coleman, Mandula (1967)

Aragone, Deser (1971)

Bengtsson2, Brink (1983); 
Berends, Burgers, van Dam 
(1984)

Vasiliev (1990)

Sezgin, Sundell (2002); Klebanov, 
Polyakov (2002) and many others…



Long range HS interactions imply: 

• in flat-space → trivial S-matrix  

• in AdS → free CFT boundary correlators 

Higher spins & (A)dS

Andrea Campoleoni - UMONS

Why (massless) HS fields like (A)dS? 

• Classical HS interactions seem to require an infrared regulator: 
mass (String Theory) or cosmological constant (Vasiliev)

Weinberg (1964)

Sezgin, Sundell (2002); Klebanov, Polyakov (2002); Maldacena, Zhiboedov (2011) et al.
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→ “soluble” AdS/CFT

→ no interactions



Long range HS interactions imply: 

• in flat-space → trivial S-matrix  

• in AdS → free CFT boundary correlators 

Higher spins & (A)dS

Andrea Campoleoni - UMONS

Why (massless) HS fields like (A)dS? 

• Classical HS interactions seem to require an infrared regulator: 
mass (String Theory) or cosmological constant (Vasiliev)

May Minkowski still play a role?  

• Is String Theory a broken phase of a HS gauge theory? 

• Trivial S-matrix, but non-trivial interactions (& asymptotic symmetries)? 

Weinberg (1964)

Sezgin, Sundell (2002); Klebanov, Polyakov (2002); Maldacena, Zhiboedov (2011) et al.

Skvortsov, Tran, Tsulaia (2018); A.C., Francia, Heissenberg (2017)

→ “soluble” AdS/CFT

→ no interactions



Weinberg soft theorems

(for any s and in any D)



Leading Weinberg’s soft theorems 

Andrea Campoleoni - UMONS

Amplitude for N−1 scalars 
and one soft particle

Weinberg (1964)

In Section 2 we review and somehow rephrase the arguments concerning the structure of

the asymptotic symmetry group for spin-two gauge fields, exploiting for our analysis solely

the structure of the linearised theory. This allows us not only to introduce our notation

and general line of approach, but also to propose a derivation of Weinberg’s soft theorem
where the equivalence principle has not to be assumed from the very beginning (rather, it is

deduced), which is relevant in view of the extension to higher spins. In Section 3 we consider

a first class of large gauge symmetries of the Fronsdal action to be identified with properly

defined higher-spin supertranslations. We identify the corresponding infinite-dimensional

symmetry to then show how the associated Ward identities allow to derive Weinberg’s

soft theorem for arbitrary integer spin. Our construction is based on the definition of

a suitable Bondi-like gauge for higher spins, whose consistency is further discussed in

Section 4. In Section 5 we take a di↵erent perspective and consider the possibility to

derive Weinberg’s result for any spin as the Goldstone theorem of a specific class of large

gauge transformations, thus extending the results of [20, 21]. This approach provides a non-

perturbative result that allows in principle to keep track also of the subleading corrections.
Higher-spin supertranslations are actually only a particular class of the transforma-

tions preserving our Bondi-like fallo↵ conditions. We investigate the general form of the

solution in Section 6 (with some technicalities detailed in the appendices) with focus on the

spin-three case, showing the existence of additional infinite families of asymptotic symme-

tries, providing proper higher-spin generalisations of superrotations [13, 14, 22]. The full

structure of the asymptotic symmetry algebra for any value of the spin, the computation

of the corresponding charges, together with a deeper assessment of its possible role and

meaning, in particular in relation with the structure of subleading terms in soft theorems,

will be explored in future work. Our hope is that these investigations may help to shed

some light on the still largely mysterious infrared physics of higher-spin massless quanta.

2 Soft gravitons and BMS symmetry
In [2, 3], Weinberg showed that, using only the Lorentz invariance and the pole structure

of the S matrix, it is possible to derive the conservation of charge and the equality of

gravitational and inertial mass as consequences of the soft emission of the corresponding

massless spin-one and spin-two quanta. On the same grounds, he argued that there can be

no room for macroscopic fields corresponding to particles of spin three or higher. In short,

Weinberg considered the S-matrix element S�↵(q), for arbitrary asymptotic particle states

↵ ! �, also involving an extra soft massless particle of 4�momentum q µ
⌘ (!,q) ! 0

and helicity s. The two main contributions to this process are schematically encoded in

the following picture:

+

– 2 –
In the limit q →0  the amplitude factorises:Formulae used in Keynote

As(1, . . . , N) ≥ A(1, . . . , N ≠ 1) ◊
N≠1ÿ

i=1
g(s)

i

pµ1
i · · · pµs

i Ïµ1···µs(q)
2pi · q

Ï(q) æ Ï(q) + i q �(q)

g(s)
i = 0

g(s)
i = g(s)

j ’ i, j ∆
N≠1ÿ

i=1
pµ

i = 0

1

pi

q
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Invariance under gauge transf.?  e.g. 

• QED:                           (charge conservation) 

• Gravity:                                                          (equivalence principle) 

• Higher spins? Polynomial constraints in the momenta…
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A: if there isn’t any non-trivial S-matrix why 
do we care about higher spins in flat space?

C: we now know that soft theorems are 
related to symmetries!

A: symmetries of what if there isn’t anything?

C: wait and see Alice….



Let’s be pragmatic: let’s begin by ignoring all subtleties for a while 
and let’s try to classify the symmetries that may underlie any 
(possibly exotic) field theory and its possible “holographic dual”

Higher-spin symmetries in flat space?

Andrea Campoleoni - UMONS

Constructing an interacting field theory in flat space 
beyond cubic order is subtle 

What can we use as a guiding principle?

The only thing that we know… 
the free theory!



Fronsdal formulation of the dynamics

Andrea Campoleoni - UMONS

Example 1:  Maxwell

• field equations: 

• gauge symmetry:

Equations for the Vienna conference talk

November 29, 2012

1 Introduction
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Example 2:  linearised gravity

• field equations: 

• gauge symmetry:
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Fronsdal formulation of the dynamics
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Example 2:  linearised gravity

• field equations: 

• gauge symmetry:
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Particle of arbitrary spin s

eom:                                          

gauge symmetry: 

Gauge invariance requires: 
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What symmetries are we looking for?

Andrea Campoleoni - UMONS

Two options: 

"rigid symmetries" of the vacuum:

asymptotic symmetries

Skvortsov, Tran, Tsulaia (2018); A.C., Francia, Heissenberg (2017)

AC, Pekar (2021)

AC, Francia, Heissenberg (2017)

2.1 Higher-spin “isometries” of the vacuum
sec:isometries

A free massless particle of spin s propagating on a constant-curvature spacetime of any
dimension can be described, e.g., using a symmetric tensor of rank s admitting gauge
transformations of the form

�'µ1···µs = s r̄(µ1
✏µ2···µs) , with ✏µ1···µs�3�

� = 0 . (2.1) free-gauge-fronsdal

This is the field content of Fronsdal’s formulation of the dynamics [83, 84], where r̄ de-
notes the background covariant derivative and indices enclosed between parentheses are
symmetrised with weight one (i.e. dividing by the number of terms used in the symmetri-
sation is understood). To write an action principle, one also has to impose that the field
be doubly traceless, but this does not bring any new condition on the gauge parameter.
Indeed, (2.1) is doubly traceless thanks to the trace constraint on ✏.

Interactions typically bring deformations O(') of the free gauge transformation (2.1).
Still, preserving the vacuum solution 'µ1···µs = 0 only requires that the gauge parameters
be Killing tensors, satisfying

r̄(µ1
✏µ2···µs) = 0 . (2.2) killing

Gauge transformations generated by traceless Killing tensors can thus be interpreted as
global symmetries for particles of any spin. In Minkowski space, the general solution of the
Killing equation (2.2) for traceless tensors takes the simple form

✏µ1···µs�1 =
s�1X

k=0

Mµ1···µs�1|⌫1···⌫kx
⌫1 · · ·x

⌫k , (2.3) sol-killing

where the M ’s are constant so(1, D � 1)-irreducible tensors [85]. Indices in both sets are
manifestly symmetrised, while irreducibility means that these tensors are fully traceless and
satisfy

M(µ1···µs�1|µs)⌫1···⌫k = 0 , 0  k  s� 2 . (2.4)

In (A)dS the number of independent solutions of the Killing equation is the same [86] and
one can characterise them using the same set of tensors as in flat space [87]. As it is manifest
if one solves (2.2) using ambient-space techniques, the M ’s can be collected into a single
two-row irreducible so(2, D� 1) tensor MA1···As�1|B1···Bs�1

[87, 88].5 Its indices An and Bn

are symmetrised and take values in the range {0, . . . , D}, while the tensor is traceless and
satisfies [A: change letter to denote tensors in D + 1 dimensions?]

M(A1···As�1|B1)B2···Bs�1
= 0 . (2.5)

The traceless solutions of the Killing equation form a vector space and one can define a
Lie bracket on it, for instance, by looking at the field-independent part of the commutator of

5
Alternatively, one can describe a particle of spin s using a set of one-forms that can be collected in a field

WA1···As�1|B1···Bs�1 = Wµ
A1···As�1|B1···Bs�1dxµ

transforming irreducibly under so(2, D � 1) (or so(1, D))

and admitting gauge transformations of the form �WA1···As�1|B1···Bs�1 = d✏A1···As�1|B1···Bs�1 + · · · [89].

In this approach, global symmetries are manifestly spanned by two-row irreducible so(2, D � 1) tensors.

This is an example of a general and crucial observation: global symmetries do not depend on the particular

formulation of the dynamics one chooses.

– 6 –

Why are the isometries of the vacuum interesting? 

In gravity they are the basis of the Cartan formulation 

 Vasiliev’s theory implements their gauging in (A)dS 

Asymptotic symmetries are expected to include them as a 
subalgebra (or as a wedge algebra)

Andrea Campoleoni



Higher-spin isometries of the vacuum 

aka

higher-spin algebras

A.C., S. Pekar, arXiv:2110.07794

Part 1



∞-dim Lie algebras & higher spins

Andrea Campoleoni - UMONS

The “Cartan" approach to higher-spin gauge theories: 

• 1987: proposal for a higher-spin algebra in AdS4 

• 1990: procedure to implement its gauging → Vasiliev’s equations 

• 2003: higher-spin algebras and interacting e.o.m. in AdSD

Other recent (and less recent) developments  

• 3D HS algebras → Chern-Simons gauge theories (& matter couplings)

Fradkin, Vasiliev

Vasiliev

Eastwood; Vasiliev

Blencowe (1989); Porkushkin, Vasiliev (1999) & many others…

Boulanger, Skvortsov (2011); Joung, Mkrtchyan (2016)

• HS algebras for mixed symmetry and partially-massless fields
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HS “isometries” of the vacuum 

• Fronsdal’s gauge transf.: 

• Vacuum-preserving symm.: 

• Solution (in Minkowski): 

•

Higher-spin algebras

Andrea Campoleoni - UMONS

Key ingredient in building HS theories and studying HS holography

What is a HS algebra?

• Poincaré & (A)dS algebras: isometries of the vacuum

Formulae used in Keynote

”Ïµ1···µs = Ò̄(µ1‘µ2···µs) + O(Ï)
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Higher-spin algebras
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Key ingredient in building HS theories and studying HS holography

What is a HS algebra?

• Poincaré & (A)dS algebras: isometries of the vacuum

Lie algebra on traceless Killing tensors 

Formulae used in Keynote

”Ïµ1···µs = Ò̄(µ1‘µ2···µs) + O(Ï)
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Alternatively, one can describe a particle of spin s using a set of one-forms that can be collected in a field
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In this approach, global symmetries are manifestly spanned by two-row irreducible so(2, D � 1) tensors.

This is an example of a general and crucial observation: global symmetries do not depend on the particular

formulation of the dynamics one chooses.
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Notable so(2,D−1) Inönü-Wigner contractions
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so(2,D−1)

gcaD−1

AdS isometries
Λ → 0

iso(1,D−1)
Minkowski isometries

conformal algebra
c → 0

conformal Carroll 
algebra

conformal Galilei 
algebra

c → ∞

What about higher-spin algebras?



Goals & strategy / hypotheses 

Andrea Campoleoni - UMONS

Goal: classify Lie algebras defined on the vector space V 
(traceless Killing tensors) that 

1. contain a Poincaré subalgebra, iso(1,D−1) 

2. contain a conformal Galilei subalgebra, gcaD−1

…and discuss their properties

Strategy: look for coset algebras, obtained by quotienting out an 
ideal from the universal enveloping algebra of iso(1,D−1) (or gcaD−1) 
(bonus: "good" Lorentz transf. for free)

partial class
ification, sti

ll 

with interestin
g examples!

Eastwood (2002)

see the paper…
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representatives is given by symmetrised products of the generators (for more details and
further references see, e.g., [11, 33]). Symmetrised products of the JAB are typically re-
ducible under permutations of their indices. For instance, at the quadratic level one can
decompose a generic symmetrised product

JAB � JCD ⌘
1

2
{JAB, JCD} =

1

2
(JABJCD + JCDJAB) (2.11)

into8

JA(B � JC)D ⇠ , J[AB � JCD] ⇠ , (2.12) products

where Young diagrams characterise here gl(D+1) irreducible components, while curly (resp.
square) brackets indicate a symmetrisation (resp. antisymmetrisation) over the indices with
the same conventions as in (2.1).

