On the complexity of heterogeneous multidimensional quantitative games

Véronique Bruyère¹ Quentin Hautem¹ Jean-François Raskin²

University of Mons¹, Université Libre of Bruxelles²

August 23, 2016. CONCUR 2016

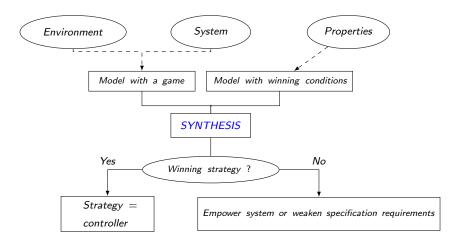
Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

1 Introduction

- 2 Heterogeneous games
- 3 General case
- 4 Intersection of Inf, Sup, LimInf, LimSup
- 5 Polynomial fragment with one WMP
- 6 Conclusion

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Synthesis via Game Theory



Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Model

Zero-sum games played on finite graph:

- System vs. Environment : antagonistic
- Turn-based games

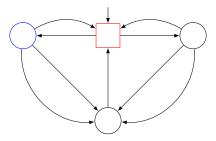


Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion
			7		
					TTT .

Model

Zero-sum games played on finite graph:

- System vs. Environment : antagonistic
- Turn-based games

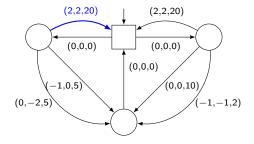


A strategy is a function mapping each history of the game to a successor A play is winning for player 1 if it satisfies its winning condition (called objective)

Introduction	Heterogeneous games	General case □	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Model

Multi-dimensional weighted zero-sum games played on finite graph: - Weight for energy, time consumption, . . .



Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Known results

Uni-dimensional ([Jur98] [CDRR15])

	Inf	LimInf	Sup	LimSup	MP	En.	WMP	
Complexity	P-complete				$NP\capcoNP$		P-c	
P1 memory		memoryloss					exponential	
P2 memory	1	memoryless					exponential	

Multi-dimensional: Homogeneous intersection ([CDHR10] [CDRR15])

	En	MP	MP	WMP
Complexity	coNP-c		$NP\capcoNP$	EXPTIME-c
P1 memory	finite-memory infinite-memory		exponential	
P2 memory	memoryless			exponential

Boolean combinations of MP and MP: undecidable. [Vel15]

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

1 Introduction

2 Heterogeneous games

- 3 General case
- 4 Intersection of Inf, Sup, LimInf, LimSup
- 5 Polynomial fragment with one WMP

6 Conclusion

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Problem

We consider here heterogeneous objectives.

- One objective by dimension
- Objective : measure of the play \sim threshold ν with $\sim \in \{\geq,\leq,>,<\}^1$

The *threshold problem* asks to decide whether player 1 has a winning strategy for Ω from an initial vertex v_0 .

¹W.l.o.g we can assume $\sim = \geq$ and $\nu = 0$

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Quantitative measures studied²:

- Inf (Sup) : minimum (maximum) weight seen
- LimInf (LimSup): minimum (maximum) weight infinitely often seen
- WindowMeanPayoff (WMP): average weight over a local window sliding along the play

²All those measures are ω -regular

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Quantitative measures studied:

- Inf (Sup) : minimum (maximum) weight seen
- LimInf (LimSup): minimum (maximum) weight infinitely often seen
- WindowMeanPayoff (WMP): average weight over a local window sliding along the play

Example: design a system

- ϕ_1 : with a good window mean-response time (WMP),
- ϕ_2 : that avoids too slow reaction (Inf) and
- ϕ_3 : that does not exceed some peak energy consumption in the long run (LimSup).

$$\rightsquigarrow \phi_1 \land \phi_2 \land \phi_3$$

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Quantitative measures studied:

- Inf (Sup) : minimum (maximum) weight seen
- LimInf (LimSup): minimum (maximum) weight infinitely often seen
- WindowMeanPayoff (WMP): average weight over a local window sliding along the play

Example:

• hypothesis (ψ) : the frequency of requests from the environment is below some threshold (expressible as a WMP)

$$\rightsquigarrow \psi \rightarrow (\phi_1 \land \phi_2 \land \phi_3)$$

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

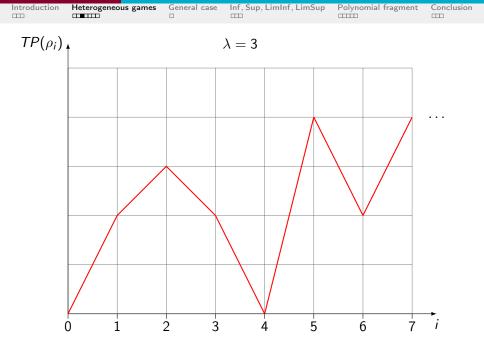
Quantitative measures studied:

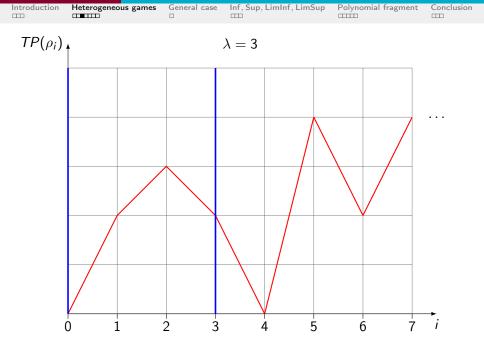
- Inf (Sup) : minimum (maximum) weight seen
- LimInf (LimSup): minimum (maximum) weight infinitely often seen
- WindowMeanPayoff (WMP): average weight over a local window sliding along the play

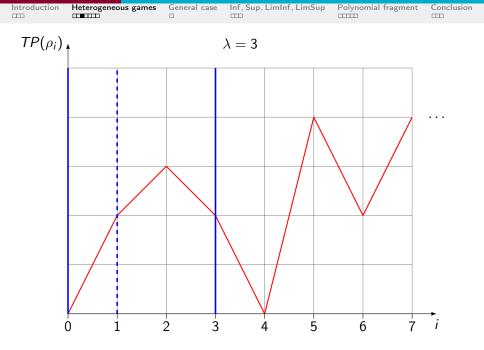
Definition

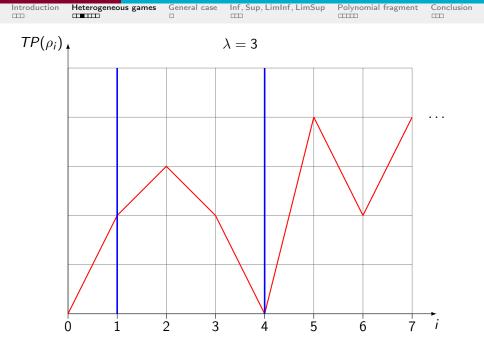
Given a threshold $\nu \in \mathbb{Q}$ and a window size $\lambda \in \mathbb{N} \setminus \{0\}$,

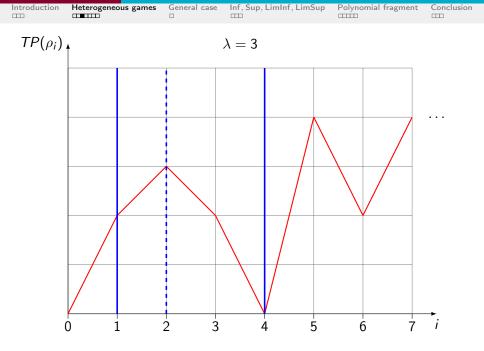
 $\mathsf{WMP}(\lambda,\nu) = \{\rho \in \mathsf{Plays}(\mathcal{G}) \mid \forall k \ge 0, \exists l \in \{1,\ldots,\lambda\}, \mathsf{MP}(\rho_{[k,k+l]}) \ge \nu\}.$