According to the discussion in section 2.1, the traceless part of the first combination
in (2.12) has the right structure to describe the global symmetries of a massless spin-three
field, while its trace and the fully antisymmetric product do not fit into the vector space
of global symmetries of any Fronsdal’s field. As a result, one has to eliminate them from
the set of generators and this is achieved by building the ideal out of a I = IAB � IABCD

comprising the following two parts:

IAB ⌘ JC(A � JB)
C
�

2

D + 1
⌘̃AB C2 ⇠ , IABCD ⌘ J[AB � JCD] ⇠ , (2.13) rel_anyD:ideal

where, differently from (2.12), here and in the rest of the paper Young diagrams identify
o(D + 1) irreducible components, i.e. ⌘AB

IAB = 0, while C2 is the quadratic Casimir

C2 ⌘
1

2
JAB � J

BA
. (2.14) C2

Notice that one could substitute the � in eqs. (2.13) and (2.14) with a simple tensor product
because of the projections and contractions entering these expressions. When this is the
case, we shall often omit the symmetrised product altogether. The first part of the ideal
hIi then factors out all traces from products of so(2, D � 1) generators, while the second
part factors out products associated with Young diagrams containing more than two rows.

In order to define the higher-spin algebra as the quotient

hsD = U(so(2, D � 1))/hIi , (2.15)

the quadratic Casimir, as well as the higher-order Casimir operators must also be fixed [11].
For instance,

�
3

2
IABCDJ

CD
⇠

D � 1

D + 1

✓
C2 +

(D + 1)(D � 3)

4
id

◆
JAB , (2.16) I-C2

8
In general, the product of two antisymmetric tensors would contain also a “hook” Young diagram with

a single box in the second row. This is however absent in the product of two identical tensors as a result of

the symmetry under exchanges of the factors.
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vanish [87]. Indeed, in flat space the divergence constraint also imply ⇤ ✏µ1···µs�1 = 0 and

@ · ✏µ1···µs�2 =
s�1X

k=0

kMµ1···µs�2�|⌫1···⌫k�1

�
x
⌫1 · · ·x

⌫k�1 , (2.9a) divergence

⇤ ✏µ1···µs�1 =
s�1X

k=0

✓
k

2

◆
Mµ1···µs�1|⌫1···⌫k�2�

�
x
⌫1 · · ·x

⌫k�2 . (2.9b) trace

One can eventually rearrange the independent components in the tensors MA1···As�1|B1···Bs�1
,

MA1···As�3|B1···Bs�3
, etc.,7 so that the vector space of global symmetries corresponds to the

direct sum of those associated with the individual particles contained in the reducible spec-
trum. This is not always the case though: in section 6 we shall discuss other examples with
reducible, but non-unitary, spectra that lead to global symmetries with a different struc-
ture even in flat space. Partially-massless fields, discussed in section 2.3, actually provide
the simplest example of global symmetries that cannot be interpreted in terms of those of
massless fields with given helicity.

2.2 Global symmetries for massless fields
sec:global

We now focus on the global symmetries of gauge theories involving only Fronsdal’s fields
in AdSD and on their construction as quotients of the universal enveloping algebra (UEA)
of so(2, D � 1). For arbitrary values of the space-time dimension, there exists a unique
quotient of the UEA of the isometries of the vacuum that gives a vector space appropriate
to describe the global symmetries of massless fields. When D = 3 and D = 5 one can
instead obtain a one-parameter family of non-isomorphic higher-spin algebras. We discuss
these two cases in detail and, in particular, we bridge the gap between the customary
presentation of three-dimensional higher-spin algebras and that applying to any dimension.

2.2.1 Arbitrary space-time dimensions
sec:global_anyD

The isometries of the AdSD background are given by the so(2, D � 1) algebra

[JAB , JCD] = ⌘̃AC JBD � ⌘̃BC JAD � ⌘̃AD JBC + ⌘̃BD JAC , (2.10) g-commutators

where the JAB are antisymmetric tensors with A,B 2 {0, . . . , D}, while ⌘̃AB denotes the
matrix diag(�,+, . . . ,+,�) that we shall also employ in the following to raise and lower
indices. For simplicity, we shall often use the shorthand g ⌘ so(2, D � 1).

The Eastwood-Vasiliev higher-spin algebra hsD is a coset algebra obtained by quo-
tienting the UEA U(g) by the two-sided ideal hIi ⌘ U(g) ? I ? U(g), where ? denotes
the associative product on the UEA (that we shall omit in the following), while I will be
specified below. We recall that U(g) is obtained by considering tensor products of the JAB

modulo the relation (2.10) and, thanks to the Poincaré-Birkhoff-Witt theorem, a basis of
7
The branching of the sum of these so(D+1) tensors into so(D) irreducible representations tallies with the

branching of the gl(D) tensors entering the general solution into their fully-traceless, so(D), components.

Notice also that, thanks to the conditions (2.9a) and (2.9b), the problem manifestly coincides with the

analysis of the global symmetries of a Fierz system involving traceful fields.
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In order to define the higher-spin algebra as the quotient
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the quadratic Casimir, as well as the higher-order Casimir operators must also be fixed [11].
For instance,

�
3

2
IABCDJ

CD
⇠

D � 1

D + 1

✓
C2 +

(D + 1)(D � 3)

4
id

◆
JAB , (2.16) I-C2

8
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vanish [87]. Indeed, in flat space the divergence constraint also imply ⇤ ✏µ1···µs�1 = 0 and

@ · ✏µ1···µs�2 =
s�1X

k=0
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⌫k�1 , (2.9a) divergence
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One can eventually rearrange the independent components in the tensors MA1···As�1|B1···Bs�1
,

MA1···As�3|B1···Bs�3
, etc.,7 so that the vector space of global symmetries corresponds to the

direct sum of those associated with the individual particles contained in the reducible spec-
trum. This is not always the case though: in section 6 we shall discuss other examples with
reducible, but non-unitary, spectra that lead to global symmetries with a different struc-
ture even in flat space. Partially-massless fields, discussed in section 2.3, actually provide
the simplest example of global symmetries that cannot be interpreted in terms of those of
massless fields with given helicity.

2.2 Global symmetries for massless fields
sec:global

We now focus on the global symmetries of gauge theories involving only Fronsdal’s fields
in AdSD and on their construction as quotients of the universal enveloping algebra (UEA)
of so(2, D � 1). For arbitrary values of the space-time dimension, there exists a unique
quotient of the UEA of the isometries of the vacuum that gives a vector space appropriate
to describe the global symmetries of massless fields. When D = 3 and D = 5 one can
instead obtain a one-parameter family of non-isomorphic higher-spin algebras. We discuss
these two cases in detail and, in particular, we bridge the gap between the customary
presentation of three-dimensional higher-spin algebras and that applying to any dimension.

2.2.1 Arbitrary space-time dimensions
sec:global_anyD

The isometries of the AdSD background are given by the so(2, D � 1) algebra

[JAB , JCD] = ⌘̃AC JBD � ⌘̃BC JAD � ⌘̃AD JBC + ⌘̃BD JAC , (2.10) g-commutators

where the JAB are antisymmetric tensors with A,B 2 {0, . . . , D}, while ⌘̃AB denotes the
matrix diag(�,+, . . . ,+,�) that we shall also employ in the following to raise and lower
indices. For simplicity, we shall often use the shorthand g ⌘ so(2, D � 1).

The Eastwood-Vasiliev higher-spin algebra hsD is a coset algebra obtained by quo-
tienting the UEA U(g) by the two-sided ideal hIi ⌘ U(g) ? I ? U(g), where ? denotes
the associative product on the UEA (that we shall omit in the following), while I will be
specified below. We recall that U(g) is obtained by considering tensor products of the JAB

modulo the relation (2.10) and, thanks to the Poincaré-Birkhoff-Witt theorem, a basis of
7
The branching of the sum of these so(D+1) tensors into so(D) irreducible representations tallies with the

branching of the gl(D) tensors entering the general solution into their fully-traceless, so(D), components.

Notice also that, thanks to the conditions (2.9a) and (2.9b), the problem manifestly coincides with the

analysis of the global symmetries of a Fierz system involving traceful fields.
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representatives is given by symmetrised products of the generators (for more details and
further references see, e.g., [11, 33]). Symmetrised products of the JAB are typically re-
ducible under permutations of their indices. For instance, at the quadratic level one can
decompose a generic symmetrised product

JAB � JCD ⌘
1

2
{JAB, JCD} =

1

2
(JABJCD + JCDJAB) (2.11)

into8

JA(B � JC)D ⇠ , J[AB � JCD] ⇠ , (2.12) products

where Young diagrams characterise here gl(D+1) irreducible components, while curly (resp.
square) brackets indicate a symmetrisation (resp. antisymmetrisation) over the indices with
the same conventions as in (2.1).

According to the discussion in section 2.1, the traceless part of the first combination
in (2.12) has the right structure to describe the global symmetries of a massless spin-three
field, while its trace and the fully antisymmetric product do not fit into the vector space
of global symmetries of any Fronsdal’s field. As a result, one has to eliminate them from
the set of generators and this is achieved by building the ideal out of a I = IAB � IABCD

comprising the following two parts:

IAB ⌘ JC(A � JB)
C
�

2

D + 1
⌘̃AB C2 ⇠ , IABCD ⌘ J[AB � JCD] ⇠ , (2.13) rel_anyD:ideal

where, differently from (2.12), here and in the rest of the paper Young diagrams identify
o(D + 1) irreducible components, i.e. ⌘AB

IAB = 0, while C2 is the quadratic Casimir
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2
JAB � J

BA
. (2.14) C2

Notice that one could substitute the � in eqs. (2.13) and (2.14) with a simple tensor product
because of the projections and contractions entering these expressions. When this is the
case, we shall often omit the symmetrised product altogether. The first part of the ideal
hIi then factors out all traces from products of so(2, D � 1) generators, while the second
part factors out products associated with Young diagrams containing more than two rows.

In order to define the higher-spin algebra as the quotient

hsD = U(so(2, D � 1))/hIi , (2.15)

the quadratic Casimir, as well as the higher-order Casimir operators must also be fixed [11].
For instance,
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direct sum of those associated with the individual particles contained in the reducible spec-
trum. This is not always the case though: in section 6 we shall discuss other examples with
reducible, but non-unitary, spectra that lead to global symmetries with a different struc-
ture even in flat space. Partially-massless fields, discussed in section 2.3, actually provide
the simplest example of global symmetries that cannot be interpreted in terms of those of
massless fields with given helicity.

2.2 Global symmetries for massless fields
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We now focus on the global symmetries of gauge theories involving only Fronsdal’s fields
in AdSD and on their construction as quotients of the universal enveloping algebra (UEA)
of so(2, D � 1). For arbitrary values of the space-time dimension, there exists a unique
quotient of the UEA of the isometries of the vacuum that gives a vector space appropriate
to describe the global symmetries of massless fields. When D = 3 and D = 5 one can
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where the JAB are antisymmetric tensors with A,B 2 {0, . . . , D}, while ⌘̃AB denotes the
matrix diag(�,+, . . . ,+,�) that we shall also employ in the following to raise and lower
indices. For simplicity, we shall often use the shorthand g ⌘ so(2, D � 1).

The Eastwood-Vasiliev higher-spin algebra hsD is a coset algebra obtained by quo-
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field, while its trace and the fully antisymmetric product do not fit into the vector space
of global symmetries of any Fronsdal’s field. As a result, one has to eliminate them fromthe set of generators and this is achieved by building the ideal out of a I = IAB � IABCD
comprising the following two parts:
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where, differently from (2.13), here and in the rest of this section Young diagrams identify
o(D + 1) irreducible components, e.g. ⌘AB
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(2.15)Notice that one could substitute the � in eqs. (2.14) and (2.15) with a simple tensor product
because of the projections and contractions entering these expressions. When this is the
case, we shall often omit the symmetrised product altogether. The first part of the ideal
hIi then factors out all traces from products of so(2, D � 1) generators, while the second
part factors out products associated with Young diagrams containing more than two rows.In order to define the higher-spin algebra as the quotient

hsD = U(so(2, D � 1))/hIi , (2.16)the quadratic Casimir, as well as the higher-order Casimir operators, must also be fixed
[12]. For instance,
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Casimir C4 to the quadratic one C2. In their turn, consistently with (2.17), they imply
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(D + 1)(D � 3)
4 id , (2.21)which corresponds to the value of the quadratic Casimir in the scalar singleton representa-

tion. Higher-order polynomial equations then fix the higher-order Casimir operators in a
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representatives is given by symmetrised products of the generators (for more details and
further references see, e.g., [11, 33]). Symmetrised products of the JAB are typically re-
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where Young diagrams characterise here gl(D+1) irreducible components, while curly (resp.
square) brackets indicate a symmetrisation (resp. antisymmetrisation) over the indices with
the same conventions as in (2.1).

According to the discussion in section 2.1, the traceless part of the first combination
in (2.12) has the right structure to describe the global symmetries of a massless spin-three
field, while its trace and the fully antisymmetric product do not fit into the vector space
of global symmetries of any Fronsdal’s field. As a result, one has to eliminate them from
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Notice that one could substitute the � in eqs. (2.13) and (2.14) with a simple tensor product
because of the projections and contractions entering these expressions. When this is the
case, we shall often omit the symmetrised product altogether. The first part of the ideal
hIi then factors out all traces from products of so(2, D � 1) generators, while the second
part factors out products associated with Young diagrams containing more than two rows.