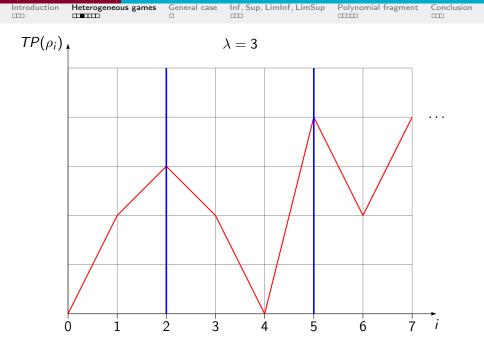


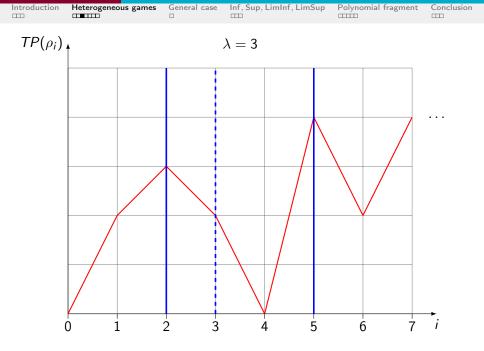


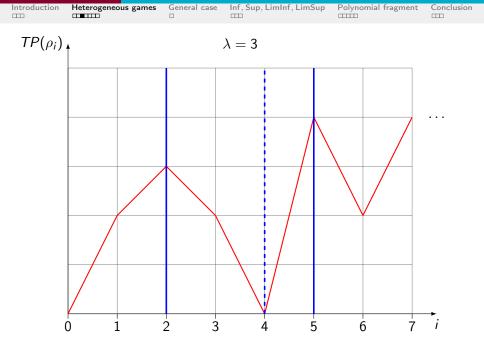


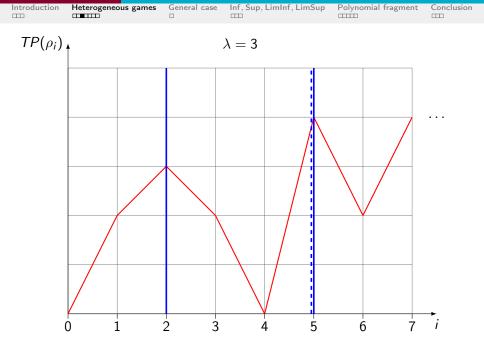












Introduction	Heterogeneous games	General case □	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Window at position k is

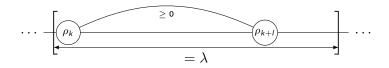
• closed in k + l if $\exists l \in \{1, \ldots, \lambda\}$ s.t. $TP(\rho_{[k,k+l]}) \ge 0$,

Introduction	Heterogeneous games	General case □	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

 $WMP(\lambda, 0)$

Window at position k is

• closed in k + l if $\exists l \in \{1, \ldots, \lambda\}$ s.t. $TP(\rho_{[k,k+l]}) \ge 0$,



Introduction	Heterogeneous games	General case □	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Window at position k is

• closed in k + l if $\exists l \in \{1, \ldots, \lambda\}$ s.t. $TP(\rho_{[k,k+l]}) \ge 0$,

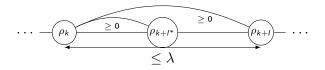
• first-closed in $k + l^*$ if l^* is minimal,

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Window at position k is

• closed in k + I if $\exists I \in \{1, \ldots, \lambda\}$ s.t. $TP(\rho_{[k,k+I]}) \ge 0$,

• first-closed in $k + l^*$ if l^* is minimal,



Introduction	Heterogeneous games	General case □	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Window at position k is

• closed in k + I if $\exists I \in \{1, \ldots, \lambda\}$ s.t. $TP(\rho_{[k,k+I]}) \ge 0$,

• first-closed in $k + l^*$ if l^* is minimal,

■ inductively-closed in k + l if it closed in k + l and this is also the case for each $k' \in \{k + 1, ..., k + l\}$.