In order to define the higher-spin algebra as the quotient
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a single box in the second row. This is however absent in the product of two identical tensors as a result of

the symmetry under exchanges of the factors.

– 9 –

Formulae used in Keynote

”Ïµ1···µs = Ò̄(µ1‘µ2···µs) + O(Ï)

Mµ ≥ Mµ|‹ ≥

Mµ‹ ≥ Mµ‹|– ≥ Mµ‹|–— ≥
¸ ˚˙ ˝

V ƒ • ü ü ü ü · · ·

JA(B § JC)D ≠ traces ≥

C2 ©
1
2 JAB § JBA

≥ •

1

representatives is given by symmetrised products of the generators (for more details and
further references see, e.g., [11, 33]). Symmetrised products of the JAB are typically re-
ducible under permutations of their indices. For instance, at the quadratic level one can
decompose a generic symmetrised product

JAB � JCD ⌘
1

2
{JAB, JCD} =

1

2
(JABJCD + JCDJAB) (2.11)

into8

JA(B � JC)D ⇠ , J[AB � JCD] ⇠ , (2.12) products

where Young diagrams characterise here gl(D+1) irreducible components, while curly (resp.
square) brackets indicate a symmetrisation (resp. antisymmetrisation) over the indices with
the same conventions as in (2.1).

According to the discussion in section 2.1, the traceless part of the first combination
in (2.12) has the right structure to describe the global symmetries of a massless spin-three
field, while its trace and the fully antisymmetric product do not fit into the vector space
of global symmetries of any Fronsdal’s field. As a result, one has to eliminate them from
the set of generators and this is achieved by building the ideal out of a I = IAB � IABCD

comprising the following two parts:

IAB ⌘ JC(A � JB)
C
�

2

D + 1
⌘̃AB C2 ⇠ , IABCD ⌘ J[AB � JCD] ⇠ , (2.13) rel_anyD:ideal

where, differently from (2.12), here and in the rest of the paper Young diagrams identify
o(D + 1) irreducible components, i.e. ⌘AB

IAB = 0, while C2 is the quadratic Casimir

C2 ⌘
1

2
JAB � J

BA
. (2.14) C2

Notice that one could substitute the � in eqs. (2.13) and (2.14) with a simple tensor product
because of the projections and contractions entering these expressions. When this is the
case, we shall often omit the symmetrised product altogether. The first part of the ideal
hIi then factors out all traces from products of so(2, D � 1) generators, while the second
part factors out products associated with Young diagrams containing more than two rows.

In order to define the higher-spin algebra as the quotient

hsD = U(so(2, D � 1))/hIi , (2.15)

the quadratic Casimir, as well as the higher-order Casimir operators must also be fixed [11].
For instance,
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vanish [87]. Indeed, in flat space the divergence constraint also imply ⇤ ✏µ1···µs�1 = 0 and
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One can eventually rearrange the independent components in the tensors MA1···As�1|B1···Bs�1
,

MA1···As�3|B1···Bs�3
, etc.,7 so that the vector space of global symmetries corresponds to the

direct sum of those associated with the individual particles contained in the reducible spec-
trum. This is not always the case though: in section 6 we shall discuss other examples with
reducible, but non-unitary, spectra that lead to global symmetries with a different struc-
ture even in flat space. Partially-massless fields, discussed in section 2.3, actually provide
the simplest example of global symmetries that cannot be interpreted in terms of those of
massless fields with given helicity.

2.2 Global symmetries for massless fields
sec:global

We now focus on the global symmetries of gauge theories involving only Fronsdal’s fields
in AdSD and on their construction as quotients of the universal enveloping algebra (UEA)
of so(2, D � 1). For arbitrary values of the space-time dimension, there exists a unique
quotient of the UEA of the isometries of the vacuum that gives a vector space appropriate
to describe the global symmetries of massless fields. When D = 3 and D = 5 one can
instead obtain a one-parameter family of non-isomorphic higher-spin algebras. We discuss
these two cases in detail and, in particular, we bridge the gap between the customary
presentation of three-dimensional higher-spin algebras and that applying to any dimension.

2.2.1 Arbitrary space-time dimensions
sec:global_anyD

The isometries of the AdSD background are given by the so(2, D � 1) algebra

[JAB , JCD] = ⌘̃AC JBD � ⌘̃BC JAD � ⌘̃AD JBC + ⌘̃BD JAC , (2.10) g-commutators

where the JAB are antisymmetric tensors with A,B 2 {0, . . . , D}, while ⌘̃AB denotes the
matrix diag(�,+, . . . ,+,�) that we shall also employ in the following to raise and lower
indices. For simplicity, we shall often use the shorthand g ⌘ so(2, D � 1).

The Eastwood-Vasiliev higher-spin algebra hsD is a coset algebra obtained by quo-
tienting the UEA U(g) by the two-sided ideal hIi ⌘ U(g) ? I ? U(g), where ? denotes
the associative product on the UEA (that we shall omit in the following), while I will be
specified below. We recall that U(g) is obtained by considering tensor products of the JAB

modulo the relation (2.10) and, thanks to the Poincaré-Birkhoff-Witt theorem, a basis of
7
The branching of the sum of these so(D+1) tensors into so(D) irreducible representations tallies with the

branching of the gl(D) tensors entering the general solution into their fully-traceless, so(D), components.

Notice also that, thanks to the conditions (2.9a) and (2.9b), the problem manifestly coincides with the

analysis of the global symmetries of a Fierz system involving traceful fields.
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Eastwood-Vasiliev algebras:

Formulae used in Keynote
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C2 ©
1
2 JAB § JBA

≥ •

hsD = U(so(2, D ≠ 1))
ÈIAB ü IABCDÍ

∆ C2 ≥ ≠
(D + 1)(D ≠ 3)

4 id

1

scalar singleton module  
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Ideal to be factored out from U (so(2,D−1)):

representatives is given by symmetrised products of the generators (for more details and
further references see, e.g., [11, 33]). Symmetrised products of the JAB are typically re-
ducible under permutations of their indices. For instance, at the quadratic level one can
decompose a generic symmetrised product

JAB � JCD ⌘
1

2
{JAB, JCD} =

1

2
(JABJCD + JCDJAB) (2.11)

into8

JA(B � JC)D ⇠ , J[AB � JCD] ⇠ , (2.12) products

where Young diagrams characterise here gl(D+1) irreducible components, while curly (resp.
square) brackets indicate a symmetrisation (resp. antisymmetrisation) over the indices with
the same conventions as in (2.1).

According to the discussion in section 2.1, the traceless part of the first combination
in (2.12) has the right structure to describe the global symmetries of a massless spin-three
field, while its trace and the fully antisymmetric product do not fit into the vector space
of global symmetries of any Fronsdal’s field. As a result, one has to eliminate them from
the set of generators and this is achieved by building the ideal out of a I = IAB � IABCD

comprising the following two parts:

IAB ⌘ JC(A � JB)
C
�

2

D + 1
⌘̃AB C2 ⇠ , IABCD ⌘ J[AB � JCD] ⇠ , (2.13) rel_anyD:ideal

where, differently from (2.12), here and in the rest of the paper Young diagrams identify
o(D + 1) irreducible components, i.e. ⌘AB

IAB = 0, while C2 is the quadratic Casimir

C2 ⌘
1

2
JAB � J

BA
. (2.14) C2

Notice that one could substitute the � in eqs. (2.13) and (2.14) with a simple tensor product
because of the projections and contractions entering these expressions. When this is the
case, we shall often omit the symmetrised product altogether. The first part of the ideal
hIi then factors out all traces from products of so(2, D � 1) generators, while the second
part factors out products associated with Young diagrams containing more than two rows.

In order to define the higher-spin algebra as the quotient

hsD = U(so(2, D � 1))/hIi , (2.15)

the quadratic Casimir, as well as the higher-order Casimir operators must also be fixed [11].
For instance,
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From U (so(2,D−1)) to U (iso(1,D−1))
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Look at how the Carrollian contraction affects the so(2,D−1) ideal 
to define the iso(1,D−1) coset

Next step: branching so(2,D−1) → so(1,D−1) of the ideal

4.1.1 From U(so(2, D � 1)) to U(iso(1, D � 1))

We recall that the AdSD isometry algebra so(2, D � 1) reads

[JAB , JCD] = ⌘̃AC JBD � ⌘̃AD JBC � ⌘̃BC JAD + ⌘̃BD JAC , (4.1)

with A,B 2 {0 . . . D} and ⌘̃ = diag(�,+, . . . ,+,�). Within the JAB one can select the
generators of Lorentz transformations and transvections in D dimensions: [A: by analogy
with section 3 shouldn’t we use small case Latin indices?]

Pµ ⌘ ✏ JµD , Jµ⌫ ⌘ Jµ⌫ , (4.2)

where µ, ⌫ 2 {0 . . . D� 1}. In this basis, the isometry algebra of Anti de Sitter space reads

[Jµ⌫ , J⇢�] = ⌘µ⇢ J⌫� � ⌘µ� J⌫⇢ � ⌘⌫⇢ Jµ� + ⌘⌫� Jµ⇢ , (4.3a)

[Jµ⌫ , P⇢] = ⌘µ⇢ P⌫ � ⌘⌫⇢ Pµ , (4.3b)

[Pµ , P⌫ ] = �✏
2
Jµ⌫ , (4.3c)

with ⌘ = diag(�,+, . . . ,+). For an interpretation of this basis in terms of conformal
transformations in D�1 dimensions we refer to Appendix B. We assign the same dimensions
to the generators Pµ and Jµ⌫ , so that ✏ is a dimensionless parameter ✏ / G

p
�⇤ where G

is Newton’s constant and ⇤ is the cosmological constant. It thus plays the role of inverse
of the AdS radius and the Poincaré algebra is recovered in an Inönü-Wigner contraction by
sending ✏ ! 0.

UEA of so(2, D � 1) and annihilator of the scalar singleton The ideal that we
factored out from U(so(2, D�1)) to define Eastwood-Vasiliev algebras in section ?? contains
quadratic combinations of the generators JAB. In the basis (??), the linearly independent
quadratic combinations of the generators can be conveniently organised according to their
properties under exchanges of the free D-dimensional indices they carry. One obtains two
independent scalars

P
2 = PµP

µ
, J

2
⌘

1

2
Jµ⌫J

⌫µ
, (4.4)

two traceless symmetric tensors of rank-2,

Qµ⌫ = {Pµ,P⌫}�
2

D
⌘µ⌫P

2
, Sµ⌫ = (4.5)

one tensor transforming as a traceless two-row rectangular Young diagram,

xxx (4.6)

and two antisymmetric tensors
xxx (4.7)

The tensors in eqs. (??), (??) and (??) correspond to the branching in so(1, D � 1) com-
ponents of the product JA(B � JC)D, while those in (??) corresponds to the branching of
J[ABJCD].carrollian-anyD:products
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4 Flat-space/Carrollian-conformal higher-spin algebras in any dimen-
sions

We now move to the generic case involving D � 4 space-time dimensions. We build higher-
spin extensions of the Poincaré algebra as coset algebras, obtained by factoring out a suitable
ideal from the UEA of iso(1, D � 1). Reversing the logic we followed in section 3, we first
identify this ideal by looking at how the limit of vanishing cosmological constant affects the
ideal that one factors out in the AdSD coset construction. We then check its consistency
and track how the resulting algebras can also be recovered as Inönü-Wigner contractions of
Eastwood-Vasiliev algebras. We also prove that, under reasonable assumptions, the ideal
we obtain in the limit is the only one whose factorisation gives a coset algebra defined
on the same vector space as the Eastwood-Vasiliev one. Let us recall once again that,
in any D � 4, the contractions presented below can be interpreted either as flat limits of
AdSD higher-spin algebras or as ultra-relativistic, Carrollian limits of conformal higher-spin
algebras in D � 1 dimensions.

4.1 Generic bulk dimension D � 4

To study the flat-space limit of the AdS coset construction we first have to express the
algebra so(2, D � 1) in a basis adapted to the limit. We shall later use the same basis to
classify all cosets of the UEA of iso(1, D � 1) that give the same set of generators as in
Eastwood-Vasiliev algebras.

4.1.1 Minkowski/Carrollian-conformal basis for the hsD algebra

We recall that the algebra so(2, D � 1) reads

[JAB , JCD] = ⌘̃AC JBD � ⌘̃AD JBC � ⌘̃BC JAD + ⌘̃BD JAC , (4.1)

with A,B 2 {0, . . . , D} and ⌘̃ = diag(�,+, . . . ,+,�). Within the JAB one can select the
generators of transvections and Lorentz transformations in D dimensions:

Pa ⌘ ✏ JaD , Jab ⌘ Jab , (4.2)

where a, b 2 {0, . . . , D � 1}. In this basis, the isometry algebra of AdS space reads

[Jab , Jcd] = ⌘ac Jbd � ⌘ad Jbc � ⌘bc Jad + ⌘bd Jac , (4.3a)

[Jab , Pc] = ⌘ac Pb � ⌘bc Pa , (4.3b)

[Pa , Pb] = � ✏
2
Jab , (4.3c)

with ⌘ = diag(�,+, . . . ,+). For the interpretation of this basis in terms of conformal
transformations in D�1 dimensions we refer to Appendix B. We assign the same dimensions
to the generators Pa and Jab, so that ✏ is a dimensionless parameter. The Poincaré algebra
iso(1, D � 1) is recovered by sending ✏ ! 0.
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From U (so(2,D−1)) to U (iso(1,D−1))
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Branching so(2,D−1) → so(1,D−1) of the ideal
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P
2 = PµP

µ
, {P(µ,P⌫)}� tr. ,

n
P

�
,J�µ

o
,

�
P(µ,J⌫)⇢

 
� tr. , {J[µ⌫ ,P⇢]} ,

J
2
⌘

1

2
Jµ⌫J

⌫µ
, {J

⇢
(µ,J⌫)⇢}� tr. , {J(µh⇢,J⌫)�i}� tr. , {J[µ⌫ ,J⇢�]} , (4.8a)

where (�tr.) means we are taking the traceless projection of the previous quantity and
we use curly brackets over the indices µ and ⌫ and angled brackets over the indices ⇢

and � to denote two independent different symmetrisations with weight one. Note that
the symmetrisations in {P(µ,P⌫)} and {J

⇢
(µ,J⌫)⇢} are not necessary because the anti-

commutator {·, ·} automatically projects in the symmetric part of the indices. Some linear
combinations among the generators in this list generate an ideal which is obtained from the
branching of the relativistic ideal generated by the elements

J
2
�

D � 1

2
✏
�2

P
2
⇠ 0 , (4.9a) ideal_D_carrollian:1

✏
�1

n
P

�
, J�µ

o
⇠ 0 , (4.9b) ideal_D_carrollian:2

{J
⇢
µ,J⌫⇢}�

4

D
⌘µ⌫J

2 + ✏
�2

{Pµ,P⌫}�
2

D
⌘µ⌫✏

�2
P

2
⇠ 0 , (4.9c) ideal_D_carrollian:3

{J[µ⌫ ,J⇢�]} ⇠ 0 , (4.9d) ideal_D_carrollian:4

✏
�1

{J[µ⌫ ,P⇢]} ⇠ 0 , (4.9e) ideal_D_carrollian:5

C2 ⌘ J
2 + ✏

�2
P

2
⇠ �

(D + 1)(D � 3)

4
id , (4.9f) ideal_D_carrollian:6

where ⇠ means that the identification takes place in the ideal. The ideal consists of two
parts: the first three expressions come from (the branching of) the symmetric traceless
product IAB = J

C
(AJB)C �

2
D+1 ⌘̃ABJ

2 and the next two come from (the branching of) the
completely antisymmetric one IABCD = J[ABJCD]. Finally, the scalar C2 is the quadratic
Casimir of AdSD, which is already uniquely fixed by the factorisation of the previous ex-
pressions (see for instance section 6 of [11] or section 2). Taking linear combinations of the
first and the last equations we get

J
2
⇠

D � 1

D + 1
C2 ⇠ �

(D � 1)(D � 3)

4
id , (4.10a)

✏
�2

P
2
⇠

2

D + 1
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D � 3

2
id , (4.10b)

which means that both J
2 and P

2 are central elements in this representation. Among the
quadratic quantities listed above, all are fixed or factorised except for the following three
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which means that both J
2 and P

2 are central elements in this representation. Among the
quadratic quantities listed above, all are fixed or factorised except for the following three
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Annihilator of the scalar singleton In section 2.2.1 we factored out from the UEA of
so(2, D�1) an ideal generated by quadratic combinations of the JAB, corresponding to the
annihilator of the scalar singleton representation. In the basis (4.3), linearly-independent
quadratic combinations of the generators can be conveniently classified according to their
properties under permutations of their free indices. One has two independent scalars,
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and two antisymmetric tensors,

Iabc ⌘ {J[ab,Pc]} , Iabcd ⌘ {J[ab,Jcd]} . (4.9)

The tensors in eqs. (4.4)–(4.8) correspond to the branching in so(1, D�1) components of the
product JA(B�JC)D, while those in (4.9) correspond to the branching of J[AB�JCD]. Notice
that it is not necessary to symmetrise explicitly the indices in {P(a,Pb)} and {J

c
(a,Jb)c}

because the anticommutator automatically projects on the symmetric component.
The ideal (2.14) that we factored out in the AdSD coset construction is generated by

the following combinations:
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Coset construction from U (iso(1,D−1))

Andrea Campoleoni - UMONS

iso(1,D−1) ideal

Leftover quadratic combinations, i.e. spin-3 generators:

expressions which we identify as the spin 3 generators

Qµ⌫ = {Pµ,P⌫}�
2

D
⌘µ⌫P

2
, (4.11a)
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Kµ⌫|⇢� = {J(µh⇢,J⌫)�i}�
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(2⌘µ⌫⌘⇢� � ⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)J

2
,

(4.11c)

where a vertical bar is used to separate groups of indices. The generators Q, M and K

have the symmetries

• Qµ⌫ = Q⌫µ and Q
�
� = 0;

• Mµ⌫|⇢ = M⌫µ|⇢, M(µ⌫|⇢) = 0 and M
�
�|⇢ = 0;

• Kµ⌫|⇢� = K⌫µ|⇢� = Kµ⌫|�⇢, K(µ⌫|⇢)� = Kµ(⌫|⇢�) = 0 and K
�
�|⇢� = Kµ⌫|�

� = 0

or in other terms they are irreducible representations of so(1, D � 1) corresponding to the
Young diagrams

Q = , M = , K = , (4.12)

written in the symmetric convention. In the following, we shall use alternatively the name
of the generator or its Young projection since the two are in one-to-one correspondence
after the ideal is factorised.

Note that, at this stage, we may choose to write Qµ⌫ as the traceless part of either
{Pµ,P⌫} or {J

⇢
µ,J⌫⇢} since the two expressions are identified in the ideal. While this is

completely equivalent at the level of the enveloping of the isometry algebra of Anti de Sitter,
one has to be careful when working in the enveloping algebra of Poincaré since we will see
that the two cannot be identified anymore. This is at the heart of the no-go presented in
section 4.1.2.

Higher spins Compared to the Galilean basis, the systematic is quite clear for flat space
as can be worked out directly from the branching rules of two-row Young diagrams of
so(2, D�1) into so(1, D�1): for s � 2, the spectrum of higher-spin gauge fields is spanned
by all the two-row diagrams of so(1, D � 1) with length s� 1 and depth ranging from 0 to
s� 1

Z
s,t

⌘
s� 1

s� t� 1
with t 2 {0, . . . , s� 1} , (4.13)

where we will use the notation Z
s,t for a generic higher-spin generator.

Once again, there are multiple equivalent ways in which to write the higher-spin gen-
erators as products of J ’s and P’s which are all equivalent in AdS (modulo relations in the
ideal), but this will not be true anymore in flat space.
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– 32 –

≃

≃

≃

Flat/Carrollian-conformal ideal from the contraction limit By multiplying each
expression of the ideal (4.10) by the suitable power of ✏ so as to keep only the leading part,
one can take a smooth limit ✏ ! 0 and get

{P
b
, Jba} ⇠ 0 , (4.14a)

{Pa,Pb}�
2

D
⌘abP

2
⇠ 0 , (4.14b)

{J[ab ,Pc]} ⇠ 0 , (4.14c)

{J[ab , Jcd]} ⇠ 0 , (4.14d)

together with

P
2
⇠ 0 , J

2
⇠ �

(D � 1)(D � 3)

4
id . (4.15)

Combining eqs. (4.14b) and (4.15) one can eventually recast these expressions as

PaPb ⇠ 0 , (4.16a)

Ia ⌘ {P
b
, Jba} ⇠ 0 , (4.16b)

Iabc ⌘ {J[ab ,Pc]} ⇠ 0 , (4.16c)

Iabcd ⌘ {J[ab , Jcd]} ⇠ 0 , (4.16d)

J
2 +

(D � 1)(D � 3)

4
id ⇠ 0 . (4.16e)

We verify in Appendix C.1 that these relations span an ideal, that we denote by Ic.
Notice that we recovered the condition PaPb ⇠ 0 that was already manifest in D = 3,

but we do not impose the stronger constraint Pa ⇠ 0 that characterises the flat limit of the
scalar singleton proposed in [121]. Compared to the three-dimensional case, the eigenvalue
of J 2 is instead fixed. Moreover, both the quadratic Casimir P

2 and the Pauli-Lubanski
tensor [122]
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vanish on account of the relations (4.16). This implies that all Casimir operators of the
Poincaré algebra are set to zero in any representation satisfying eqs. (4.16a) and (4.16c),
as one can appreciate by looking at their explicit expressions reported, e.g., in [123].
Eq. (4.16a) also tells us that we are not dealing with any Poincaré irreps. in Wigner’s
classification (cf. [124]).

We can now take the quotient of the Poincaré UEA by the two-sided ideal hIci and
consider the resulting coset algebra as a flat-space higher-spin algebra in any dimension D

or, equivalently, as a Carrollian conformal higher-spin algebra in D � 1 dimensions:

ihsD ⌘ U(iso(1, D � 1))/hIci . (4.18)

The generators of this algebra can still be labelled as the Z
(s,t) of the AdSD one and spin-s

generators are given by products of s � 1 spin-two generators. As it is manifest from
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Combining eqs. (4.14b) and (4.15) one can eventually recast these expressions as

PaPb ⇠ 0 , (4.16a)
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We verify in Appendix C.1 that these relations span an ideal, that we denote by Ic.
Notice that we recovered the condition PaPb ⇠ 0 that was already manifest in D = 3,

but we do not impose the stronger constraint Pa ⇠ 0 that characterises the flat limit of the
scalar singleton proposed in [121]. Compared to the three-dimensional case, the eigenvalue
of J 2 is instead fixed. Moreover, both the quadratic Casimir P

2 and the Pauli-Lubanski
tensor [122]
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vanish on account of the relations (4.16). This implies that all Casimir operators of the
Poincaré algebra are set to zero in any representation satisfying eqs. (4.16a) and (4.16c),
as one can appreciate by looking at their explicit expressions reported, e.g., in [123].
Eq. (4.16a) also tells us that we are not dealing with any Poincaré irreps. in Wigner’s
classification (cf. [124]).

We can now take the quotient of the Poincaré UEA by the two-sided ideal hIci and
consider the resulting coset algebra as a flat-space higher-spin algebra in any dimension D

or, equivalently, as a Carrollian conformal higher-spin algebra in D � 1 dimensions:

ihsD ⌘ U(iso(1, D � 1))/hIci . (4.18)

The generators of this algebra can still be labelled as the Z
(s,t) of the AdSD one and spin-s

generators are given by products of s � 1 spin-two generators. As it is manifest from
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Leftover quadratic combinations, i.e. spin-3 generators:
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where a vertical bar is used to separate groups of indices. The generators Q, M and K

have the symmetries

• Qµ⌫ = Q⌫µ and Q
�
� = 0;

• Mµ⌫|⇢ = M⌫µ|⇢, M(µ⌫|⇢) = 0 and M
�
�|⇢ = 0;

• Kµ⌫|⇢� = K⌫µ|⇢� = Kµ⌫|�⇢, K(µ⌫|⇢)� = Kµ(⌫|⇢�) = 0 and K
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�|⇢� = Kµ⌫|�

� = 0

or in other terms they are irreducible representations of so(1, D � 1) corresponding to the
Young diagrams

Q = , M = , K = , (4.12)

written in the symmetric convention. In the following, we shall use alternatively the name
of the generator or its Young projection since the two are in one-to-one correspondence
after the ideal is factorised.

Note that, at this stage, we may choose to write Qµ⌫ as the traceless part of either
{Pµ,P⌫} or {J

⇢
µ,J⌫⇢} since the two expressions are identified in the ideal. While this is

completely equivalent at the level of the enveloping of the isometry algebra of Anti de Sitter,
one has to be careful when working in the enveloping algebra of Poincaré since we will see
that the two cannot be identified anymore. This is at the heart of the no-go presented in
section 4.1.2.

Higher spins Compared to the Galilean basis, the systematic is quite clear for flat space
as can be worked out directly from the branching rules of two-row Young diagrams of
so(2, D�1) into so(1, D�1): for s � 2, the spectrum of higher-spin gauge fields is spanned
by all the two-row diagrams of so(1, D � 1) with length s� 1 and depth ranging from 0 to
s� 1

Z
s,t

⌘
s� 1

s� t� 1
with t 2 {0, . . . , s� 1} , (4.13)

where we will use the notation Z
s,t for a generic higher-spin generator.