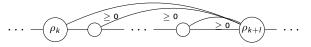
Introduction	Heterogeneous games	General case □	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Window at position k is

• closed in k + I if $\exists I \in \{1, \ldots, \lambda\}$ s.t. $TP(\rho_{[k,k+I]}) \ge 0$,

• first-closed in $k + l^*$ if l^* is minimal,

inductively-closed in k + l if it closed in k + l and this is also the case for each $k' \in \{k + 1, ..., k + l\}$.



Introduction	Heterogeneous games	General case □	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Window at position k is

• closed in k + I if $\exists I \in \{1, \ldots, \lambda\}$ s.t. $TP(\rho_{[k,k+I]}) \ge 0$,

• first-closed in $k + l^*$ if l^* is minimal,

■ inductively-closed in k + l if it closed in k + l and this is also the case for each $k' \in \{k + 1, ..., k + l\}$.

A window that is first-closed is inductively-closed.

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Questions

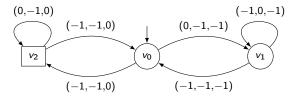
Threshold problem for $\Omega = \bigcap_{m=1}^{n} \Omega_m$ with $\Omega_m \in \{WMP, Inf, Sup, LimInf, LimSup\}$.

- Is the threshold problem decidable ?
- If yes, what is the complexity class ?
- How much memory is needed for winning strategies ?

	Introduction	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Example

 $\Omega = \mathsf{LimSup}(0) \cap \mathsf{Sup}(0) \cap \mathsf{LimSup}(0)$



 σ_1 : Loop on v_1 then switch between v_1 and v_2

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Results

Objectives	Complexity class	Player 1 memory	Player 2 memory	
(CNF/DNF) Boolean combination of MP, MP [Vel15]	Undecidable	infinite	infinite	
(CNF/DNF) Boolean combinaison of		exponential		
WMP, Inf, Sup, LimInf, LimSup	EXPTIME-complete			
Intersection of WMP, Inf, Sup, LimInf, LimSup	EXT TIME-complete			
Intersection of WMP [CDRR15]				
Intersection of Inf, Sup, LimInf, LimSup	PSPACE-complete			
and refinements	See Table of S	Section "PSPACE fragment"		
Intersection of <u>MP</u> [VCD ⁺ 15]	coNP-complete	infinite		
Intersection of MP [VCD+15]	NP ∩ coNP	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	memoryless	
Unidimensional MP [ZP96, BCD ⁺ 11]	INF COINF	memoryless		
Unidimensional WMP [CDRR15]	P-complete	pseudo-polynomial		
$WMP \cap \cap \Omega_m \text{ with } \Omega_m \in \{Inf, Sup, LimInf, LimSup\}$	(Polynomial windows)			
Unidimensional Inf, Sup, LimInf, LimSup [GTW02]	P-complete	memoryless		

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Results

Objectives	Complexity class	Player 1 memory	Player 2 memory
(CNF/DNF) Boolean combinaison of		exponential	
WMP, Inf, Sup, LimInf, LimSup	EXPTIME-complete		
Intersection of WMP, Inf, Sup, LimInf, LimSup			
Intersection of Inf, Sup, LimInf, LimSup	PSPACE-complete		
and refinements	See Table of Sec	Section "Inf, Sup, LimInf, LimSup"	
WMP $\cap \cap \Omega_m$ with $\Omega_m \in \{ Inf, Sup, LimInf, LimSup \}$	P-complete	pseudo-polynomial	
	(Polynomial windows)		

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

1 Introduction

2 Heterogeneous games

3 General case

- 4 Intersection of Inf, Sup, LimInf, LimSup
- 5 Polynomial fragment with one WMP

6 Conclusion

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion
		•			

General result

Objectives	Complexity class	Player 1 memory Play	yer 2 memory
(CNF/DNF) Boolean combinaison of		exponential	
WMP, Inf, Sup, LimInf, LimSup	EXPTIME-complete		
Intersection of WMP, Inf, Sup, LimInf, LimSup			
Intersection of Inf, Sup, LimInf, LimSup	PSPACE-complete		
and refinements	See Table of Section "Inf, Sup, LimInf, LimSup"		mSup"
WMP $\cap \cap \Omega_m$ with $\Omega_m \in \{$ Inf, Sup, LimInf, LimSup $\}$	P-complete	pseudo-polynomial	
	(Polynomial windows)	pseudo-polyno	innai

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

General result

Objectives	Complexity class	Player 1 memory	Player 2 memory
(CNF/DNF) Boolean combinaison of		exponential	
WMP, Inf, Sup, LimInf, LimSup	EXPTIME-complete		
Intersection of WMP, Inf, Sup, LimInf, LimSup			
Intersection of Inf, Sup, LimInf, LimSup	PSPACE-complete		
and refinements	See Table of Sec	ction "Inf, Sup, LimInf, LimSup"	
WMP $\cap \cap \Omega_m$ with $\Omega_m \in \{$ Inf, Sup, LimInf, LimSup $\}$	P-complete	pseudo-polynomial	
	(Polynomial windows)	pseudo-p	orynomiai

Intersection

Membership : use the exponential reduction inspired from [CDRR15] and solve a generalized-Büchi \cap co-Büchi game.

Hardness: EXPTIME-hard even for two WMP objectives [CDRR15].

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion
		•			

General result

Objectives	Complexity class	Player 1 memory	Player 2 memory
(CNF/DNF) Boolean combinaison of			
WMP, Inf, Sup, LimInf, LimSup	EXPTIME-complete	a supervision of the later of t	
Intersection of WMP, Inf, Sup, LimInf, LimSup	exponential		lential
Intersection of Inf, Sup, LimInf, LimSup	PSPACE-complete		
and refinements	See Table of Section "Inf, Sup, LimInf, LimSup"		
WMP $\cap \cap \Omega_m$ with $\Omega_m \in \{$ Inf, Sup, LimInf, LimSup $\}$	} P-complete pseudo-polynomial		olynomial
	(Polynomial windows)	pseudo-p	orynomiai

CNF/DNF Boolean combination

Proof : Use the same reduction as before and solve a Rabin game with d pairs.

Remark: Undecidable even for Boolean combination of $\overline{\text{MP}}$ and $\underline{\text{MP}}$ [Vel15].

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

1 Introduction

- 2 Heterogeneous games
- 3 General case
- 4 Intersection of Inf, Sup, LimInf, LimSup
- 5 Polynomial fragment with one WMP
- 6 Conclusion

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Objectives	Complexity class	Player 1 memory Player 2 memory	
(CNF/DNF) Boolean combinaison of			
WMP, Inf, Sup, LimInf, LimSup	EXPTIME-complete	exponential	
Intersection of WMP, Inf, Sup, LimInf, LimSup		exponential	
Intersection of Inf, Sup, LimInf, LimSup	PSPACE-complete		
and refinements	See next Table		
WMP $\cap \cap \Omega_m$ with $\Omega_m \in \{$ Inf, Sup, LimInf, LimSup $\}$	P-complete	pseudo-polynomial	
	(Polynomial windows)	pseudo-porynonnai	

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Objectives	Complexity class	Player 1 memory	Player 2 memory
(CNF/DNF) Boolean combinaison of WMP, Inf, Sup, LimInf, LimSup	EXPTIME-complete	exponential	
Intersection of WMP, Inf, Sup, LimInf, LimSup			
Intersection of Inf, Sup, LimInf, LimSup	PSPACE-complete		
and refinements	See next Table		
WMP $\cap \cap \Omega_m$ with $\Omega_m \in \{$ Inf, Sup, LimInf, LimSup $\}$	P-complete	' nseudo polynomial	
	(Polynomial windows)		

Proof: Use a polynomial reduction to obtain a game (G', Ω') with

 $\Omega' = \text{GenReach}(U_1, \ldots, U_{i-1}) \cap \text{GenBuchi}(U_i, \ldots, U_{i-1}) \cap \text{CoBuchi}(U_i)^2.$

Solve the generalized-Büchi \cap co-Büchi game and then the generalized-reachability game.