Once again, there are multiple equivalent ways in which to write the higher-spin gen-
erators as products of J ’s and P’s which are all equivalent in AdS (modulo relations in the
ideal), but this will not be true anymore in flat space.
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that the two cannot be identified anymore. This is at the heart of the no-go presented in
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where we will use the notation Z
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Once again, there are multiple equivalent ways in which to write the higher-spin gen-
erators as products of J ’s and P’s which are all equivalent in AdS (modulo relations in the
ideal), but this will not be true anymore in flat space.
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Once again, there are multiple equivalent ways in which to write the higher-spin gen-
erators as products of J ’s and P’s which are all equivalent in AdS (modulo relations in the
ideal), but this will not be true anymore in flat space.
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Flat/Carrollian-conformal ideal from the contraction limit By multiplying each
expression of the ideal (4.10) by the suitable power of ✏ so as to keep only the leading part,
one can take a smooth limit ✏ ! 0 and get

{P
b
, Jba} ⇠ 0 , (4.14a)

{Pa,Pb}�
2

D
⌘abP

2
⇠ 0 , (4.14b)

{J[ab ,Pc]} ⇠ 0 , (4.14c)

{J[ab , Jcd]} ⇠ 0 , (4.14d)

together with

P
2
⇠ 0 , J

2
⇠ �

(D � 1)(D � 3)

4
id . (4.15)

Combining eqs. (4.14b) and (4.15) one can eventually recast these expressions as

PaPb ⇠ 0 , (4.16a)

Ia ⌘ {P
b
, Jba} ⇠ 0 , (4.16b)

Iabc ⌘ {J[ab ,Pc]} ⇠ 0 , (4.16c)

Iabcd ⌘ {J[ab , Jcd]} ⇠ 0 , (4.16d)

J
2 +

(D � 1)(D � 3)

4
id ⇠ 0 . (4.16e)

We verify in Appendix C.1 that these relations span an ideal, that we denote by Ic.
Notice that we recovered the condition PaPb ⇠ 0 that was already manifest in D = 3,

but we do not impose the stronger constraint Pa ⇠ 0 that characterises the flat limit of the
scalar singleton proposed in [121]. Compared to the three-dimensional case, the eigenvalue
of J 2 is instead fixed. Moreover, both the quadratic Casimir P

2 and the Pauli-Lubanski
tensor [122]
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bc
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d (4.17)

vanish on account of the relations (4.16). This implies that all Casimir operators of the
Poincaré algebra are set to zero in any representation satisfying eqs. (4.16a) and (4.16c),
as one can appreciate by looking at their explicit expressions reported, e.g., in [123].
Eq. (4.16a) also tells us that we are not dealing with any Poincaré irreps. in Wigner’s
classification (cf. [124]).

We can now take the quotient of the Poincaré UEA by the two-sided ideal hIci and
consider the resulting coset algebra as a flat-space higher-spin algebra in any dimension D

or, equivalently, as a Carrollian conformal higher-spin algebra in D � 1 dimensions:

ihsD ⌘ U(iso(1, D � 1))/hIci . (4.18)

The generators of this algebra can still be labelled as the Z
(s,t) of the AdSD one and spin-s

generators are given by products of s � 1 spin-two generators. As it is manifest from
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Flat/Carrollian-conformal ideal from the contraction limit By multiplying each
expression of the ideal (4.10) by the suitable power of ✏ so as to keep only the leading part,
one can take a smooth limit ✏ ! 0 and get

{P
b
, Jba} ⇠ 0 , (4.14a)

{Pa,Pb}�
2

D
⌘abP

2
⇠ 0 , (4.14b)

{J[ab ,Pc]} ⇠ 0 , (4.14c)

{J[ab , Jcd]} ⇠ 0 , (4.14d)

together with

P
2
⇠ 0 , J

2
⇠ �

(D � 1)(D � 3)

4
id . (4.15)

Combining eqs. (4.14b) and (4.15) one can eventually recast these expressions as

PaPb ⇠ 0 , (4.16a)

Ia ⌘ {P
b
, Jba} ⇠ 0 , (4.16b)
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We verify in Appendix C.1 that these relations span an ideal, that we denote by Ic.
Notice that we recovered the condition PaPb ⇠ 0 that was already manifest in D = 3,

but we do not impose the stronger constraint Pa ⇠ 0 that characterises the flat limit of the
scalar singleton proposed in [121]. Compared to the three-dimensional case, the eigenvalue
of J 2 is instead fixed. Moreover, both the quadratic Casimir P

2 and the Pauli-Lubanski
tensor [122]
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vanish on account of the relations (4.16). This implies that all Casimir operators of the
Poincaré algebra are set to zero in any representation satisfying eqs. (4.16a) and (4.16c),
as one can appreciate by looking at their explicit expressions reported, e.g., in [123].
Eq. (4.16a) also tells us that we are not dealing with any Poincaré irreps. in Wigner’s
classification (cf. [124]).

We can now take the quotient of the Poincaré UEA by the two-sided ideal hIci and
consider the resulting coset algebra as a flat-space higher-spin algebra in any dimension D

or, equivalently, as a Carrollian conformal higher-spin algebra in D � 1 dimensions:

ihsD ⌘ U(iso(1, D � 1))/hIci . (4.18)

The generators of this algebra can still be labelled as the Z
(s,t) of the AdSD one and spin-s

generators are given by products of s � 1 spin-two generators. As it is manifest from
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All generators transform as Lorentz tensors
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eq. (4.16a), these products contain at most one translation generator and, more precisely,
none if t is even and one if t is odd. Since the t-even subalgebra only contains products
of J ’s, it can be viewed as a coset of the UEA of the Lorentz subalgebra. Moreover,
the completely antisymmetric projection {J[ab,Jcd]} is factorised, so that this subalgebra
is isomorphic to one of the higher-spin algebras for partially-massless fields (in D � 1

dimensions and with de Sitter signature) that we reviewed in section 2.3. In particular,
comparing (2.59) and (4.16e), one can see that it corresponds to the µ = 1

2 point of the one-
parameter family of algebras of [13]. The t-odd part can then be recovered by the adjoint
action of Pa on the allowed products of J ’s, with the prescription that {J[ab,Pc]} ⇠ 0

and {P
b
,Jba} ⇠ 0. Computing an additional commutator with Pa does not produce new

generators nor extra consistency conditions because PaPb ⇠ 0.
Since the generators of ihsD are realised as products of Poincaré generators, they all

transforms as Lorentz tensors. For instance, for s = 3 one has

[Jab,Scd] = ⌘acSbd + ⌘adSbc � ⌘bcSad � ⌘bdSac , (4.19a)

[Jab,Mcd|e] = 2 ⌘a(cMd)b|e + ⌘aeMcd|b � 2 ⌘b(cMd)a|e � ⌘beMcd|a , (4.19b)

[Jab,Kcd|ef ] = 2
�
⌘a(cKd)b|ef + ⌘a(eKf)b|cd � ⌘b(cKd)a|ef � ⌘b(eKf)a|cd

�
, (4.19c)

where we used the fact that Kab|cd = Kcd|ab to write the commutators in a compact form.
On the other hand, their commutators with translations take a more “exotic” form:

[Pa,Sbc] = �2Mbc|a , (4.20a)

[Pa,Mbc|d] = 0 , (4.20b)

[Pa,Kbc|de] = � ⌘abMde|c � ⌘acMde|b � ⌘adMbc|e � ⌘aeMbc|d

�
2

D � 2

�
⌘d(bMc)e|a + ⌘e(bMc)d|a � ⌘bcMde|a � ⌘deMbc|a

�
. (4.20c)

This structure generalises to any value of s according to the following schematic rules:
h
P,Z

(s,t)
i
/ Z

(s,t�1) + ⌘Z
(s,t+1) for t even , (4.21a)

h
P,Z

(s,t)
i
= 0 for t odd , (4.21b)

where ⌘Z
(s,t+1) denotes a sum of terms involving various permutations of the indices as,

e.g., in (4.20c). To better appreciate these rules, one can also look at commutators involving
spin-four generators:

Z
(4,0)
abc|def = �Jd(a � Jb|e| � Jc)f + · · · ' , (4.22a)

Z
(4,1)
abc|de = �Jd(a � Jb|e| � Pc) + · · · ' , (4.22b)

Z
(4,2)
abc|d = J

e
(a � Jb|e| � Jc)d + · · · ' , (4.22c)

Z
(4,3)
abc = J

e
(a � Jb|e| � Pc) + · · · ' , (4.22d)
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Commutators with P

expressions which we identify as the spin 3 generators

Qµ⌫ = {Pµ,P⌫}�
2

D
⌘µ⌫P

2
, (4.11a)

Mµ⌫|⇢ = {P(µ,J⌫)⇢}�
1

D � 1
⌘µ⌫{P

�
,J�⇢}+

1

D � 1
⌘⇢(µ{P

�
,J|�|⌫)} , (4.11b)

Kµ⌫|⇢� = {J(µh⇢,J⌫)�i}�
1

D � 2
⌘µ⌫{J�⇢,J

�
�}�

1

D � 2
⌘⇢�{J�µ,J

�
⌫}

+
2

D � 2
⌘(µh⇢{J�⌫),J

�
�i}�

2

(D � 2)(D � 1)
(2⌘µ⌫⌘⇢� � ⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)J

2
,

(4.11c)

where a vertical bar is used to separate groups of indices. The generators Q, M and K

have the symmetries

• Qµ⌫ = Q⌫µ and Q
�
� = 0;

• Mµ⌫|⇢ = M⌫µ|⇢, M(µ⌫|⇢) = 0 and M
�
�|⇢ = 0;

• Kµ⌫|⇢� = K⌫µ|⇢� = Kµ⌫|�⇢, K(µ⌫|⇢)� = Kµ(⌫|⇢�) = 0 and K
�
�|⇢� = Kµ⌫|�

� = 0

or in other terms they are irreducible representations of so(1, D � 1) corresponding to the
Young diagrams

Q = , M = , K = , (4.12)

written in the symmetric convention. In the following, we shall use alternatively the name
of the generator or its Young projection since the two are in one-to-one correspondence
after the ideal is factorised.

Note that, at this stage, we may choose to write Qµ⌫ as the traceless part of either
{Pµ,P⌫} or {J

⇢
µ,J⌫⇢} since the two expressions are identified in the ideal. While this is

completely equivalent at the level of the enveloping of the isometry algebra of Anti de Sitter,
one has to be careful when working in the enveloping algebra of Poincaré since we will see
that the two cannot be identified anymore. This is at the heart of the no-go presented in
section 4.1.2.

Higher spins Compared to the Galilean basis, the systematic is quite clear for flat space
as can be worked out directly from the branching rules of two-row Young diagrams of
so(2, D�1) into so(1, D�1): for s � 2, the spectrum of higher-spin gauge fields is spanned
by all the two-row diagrams of so(1, D � 1) with length s� 1 and depth ranging from 0 to
s� 1

Z
s,t

⌘
s� 1

s� t� 1
with t 2 {0, . . . , s� 1} , (4.13)

where we will use the notation Z
s,t for a generic higher-spin generator.

Once again, there are multiple equivalent ways in which to write the higher-spin gen-
erators as products of J ’s and P’s which are all equivalent in AdS (modulo relations in the
ideal), but this will not be true anymore in flat space.
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• t even: no P’s 

• t odd: one P

for t even 

for t odd

        as Inönü-Wigner contraction of  

For D=4 see also 
Fradkin, Vasiliev (1987)

eq. (4.16a), these products contain at most one translation generator and, more precisely,
none if t is even and one if t is odd. Since the t-even subalgebra only contains products
of J ’s, it can be viewed as a coset of the UEA of the Lorentz subalgebra. Moreover,
the completely antisymmetric projection {J[ab,Jcd]} is factorised, so that this subalgebra
is isomorphic to one of the higher-spin algebras for partially-massless fields (in D � 1

dimensions and with de Sitter signature) that we reviewed in section 2.3. In particular,
comparing (2.59) and (4.16e), one can see that it corresponds to the µ = 1

2 point of the one-
parameter family of algebras of [13]. The t-odd part can then be recovered by the adjoint
action of Pa on the allowed products of J ’s, with the prescription that {J[ab,Pc]} ⇠ 0

and {P
b
,Jba} ⇠ 0. Computing an additional commutator with Pa does not produce new

generators nor extra consistency conditions because PaPb ⇠ 0.
Since the generators of ihsD are realised as products of Poincaré generators, they all

transforms as Lorentz tensors. For instance, for s = 3 one has

[Jab,Scd] = ⌘acSbd + ⌘adSbc � ⌘bcSad � ⌘bdSac , (4.19a)
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where we used the fact that Kab|cd = Kcd|ab to write the commutators in a compact form.
On the other hand, their commutators with translations take a more “exotic” form:
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This structure generalises to any value of s according to the following schematic rules:
h
P,Z

(s,t)
i
/ Z

(s,t�1) + ⌘Z
(s,t+1) for t even , (4.21a)

h
P,Z

(s,t)
i
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where ⌘Z
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e.g., in (4.20c). To better appreciate these rules, one can also look at commutators involving
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Among the remaining quadratic combinations, only Kab|cd transforms as a {2, 2} Young
diagram, so that we have to keep it. Similarly, only Mab|c fits the role of the {2, 1} generator.
The delicate point is that both Qab = {Pa,Pb} + · · · and Sab = {J

c
a,Jbc} + · · · display

the correct Lorentz transformations to fill the role of the remaining spin-three generator.
However, we still have to handle the vector Ia = {P

b
,Jba}, that cannot belong to the set

of generators of the higher-spin algebra since the vector Pa already plays this role. Keeping
Ia would thus both introduce an unwanted multiplicity and violate our hypothesis on the
structure of the generators. Requiring Ia ⇠ 0 then implies that both Qab and P

2 have to
vanish as well when quotienting the ideal since

0 ⇠ [Pa , Ib] = �2
�
PaPb � ⌘abP

2
�
. (4.24)

Summarising, factoring out Ia, Iabc and Iabcd (as required to match the Eastwood-Vasiliev
spectrum) from the UEA of iso(1, D � 1) implies as well the condition PaPb ⇠ 0.