²We have transformed safety objectives to co-Büchi objectives

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Corollary

Inf	Sup	LimInf	LimSup	Complexity	player 1 memory	player 2 memory
any	any	any	any	PSPACE-c	finite-memory	finite-memory
any	≤ 1	any	any	P-complete	finite-memory	memoryless
any	0	any	≤ 1	P-complete	memoryless	memoryless
any	1	0	0	P-complete	memoryless	memoryless

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Corollary

Inf	Sup	LimInf	LimSup	Complexity	player 1 memory	player 2 memory
any	any	any	any	PSPACE-c	finite-memory	finite-memory
any	≤ 1	any	any	P-complete	finite-memory	memoryless
any	0	any	≤ 1	P-complete	memoryless	memoryless
any	1	0	0	P-complete	memoryless	memoryless

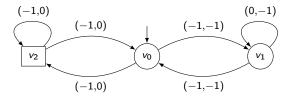
Note the polynomial fragment

Complete analysis

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Example

 $\Omega=\mathsf{Sup}(0)\cap\mathsf{LimSup}(0)$



Player 1 needs memory.

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

1 Introduction

- 2 Heterogeneous games
- 3 General case
- 4 Intersection of Inf, Sup, LimInf, LimSup
- 5 Polynomial fragment with one WMP

6 Conclusion

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Objectives	Complexity class	Player 1 memory Player 2 memory
(CNF/DNF) Boolean combinaison of WMP, Inf, Sup, LimInf, LimSup	EXPTIME-complete	
Intersection of WMP, Inf, Sup, LimInf, LimSup		exponential
Intersection of Inf, Sup, LimInf, LimSup	PSPACE-complete	
and refinements	and refinements Previous Table	
WMP $\cap \cap \Omega_m$ with $\Omega_m \in \{$ Inf, Sup, LimInf, LimSup $\}$		pseudo-polynomial
	(Polynomial windows)	pseudo-porynomiai

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Objectives	Complexity class	Player 1 memory Player 2 memory	
(CNF/DNF) Boolean combinaison of WMP, Inf, Sup, LimInf, LimSup	EXPTIME-complete	exponential	
Intersection of WMP, Inf, Sup, LimInf, LimSup		exponential	
Intersection of Inf, Sup, LimInf, LimSup	PSPACE-complete		
and refinements		Previous Table	
$WMP \cap \cap \Omega_m \text{ with } \Omega_m \in \{Inf, Sup, LimInf, LimSup\}$		pseudo-polynomial	
	(Polynomial windows)	pscudo-polynomiai	

- Two WMP objectives lead to EXPTIME-hardness,
- Several Sup objectives lead to PSPACE-hardness,
- Same kind of objectives in the intersection (*n* fixed for Sup).

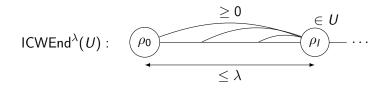
Introduction	Heterogeneous games	General case □	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

 $\mathsf{WMP}\cap\mathsf{Sup}$

Reduction: $(G', \Omega'_1 \cap \Omega'_2)$ with $\Omega'_1 = WMP$ and $\Omega'_2 = Reach$.

Need genuine new tools to deal with windows and the qualitative objectives.