What remains to be determined is the fate of J 2. As it is manifest in (C.1), it becomes
a central element thanks to the previous conditions. It is thus natural to set it proportional
to the identity so as to avoid multiplicities in the spectrum. Its eigenvalue is then fixed by

0 ⇠ IabcJ
bc +

2

3
JabI

b +
D � 3

3
Ia = �

4

3

✓
J

2 +
(D � 1)(D � 3)

4
id

◆
Pa . (4.25)

In conclusion, if one wants to build a higher-spin extension of the Poincaré algebra with
the Eastwood-Vasiliev spectrum (2.22) as a quotient of its UEA by a two-sided ideal, one
can only obtain the coset algebra (4.18).

Notice that one can proceed along the same lines to recover the Eastwood-Vasiliev
algebra as a coset of the UEA of so(2, D � 1), but eq. (4.24) is substituted by
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and thus implies (4.10a) and (4.10c).

4.1.3 Inönü-Wigner contractions of hsD

Following the approach used in sections 5 and 6 of [1] to classify infinite-dimensional sub-
algebras of the AdS4 higher-spin algebra, we notice that the parity of s and t is conserved
by the Lie bracket in the Anti de Sitter algebra hsD. More explicitly
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with s1 + s2 � s3 mod 2 = 0 and t1 + t2 � t3 mod 2 = 0. The term with highest spin in the
decomposition is s3 = s1 + s2 � 2, the one with lowest spin is s3 = |s1 � s2| + 2 (this is a
consequence of the spin addition rules guaranteed by the UEA construction) and we always
have t1+ t2 mod 2 = t3 mod 2, since the terms with even t can be written as products of an
even number of P’s, while those with odd t can be written as products of an odd number
of P’s and the number of P’s is conserved modulo 2 both by the Lie bracket and by the
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of generators of the higher-spin algebra since the vector Pa already plays this role. Keeping
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Summarising, factoring out Ia, Iabc and Iabcd (as required to match the Eastwood-Vasiliev
spectrum) from the UEA of iso(1, D � 1) implies as well the condition PaPb ⇠ 0.

What remains to be determined is the fate of J 2. As it is manifest in (C.1), it becomes
a central element thanks to the previous conditions. It is thus natural to set it proportional
to the identity so as to avoid multiplicities in the spectrum. Its eigenvalue is then fixed by
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with s1 + s2 � s3 mod 2 = 0 and t1 + t2 � t3 mod 2 = 0. The term with highest spin in the
decomposition is s3 = s1 + s2 � 2, the one with lowest spin is s3 = |s1 � s2| + 2 (this is a
consequence of the spin addition rules guaranteed by the UEA construction) and we always
have t1+ t2 mod 2 = t3 mod 2, since the terms with even t can be written as products of an
even number of P’s, while those with odd t can be written as products of an odd number
of P’s and the number of P’s is conserved modulo 2 both by the Lie bracket and by the
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Flat/Carrollian-conformal ideal from the contraction limit By multiplying each
expression of the ideal (4.10) by the suitable power of ✏ so as to keep only the leading part,
one can take a smooth limit ✏ ! 0 and get
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4
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Combining eqs. (4.14b) and (4.15) one can eventually recast these expressions as

PaPb ⇠ 0 , (4.16a)

Ia ⌘ {P
b
, Jba} ⇠ 0 , (4.16b)

Iabc ⌘ {J[ab ,Pc]} ⇠ 0 , (4.16c)

Iabcd ⌘ {J[ab , Jcd]} ⇠ 0 , (4.16d)

J
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(D � 1)(D � 3)

4
id ⇠ 0 . (4.16e)

We verify in Appendix C.1 that these relations span an ideal, that we denote by Ic.
Notice that we recovered the condition PaPb ⇠ 0 that was already manifest in D = 3,

but we do not impose the stronger constraint Pa ⇠ 0 that characterises the flat limit of the
scalar singleton proposed in [121]. Compared to the three-dimensional case, the eigenvalue
of J 2 is instead fixed. Moreover, both the quadratic Casimir P

2 and the Pauli-Lubanski
tensor [122]

Wa1···aD�3 ⌘
1

2
✏a1···aD�3bcdJ

bc
P

d (4.17)

vanish on account of the relations (4.16). This implies that all Casimir operators of the
Poincaré algebra are set to zero in any representation satisfying eqs. (4.16a) and (4.16c),
as one can appreciate by looking at their explicit expressions reported, e.g., in [123].
Eq. (4.16a) also tells us that we are not dealing with any Poincaré irreps. in Wigner’s
classification (cf. [124]).

We can now take the quotient of the Poincaré UEA by the two-sided ideal hIci and
consider the resulting coset algebra as a flat-space higher-spin algebra in any dimension D

or, equivalently, as a Carrollian conformal higher-spin algebra in D � 1 dimensions:

ihsD ⌘ U(iso(1, D � 1))/hIci . (4.18)

The generators of this algebra can still be labelled as the Z
(s,t) of the AdSD one and spin-s

generators are given by products of s � 1 spin-two generators. As it is manifest from
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spectrum) from the UEA of iso(1, D � 1) implies as well the condition PaPb ⇠ 0.

What remains to be determined is the fate of J 2. As it is manifest in (C.1), it becomes
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In conclusion, if one wants to build a higher-spin extension of the Poincaré algebra with
the Eastwood-Vasiliev spectrum (2.22) as a quotient of its UEA by a two-sided ideal, one
can only obtain the coset algebra (4.18).
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and thus implies (4.10a) and (4.10c).

4.1.3 Inönü-Wigner contractions of hsD

Following the approach used in sections 5 and 6 of [1] to classify infinite-dimensional sub-
algebras of the AdS4 higher-spin algebra, we notice that the parity of s and t is conserved
by the Lie bracket in the Anti de Sitter algebra hsD. More explicitly
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with s1 + s2 � s3 mod 2 = 0 and t1 + t2 � t3 mod 2 = 0. The term with highest spin in the
decomposition is s3 = s1 + s2 � 2, the one with lowest spin is s3 = |s1 � s2| + 2 (this is a
consequence of the spin addition rules guaranteed by the UEA construction) and we always
have t1+ t2 mod 2 = t3 mod 2, since the terms with even t can be written as products of an
even number of P’s, while those with odd t can be written as products of an odd number
of P’s and the number of P’s is conserved modulo 2 both by the Lie bracket and by the
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Classification of consistent ideals
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Can one build other conformal Carrollian HS algebras from 
U (iso(1,D−1))?
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Candidate spin-3 generators:

scalars a value in an ideal. From the commutation relations presented in appendix C it can
be seen that {J[µ⌫ ,P⇢]} and {J[µ⌫ ,J⇢�]} form an ideal. Roughly speaking,

[J↵� , {J[µ⌫ ,J⇢�]}] = 2⌘↵[µ{J⌫⇢,J�]�}+ 2⌘↵[µ{J⌫|�|,J⇢�]}� (↵ $ �) , (4.36a)
[J↵� , {J[µ⌫ ,P⇢]}] = ⌘↵[µ{J⌫⇢],P�}+ 2⌘↵[µ{J|�|⌫ ,P⇢]}� (↵ $ �) , (4.36b)
[P↵, {J[µ⌫ ,J⇢�]}] = �4⌘↵[µ{J⌫⇢,P�]} , (4.36c)
[P↵, {J[µ⌫ ,P⇢]}] = 0 , (4.36d)

therefore we can consistently factor out those two generators.15 We list here some commu-
tators we will need

⇥
Pµ,J

2
⇤
= {Jµ↵,P

↵
} , (4.37a) carrollian-anyD:commutator_1
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,

(4.37b) carrollian-anyD:commutator_2
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2
.

(4.37c) carrollian-anyD:commutator_3

Since P2 is a Casimir of the Poincaré algebra, it forms an ideal in itself that we can factorise
(we will see in a moment what is the value of this Casimir). Among the remaining elements
of the list, only {Jµ(⌫ ,J⇢)�}� tr. has the correct projection to fit the role of spin 3 higher-
rotations in the Eastwood-Vasiliev spectrum so we keep it. Similarly only

�
Jµ(⌫ ,P⇢)

 
� tr.

fits the role of the mixed-symmetry “hook” type spin 3 generator. The delicate point is that
both {Pµ,P⌫}� tr. and {J

⇢
µ,J⌫⇢}� tr. have the desired symmetric traceless projection to

fill the role of the remaining spin 3 generator. Intuition would dictate that the generator
should correspond to higher-translations and be written as the product of P’s, but

we will see in a moment that this cannot be the case. Among the remaining unwanted
generators there is still the scalar J

2 and the vector {Jµ↵,P
↵
}. The latter cannot stay in

the higher-spin algebra since we already have the vector P↵ filling the role of translations.
Requiring that {Jµ↵,P

↵
} be factorised means that both {Pµ,P⌫}�tr. and P

2 be identified
to zero in the ideal as can be seen from eq. (4.37c), thus solving the dilemma. If we wanted
to factorise {J

⇢
µ,J⌫⇢} � tr. in the ideal anyway and use {Pµ,P⌫} � tr. as the generator

of higher-translations, then both the “hook” generator
�
Jµ(⌫ ,P⇢)

 
� tr. and the symmetric

diagram {Pµ,P⌫}� tr. are necessarily factorised as well as can be seen from commutators
(4.37b) and (4.37c), therefore we are describing only the higher-spin part of the Lorentz
sector, which is identified as an Eastwood-Vasiliev algebra in one dimension less with de
Sitter signature. In the end, only the generator {J

⇢
µ,J⌫⇢} � tr. can serve the role of the

symmetric traceless spin 3 generator.
15

In arbitrary space-time dimension, it is the only thing we can do without introducing extra fields. In

D = 5, there is also the possibility to dualise ✏µ⌫⇢�↵{J[µ⌫ ,J⇢�]} / P↵
but this doesn’t change the main

result.
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(µ,J⌫)⇢}� tr. , {J(µh⇢,J⌫)�i}� tr. , {J[µ⌫ ,J⇢�]} , (4.8a)

where (�tr.) means we are taking the traceless projection of the previous quantity and
we use curly brackets over the indices µ and ⌫ and angled brackets over the indices ⇢

and � to denote two independent different symmetrisations with weight one. Note that
the symmetrisations in {P(µ,P⌫)} and {J

⇢
(µ,J⌫)⇢} are not necessary because the anti-

commutator {·, ·} automatically projects in the symmetric part of the indices. Some linear
combinations among the generators in this list generate an ideal which is obtained from the
branching of the relativistic ideal generated by the elements
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where ⇠ means that the identification takes place in the ideal. The ideal consists of two
parts: the first three expressions come from (the branching of) the symmetric traceless
product IAB = J

C
(AJB)C �

2
D+1 ⌘̃ABJ

2 and the next two come from (the branching of) the
completely antisymmetric one IABCD = J[ABJCD]. Finally, the scalar C2 is the quadratic
Casimir of AdSD, which is already uniquely fixed by the factorisation of the previous ex-
pressions (see for instance section 6 of [11] or section 2). Taking linear combinations of the
first and the last equations we get

J
2
⇠

D � 1

D + 1
C2 ⇠ �

(D � 1)(D � 3)

4
id , (4.10a)

✏
�2

P
2
⇠

2

D + 1
C2 ⇠ �

D � 3

2
id , (4.10b)

which means that both J
2 and P

2 are central elements in this representation. Among the
quadratic quantities listed above, all are fixed or factorised except for the following three
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≃

expressions which we identify as the spin 3 generators
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where a vertical bar is used to separate groups of indices. The generators Q, M and K

have the symmetries

• Qµ⌫ = Q⌫µ and Q
�
� = 0;

• Mµ⌫|⇢ = M⌫µ|⇢, M(µ⌫|⇢) = 0 and M
�
�|⇢ = 0;

• Kµ⌫|⇢� = K⌫µ|⇢� = Kµ⌫|�⇢, K(µ⌫|⇢)� = Kµ(⌫|⇢�) = 0 and K
�
�|⇢� = Kµ⌫|�

� = 0

or in other terms they are irreducible representations of so(1, D � 1) corresponding to the
Young diagrams

Q = , M = , K = , (4.12)

written in the symmetric convention. In the following, we shall use alternatively the name
of the generator or its Young projection since the two are in one-to-one correspondence
after the ideal is factorised.

Note that, at this stage, we may choose to write Qµ⌫ as the traceless part of either
{Pµ,P⌫} or {J

⇢
µ,J⌫⇢} since the two expressions are identified in the ideal. While this is

completely equivalent at the level of the enveloping of the isometry algebra of Anti de Sitter,
one has to be careful when working in the enveloping algebra of Poincaré since we will see
that the two cannot be identified anymore. This is at the heart of the no-go presented in
section 4.1.2.

Higher spins Compared to the Galilean basis, the systematic is quite clear for flat space
as can be worked out directly from the branching rules of two-row Young diagrams of
so(2, D�1) into so(1, D�1): for s � 2, the spectrum of higher-spin gauge fields is spanned
by all the two-row diagrams of so(1, D � 1) with length s� 1 and depth ranging from 0 to
s� 1

Z
s,t

⌘
s� 1

s� t� 1
with t 2 {0, . . . , s� 1} , (4.13)

where we will use the notation Z
s,t for a generic higher-spin generator.

Once again, there are multiple equivalent ways in which to write the higher-spin gen-
erators as products of J ’s and P’s which are all equivalent in AdS (modulo relations in the
ideal), but this will not be true anymore in flat space.
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µ,J⌫⇢} since the two expressions are identified in the ideal. While this is

completely equivalent at the level of the enveloping of the isometry algebra of Anti de Sitter,
one has to be careful when working in the enveloping algebra of Poincaré since we will see
that the two cannot be identified anymore. This is at the heart of the no-go presented in
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[P , Z
s,t] Ã Z

s,t+1 (12)

[P , Z
s,t] Ã 0 (13)

Iµ‹fl‡ ≥ 0

3

Annihilator of the scalar singleton In section 2.2.1 we factored out from the UEA of
so(2, D�1) an ideal generated by quadratic combinations of the JAB, corresponding to the
annihilator of the scalar singleton representation. In the basis (4.3), linearly-independent
quadratic combinations of the generators can be conveniently classified according to their
properties under permutations of their free indices. One has two independent scalars,

P
2
⌘ PaP

a
, J

2
⌘

1

2
JabJ

ba
, (4.4)

one vector,
Ia ⌘ {P

b
,Jba} , (4.5)

two traceless symmetric tensors of rank two,

Qab ⌘ {Pa,Pb}�
2

D
⌘abP

2
, Sab ⌘ {J

c
a,Jbc}�

4

D
⌘abJ

2
, (4.6)

one irreducible and traceless tensor transforming as a hook Young diagram,
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1

D � 1

⇣
⌘ab{P

d
,Jcd}� ⌘c(a{P

d
,Jb)d}

⌘
, (4.7)

one tensor transforming as a traceless two-row rectangular Young diagram,

Kab|cd ⌘ {Ja(c,Jd)b}+
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(4.8)

and two antisymmetric tensors,

Iabc ⌘ {J[ab,Pc]} , Iabcd ⌘ {J[ab,Jcd]} . (4.9)

The tensors in eqs. (4.4)–(4.8) correspond to the branching in so(1, D�1) components of the
product JA(B�JC)D, while those in (4.9) correspond to the branching of J[AB�JCD]. Notice
that it is not necessary to symmetrise explicitly the indices in {P(a,Pb)} and {J

c
(a,Jb)c}

because the anticommutator automatically projects on the symmetric component.
The ideal (2.14) that we factored out in the AdSD coset construction is generated by

the following combinations:

J
2
�

D � 1

2
✏
�2

P
2
⇠ 0 , (4.10a)

✏
�1

{P
b
, Jba} ⇠ 0 , (4.10b)

Sab + ✏
�2

Qab ⇠ 0 , (4.10c)

✏
�1

{J[ab ,Pc]} ⇠ 0 , (4.10d)

{J[ab , Jcd]} ⇠ 0 , (4.10e)

C2 ⌘ J
2 + ✏

�2
P

2
⇠ �

(D + 1)(D � 3)

4
id . (4.10f)
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Can one build other conformal Carrollian HS algebras from 
U (iso(1,D−1))?

Portion of the ideal we need to quotient out:

Ë
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IABCD ≥ 0 ∆
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Candidate spin-3 generators:

scalars a value in an ideal. From the commutation relations presented in appendix C it can
be seen that {J[µ⌫ ,P⇢]} and {J[µ⌫ ,J⇢�]} form an ideal. Roughly speaking,

[J↵� , {J[µ⌫ ,J⇢�]}] = 2⌘↵[µ{J⌫⇢,J�]�}+ 2⌘↵[µ{J⌫|�|,J⇢�]}� (↵ $ �) , (4.36a)
[J↵� , {J[µ⌫ ,P⇢]}] = ⌘↵[µ{J⌫⇢],P�}+ 2⌘↵[µ{J|�|⌫ ,P⇢]}� (↵ $ �) , (4.36b)
[P↵, {J[µ⌫ ,J⇢�]}] = �4⌘↵[µ{J⌫⇢,P�]} , (4.36c)
[P↵, {J[µ⌫ ,P⇢]}] = 0 , (4.36d)

therefore we can consistently factor out those two generators.15 We list here some commu-
tators we will need

⇥
Pµ,J

2
⇤
= {Jµ↵,P

↵
} , (4.37a) carrollian-anyD:commutator_1


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,

(4.37b) carrollian-anyD:commutator_2

[P⌫ , {Jµ↵,P
↵
}] = {Pµ,P⌫}� 2⌘µ⌫P
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{Pµ,P⌫}�

2

D
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2
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� 2

D � 1

D
⌘µ⌫P

2
.

(4.37c) carrollian-anyD:commutator_3

Since P2 is a Casimir of the Poincaré algebra, it forms an ideal in itself that we can factorise
(we will see in a moment what is the value of this Casimir). Among the remaining elements
of the list, only {Jµ(⌫ ,J⇢)�}� tr. has the correct projection to fit the role of spin 3 higher-
rotations in the Eastwood-Vasiliev spectrum so we keep it. Similarly only

�
Jµ(⌫ ,P⇢)

 
� tr.

fits the role of the mixed-symmetry “hook” type spin 3 generator. The delicate point is that
both {Pµ,P⌫}� tr. and {J

⇢
µ,J⌫⇢}� tr. have the desired symmetric traceless projection to

fill the role of the remaining spin 3 generator. Intuition would dictate that the generator
should correspond to higher-translations and be written as the product of P’s, but

we will see in a moment that this cannot be the case. Among the remaining unwanted
generators there is still the scalar J

2 and the vector {Jµ↵,P
↵
}. The latter cannot stay in

the higher-spin algebra since we already have the vector P↵ filling the role of translations.
Requiring that {Jµ↵,P

↵
} be factorised means that both {Pµ,P⌫}�tr. and P

2 be identified
to zero in the ideal as can be seen from eq. (4.37c), thus solving the dilemma. If we wanted
to factorise {J

⇢
µ,J⌫⇢} � tr. in the ideal anyway and use {Pµ,P⌫} � tr. as the generator

of higher-translations, then both the “hook” generator
�
Jµ(⌫ ,P⇢)

 
� tr. and the symmetric

diagram {Pµ,P⌫}� tr. are necessarily factorised as well as can be seen from commutators
(4.37b) and (4.37c), therefore we are describing only the higher-spin part of the Lorentz
sector, which is identified as an Eastwood-Vasiliev algebra in one dimension less with de
Sitter signature. In the end, only the generator {J

⇢
µ,J⌫⇢} � tr. can serve the role of the

symmetric traceless spin 3 generator.
15

In arbitrary space-time dimension, it is the only thing we can do without introducing extra fields. In

D = 5, there is also the possibility to dualise ✏µ⌫⇢�↵{J[µ⌫ ,J⇢�]} / P↵
but this doesn’t change the main

result.
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(µ,J⌫)⇢}� tr. , {J(µh⇢,J⌫)�i}� tr. , {J[µ⌫ ,J⇢�]} , (4.8a)

where (�tr.) means we are taking the traceless projection of the previous quantity and
we use curly brackets over the indices µ and ⌫ and angled brackets over the indices ⇢

and � to denote two independent different symmetrisations with weight one. Note that
the symmetrisations in {P(µ,P⌫)} and {J

⇢
(µ,J⌫)⇢} are not necessary because the anti-

commutator {·, ·} automatically projects in the symmetric part of the indices. Some linear
combinations among the generators in this list generate an ideal which is obtained from the
branching of the relativistic ideal generated by the elements
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4
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where ⇠ means that the identification takes place in the ideal. The ideal consists of two
parts: the first three expressions come from (the branching of) the symmetric traceless
product IAB = J

C
(AJB)C �

2
D+1 ⌘̃ABJ

2 and the next two come from (the branching of) the
completely antisymmetric one IABCD = J[ABJCD]. Finally, the scalar C2 is the quadratic
Casimir of AdSD, which is already uniquely fixed by the factorisation of the previous ex-
pressions (see for instance section 6 of [11] or section 2). Taking linear combinations of the
first and the last equations we get

J
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id , (4.10a)
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which means that both J
2 and P

2 are central elements in this representation. Among the
quadratic quantities listed above, all are fixed or factorised except for the following three
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expressions which we identify as the spin 3 generators
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where a vertical bar is used to separate groups of indices. The generators Q, M and K

have the symmetries

• Qµ⌫ = Q⌫µ and Q
�
� = 0;

• Mµ⌫|⇢ = M⌫µ|⇢, M(µ⌫|⇢) = 0 and M
�
�|⇢ = 0;

• Kµ⌫|⇢� = K⌫µ|⇢� = Kµ⌫|�⇢, K(µ⌫|⇢)� = Kµ(⌫|⇢�) = 0 and K
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�|⇢� = Kµ⌫|�

� = 0

or in other terms they are irreducible representations of so(1, D � 1) corresponding to the
Young diagrams

Q = , M = , K = , (4.12)

written in the symmetric convention. In the following, we shall use alternatively the name
of the generator or its Young projection since the two are in one-to-one correspondence
after the ideal is factorised.

Note that, at this stage, we may choose to write Qµ⌫ as the traceless part of either
{Pµ,P⌫} or {J

⇢
µ,J⌫⇢} since the two expressions are identified in the ideal. While this is

completely equivalent at the level of the enveloping of the isometry algebra of Anti de Sitter,
one has to be careful when working in the enveloping algebra of Poincaré since we will see
that the two cannot be identified anymore. This is at the heart of the no-go presented in
section 4.1.2.

Higher spins Compared to the Galilean basis, the systematic is quite clear for flat space
as can be worked out directly from the branching rules of two-row Young diagrams of
so(2, D�1) into so(1, D�1): for s � 2, the spectrum of higher-spin gauge fields is spanned
by all the two-row diagrams of so(1, D � 1) with length s� 1 and depth ranging from 0 to
s� 1

Z
s,t

⌘
s� 1

s� t� 1
with t 2 {0, . . . , s� 1} , (4.13)

where we will use the notation Z
s,t for a generic higher-spin generator.

Once again, there are multiple equivalent ways in which to write the higher-spin gen-
erators as products of J ’s and P’s which are all equivalent in AdS (modulo relations in the
ideal), but this will not be true anymore in flat space.

– 32 –

≃

expressions which we identify as the spin 3 generators

Qµ⌫ = {Pµ,P⌫}�
2

D
⌘µ⌫P

2
, (4.11a)

Mµ⌫|⇢ = {P(µ,J⌫)⇢}�
1

D � 1
⌘µ⌫{P

�
,J�⇢}+

1

D � 1
⌘⇢(µ{P

�
,J|�|⌫)} , (4.11b)

Kµ⌫|⇢� = {J(µh⇢,J⌫)�i}�
1

D � 2
⌘µ⌫{J�⇢,J

�
�}�

1

D � 2
⌘⇢�{J�µ,J

�
⌫}

+
2

D � 2
⌘(µh⇢{J�⌫),J

�
�i}�

2

(D � 2)(D � 1)
(2⌘µ⌫⌘⇢� � ⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)J

2
,

(4.11c)

where a vertical bar is used to separate groups of indices. The generators Q, M and K

have the symmetries

• Qµ⌫ = Q⌫µ and Q
�
� = 0;

• Mµ⌫|⇢ = M⌫µ|⇢, M(µ⌫|⇢) = 0 and M
�
�|⇢ = 0;

• Kµ⌫|⇢� = K⌫µ|⇢� = Kµ⌫|�⇢, K(µ⌫|⇢)� = Kµ(⌫|⇢�) = 0 and K
�
�|⇢� = Kµ⌫|�

� = 0

or in other terms they are irreducible representations of so(1, D � 1) corresponding to the
Young diagrams

Q = , M = , K = , (4.12)

written in the symmetric convention. In the following, we shall use alternatively the name
of the generator or its Young projection since the two are in one-to-one correspondence
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µ,J⌫⇢} since the two expressions are identified in the ideal. While this is

completely equivalent at the level of the enveloping of the isometry algebra of Anti de Sitter,
one has to be careful when working in the enveloping algebra of Poincaré since we will see
that the two cannot be identified anymore. This is at the heart of the no-go presented in
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Higher spins Compared to the Galilean basis, the systematic is quite clear for flat space
as can be worked out directly from the branching rules of two-row Young diagrams of
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where we will use the notation Z
s,t for a generic higher-spin generator.

Once again, there are multiple equivalent ways in which to write the higher-spin gen-
erators as products of J ’s and P’s which are all equivalent in AdS (modulo relations in the
ideal), but this will not be true anymore in flat space.
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(2⌘µ⌫⌘⇢� � ⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)J

2
,

(4.11c)

where a vertical bar is used to separate groups of indices. The generators Q, M and K

have the symmetries

• Qµ⌫ = Q⌫µ and Q
�
� = 0;

• Mµ⌫|⇢ = M⌫µ|⇢, M(µ⌫|⇢) = 0 and M
�
�|⇢ = 0;

• Kµ⌫|⇢� = K⌫µ|⇢� = Kµ⌫|�⇢, K(µ⌫|⇢)� = Kµ(⌫|⇢�) = 0 and K
�
�|⇢� = Kµ⌫|�

� = 0

or in other terms they are irreducible representations of so(1, D � 1) corresponding to the
Young diagrams

Q = , M = , K = , (4.12)

written in the symmetric convention. In the following, we shall use alternatively the name
of the generator or its Young projection since the two are in one-to-one correspondence
after the ideal is factorised.

Note that, at this stage, we may choose to write Qµ⌫ as the traceless part of either
{Pµ,P⌫} or {J

⇢
µ,J⌫⇢} since the two expressions are identified in the ideal. While this is

completely equivalent at the level of the enveloping of the isometry algebra of Anti de Sitter,
one has to be careful when working in the enveloping algebra of Poincaré since we will see
that the two cannot be identified anymore. This is at the heart of the no-go presented in
section 4.1.2.

Higher spins Compared to the Galilean basis, the systematic is quite clear for flat space
as can be worked out directly from the branching rules of two-row Young diagrams of
so(2, D�1) into so(1, D�1): for s � 2, the spectrum of higher-spin gauge fields is spanned
by all the two-row diagrams of so(1, D � 1) with length s� 1 and depth ranging from 0 to
s� 1

Z
s,t

⌘
s� 1

s� t� 1
with t 2 {0, . . . , s� 1} , (4.13)

where we will use the notation Z
s,t for a generic higher-spin generator.

Once again, there are multiple equivalent ways in which to write the higher-spin gen-
erators as products of J ’s and P’s which are all equivalent in AdS (modulo relations in the
ideal), but this will not be true anymore in flat space.
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IABCD ≥ 0 ∆
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Annihilator of the scalar singleton In section 2.2.1 we factored out from the UEA of
so(2, D�1) an ideal generated by quadratic combinations of the JAB, corresponding to the
annihilator of the scalar singleton representation. In the basis (4.3), linearly-independent
quadratic combinations of the generators can be conveniently classified according to their
properties under permutations of their free indices. One has two independent scalars,

P
2
⌘ PaP

a
, J

2
⌘

1

2
JabJ

ba
, (4.4)

one vector,
Ia ⌘ {P

b
,Jba} , (4.5)

two traceless symmetric tensors of rank two,

Qab ⌘ {Pa,Pb}�
2

D
⌘abP

2
, Sab ⌘ {J

c
a,Jbc}�

4

D
⌘abJ

2
, (4.6)

one irreducible and traceless tensor transforming as a hook Young diagram,

Mab|c ⌘ {P(a,Jb)c}+
1

D � 1

⇣
⌘ab{P

d
,Jcd}� ⌘c(a{P

d
,Jb)d}

⌘
, (4.7)

one tensor transforming as a traceless two-row rectangular Young diagram,

Kab|cd ⌘ {Ja(c,Jd)b}+
4

(D � 2)(D � 1)

�
⌘ab⌘cd � ⌘a(c⌘d)b

�
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e
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e
c}

⌘
,

(4.8)

and two antisymmetric tensors,

Iabc ⌘ {J[ab,Pc]} , Iabcd ⌘ {J[ab,Jcd]} . (4.9)

The tensors in eqs. (4.4)–(4.8) correspond to the branching in so(1, D�1) components of the
product JA(B�JC)D, while those in (4.9) correspond to the branching of J[AB�JCD]. Notice
that it is not necessary to symmetrise explicitly the indices in {P(a,Pb)} and {J

c
(a,Jb)c}

because the anticommutator automatically projects on the symmetric component.
The ideal (2.14) that we factored out in the AdSD coset construction is generated by

the following combinations:

J
2
�

D � 1

2
✏
�2

P
2
⇠ 0 , (4.10a)

✏
�1

{P
b
, Jba} ⇠ 0 , (4.10b)

Sab + ✏
�2

Qab ⇠ 0 , (4.10c)

✏
�1

{J[ab ,Pc]} ⇠ 0 , (4.10d)

{J[ab , Jcd]} ⇠ 0 , (4.10e)

C2 ⌘ J
2 + ✏

�2
P

2
⇠ �

(D + 1)(D � 3)

4
id . (4.10f)
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Partial summary
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One can build non-Abelian HS algebras including                     
iso(1,D−1) as a subalgebra (with the same spectrum as in AdS) 

“Good” Lorentz commutators guaranteed by UEA construction  

Atypical commutators with translations (counterpart of the 
absence of the “naive” minimal coupling?) 

The linearised torsions do not allow one to eliminate the HS 
auxiliary “spin-connections" à la Fradkin-Vasiliev

Can we recover these algebras asymptotically?



Higher-spin asymptotic symmetries 

in flat space

A.C., D. Francia, C. Heissenberg, 

1703.01351, 1712.09591, 2011.04420

Part 2



Warming up: BMS symmetry 

from Fierz-Pauli 



The setup
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Action:                                                           (Fierz-Pauli)

Bondi “gauge”:

Gauge symmetry:

Minkowski in retarded Bondi coordinates:
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Residual symmetries of the Bondi gauge
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u-independent linearised diffeos preserving the Bondi gauge:

We still have to set the boundary conditions on huu, hui and hij!      

Full set of residual symmetries:

lim
Êæ0

⁄ Œ

≠Œ
du F (0)

uz eiÊu

”� = ig(2)T (z, z̄)ˆu� = i
Ë
Q+

h , �
È

Q+
s = 3

2

⁄

I +
T (z, z̄)ˆu(Dz)3Bzzz“zz̄ d2zdu

ds2 = 2
k2 u (dr + rA) + r2ds2

(2) + 8fiG

k4 u (‘ u + ‰ ú u)

A = eaPa + ÊaLa

I = k

4fi

⁄
Tr

3
A · dA + 2

3 A · A · A

4

uµ
||u||

2 = ≠k2 p

Á = 1
k2 Tµ‹uµu‹

uµ
æ uµ + ”uµ

Tµ
µ = p ≠ Á + ·

L›grr = 0 , L›guu = O(r≠1) , L›gzz = O(r) , . . .

‘µdxµ = T (x̂)dr + 1
D ≠ 2 (� + D ≠ 2) T (x̂)du + r DiT (x̂)dxi

5

lim
Êæ0

⁄ Œ

≠Œ
du F (0)

uz eiÊu

”� = ig(2)T (z, z̄)ˆu� = i
Ë
Q+

h , �
È

Q+
s = 3

2

⁄

I +
T (z, z̄)ˆu(Dz)3Bzzz“zz̄ d2zdu

ds2 = 2
k2 u (dr + rA) + r2ds2

(2) + 8fiG

k4 u (‘ u + ‰ ú u)

A = eaPa + ÊaLa

I = k

4fi

⁄
Tr

3
A · dA + 2

3 A · A · A

4

uµ
||u||

2 = ≠k2 p

Á = 1
k2 Tµ‹uµu‹

uµ
æ uµ + ”uµ

Tµ
µ = p ≠ Á + ·

L›grr = 0 , L›guu = O(r≠1) , L›gzz = O(r) , . . .

‘µdxµ = T (x̂)dr + 1
D ≠ 2 (� + D ≠ 2) T (x̂)du + r ˆiT (x̂)dxi

‘r = f (14)

‘i = r2vi + r ˆif (15)

‘u = ‘r + 1
r (D ≠ 2) Di‘

i (16)

f(u, x̂) = T (x̂) ≠
u

D ≠ 2 Div
i(x̂)

5

lim
Êæ0

⁄ Œ

≠Œ
du F (0)

uz eiÊu

”� = ig(2)T (z, z̄)ˆu� = i
Ë
Q+

h , �
È

Q+
s = 3

2

⁄

I +
T (z, z̄)ˆu(Dz)3Bzzz“zz̄ d2zdu

ds2 = 2
k2 u (dr + rA) + r2ds2

(2) + 8fiG

k4 u (‘ u + ‰ ú u)

A = eaPa + ÊaLa

I = k

4fi

⁄
Tr

3
A · dA + 2

3 A · A · A

4

uµ
||u||

2 = ≠k2 p

Á = 1
k2 Tµ‹uµu‹

uµ
æ uµ + ”uµ

Tµ
µ = p ≠ Á + ·

L›grr = 0 , L›guu = O(r≠1) , L›gzz = O(r) , . . .

‘µdxµ = T (x̂)dr + 1
D ≠ 2 (� + D ≠ 2) T (x̂)du + r ˆiT (x̂)dxi

‘r = f (14)

‘i = r2vi + r ˆif (15)

‘u = ‘r + 1
r (D ≠ 2) Di‘

i (16)

f(u, x̂) = T (x̂) ≠
u

D ≠ 2 Div
i(x̂)

5

with

arbitrary function & vector 
on the celestial sphere



Supertranslations & superrotations
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Variation of the component hij

Typical falloff of radiation:
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Supertranslations & superrotations
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Variation of the component hij

Typical falloff of radiation:

Boundary conditions in D=4: 

• “natural option”:                        ⇒                    arbitrary 
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Supertranslations & superrotations
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Variation of the component hij

Typical falloff of radiation:

Boundary conditions in D=4: 
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• other option:                            ⇒                 &             arbitrary
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Gauge symmetry: (with traceless ∊)
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Higher-spin asymptotic symmetries: the setup
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Action:

Bondi-like “gauge” (or part 1 of the boundary conditions)

Gauge symmetry:

Minkowski in retarded Bondi coordinates:

(with traceless ∊)
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u-independent asymptotic symmetries
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u-independent residual symmetries of the Bondi-like gauge:

Spin-3 example:

Compatible with                                  but not with radiation falloffs! 
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u-independent asymptotic symmetries
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Obs 1: on shell the overleading terms must be pure gauge

Obs 2: they do not contribute to surface charges for any s
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Comments on surface charges
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The overleading terms do not contribute, but a divergent 
contribution from radiation is still present!

A “prescription” curing this problem (and giving the “correct” 
Ward identities): 

• Assume that for u < u0 the fields are stationary 

• Compute the (finite!) charge for u < u0 

• Define QT(u) as the evolution under the eom of QT(−∞)

AC, Francia, Heissenberg (2017 and 2020)

Final result:
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(with ) 

it should be possible to 
recover it from a more 
systematic renormalisation… 
See the works by Adrien, 
Romain and Laurent



Recovering Weinberg’s theorem

Andrea Campoleoni - UMONS

“Standard” techniques to recover Weinberg’s theorem apply 

• rewriting of the charge:                                                        ,                          

•                                                                                            , 

• eom:

The charge can be rewritten in terms of radiation data in any D!

Obs 3: Weinberg’s theorem follows by substitution in the Ward identity
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requires antipodal matching
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Higher-spin superrotations

Andrea Campoleoni - UMONS

Back to the residual symmetries of the Bondi-like gauge (spin 3)
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Higher-spin superrotations
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Back to the residual symmetries of the Bondi-like gauge (spin 3)
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Back to the residual symmetries of the Bondi-like gauge (spin 3)
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Summary:                                   ⇒  HS superrotations

Interpretation? 

• s = 2 

• s = 3

Do they make sense? 

•  Overleading terms are still pure gauge

• We recover all structures in the “rigid symmetries"  

• Charges? More problematic…
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Campiglia, Laddha (2014)

Global symmetries of a 
spin-3 field!

cf., however, 
Compère, Fiorucci, Ruzziconi (2018); 
Freidel, Hopfmuller, Riello (2019); 
Colferai, Lionetti (2020);



Summary & overview

Andrea Campoleoni - UMONS

Boundary conditions allowing angle dependent asymptotic 
symmetries can be defined for any D and any s

All contributions above radiation are (large) pure-gauge terms 

u-independent symmetries ⇒ (any-s) supertranslations 

Supertranslation Ward identities ⇒ Weinberg’s soft theorems 

Even weaker falloffs ⇒ (any-s) superrotations

(part 2 of the talk)



Summary & overview

Andrea Campoleoni - UMONS

Boundary conditions allowing angle dependent asymptotic 
symmetries can be defined for any D and any s

The global portion of these symmetries is in one-to-one 
correspondence with the "HS isometries” of the vacuum 

One can define a Lie bracket for “HS isometries” 

Symmetries of a higher-spin theory in Minkowski space?

All contributions above radiation are (large) pure-gauge terms 

u-independent symmetries ⇒ (any-s) supertranslations 

Supertranslation Ward identities ⇒ Weinberg’s soft theorems 

Even weaker falloffs ⇒ (any-s) superrotations

(part 2 of the talk)

(part 1 of the talk)



Summary & overview

Andrea Campoleoni - UMONS

Boundary conditions allowing angle dependent asymptotic 
symmetries can be defined for any D and any s

The global portion of these symmetries is in one-to-one 
correspondence with the "HS isometries” of the vacuum 

One can define a Lie bracket for “HS isometries” 

Symmetries of a higher-spin theory in Minkowski space?

(part 2 of the talk)

(part 1 of the talk)



Summary & overview
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Boundary conditions allowing angle dependent asymptotic 
symmetries can be defined for any D and any s

The global portion of these symmetries is in one-to-one 
correspondence with the "HS isometries” of the vacuum 

One can define a Lie bracket for “HS isometries” 

Symmetries of a higher-spin theory in Minkowski space?

Right symmetry, but for the “wrong" setup? 

A higher-spin extension of 
the Poincaré algebra 

may provide the natural extension of 
the w1+∞ 

symmetry in D=4… (see Laurent’s talk)

(part 2 of the talk)

(part 1 of the talk)