First tool:



Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

ICWEnd^{λ}(*U*)

Algorithm 1 ICWEnd

Require: 1-weighted game structure $G = (V_1, V_2, E, w)$, set $U \subseteq V$, window size $\lambda \in \mathbb{N} \setminus \{0\}$ **Ensure:** Win₁^{ICWEnd^{λ}(U)} 1: for all $v \in V$ do if $v \in U$ then 2: 3: $C_0(v) \leftarrow 0$ 4: else 5: $C_0(v) \leftarrow -\infty$ 6: for all $l \in \{1, \ldots, \lambda\}$ do 7: for all $v \in V_1$ do $C_{l}(v) \leftarrow \max_{(v,v') \in E} \{w(v,v') \oplus \max\{C_{0}(v'), C_{l-1}(v')\}\}$ 8: 9: for all $v \in V_2$ do $C_{l}(v) \leftarrow \min_{(v,v') \in E} \{w(v,v') \oplus \max\{C_{0}(v'), C_{l-1}(v')\}\}$ 10: 11: return $\{v \in V \mid C_{\lambda}(v) > 0\}$

Introduction	Heterogeneous games	General case □	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion	
GDEnd	$^{\lambda}(U)$					

Second tool: Generalization of the p-attractor of a set U while dealing with windows.

Require: 1-weighted game structure $G = (V_1, V_2, E, w)$, subset $U \subseteq V$, window size $\lambda \in \mathbb{N} \setminus \{0\}$ **Ensure:** Win₁^{GDEnd^{λ}(U)(G) 1: $k \leftarrow 0$ 2: $X_0 \leftarrow U$ 3: **repeat** 4: $X_{k+1} \leftarrow X_k \cup \text{ICWEnd}(G, X_k, \lambda)$ 5: $k \leftarrow k+1$ 6: **until** $X_k = X_{k-1}$}

7: return X_k

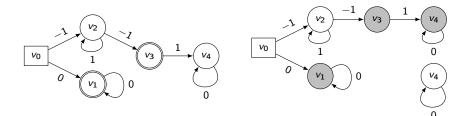
Introduction	Heterogeneous games	General case □	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

$\mathsf{WMP}\cap\mathsf{Reach}$

- Use algorithm GDEnd^{λ}(U') on a modified graph.
 - U' is the set of vertices that denote that we have visited U and that are winning for the WMP objective.

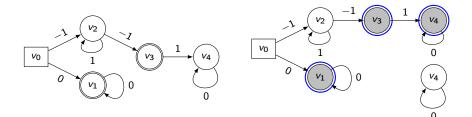
Introduction	Heterogeneous games	General case □	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

$\mathsf{WMP}\cap\mathsf{Reach}$



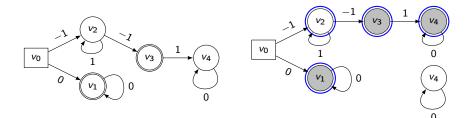
Introduction	Heterogeneous games	General case □	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

$\mathsf{WMP} \cap \mathsf{Reach}$



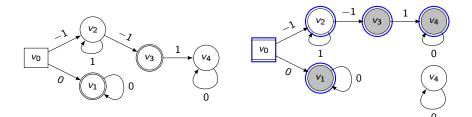
Introduction	Heterogeneous games	General case □	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

$\mathsf{WMP} \cap \mathsf{Reach}$



Introduction	Heterogeneous games	General case □	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

$\mathsf{WMP} \cap \mathsf{Reach}$



Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

1 Introduction

- 2 Heterogeneous games
- 3 General case
- 4 Intersection of Inf, Sup, LimInf, LimSup
- 5 Polynomial fragment with one WMP

6 Conclusion

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Overview

Objectives	Complexity class	Player 1 memory	Player 2 memory
(CNF/DNF) Boolean combination of MP, MP [Vel15]	Undecidable	infinite	infinite
(CNF/DNF) Boolean combinaison of			
WMP, Inf, Sup, LimInf, LimSup	EXPTIME-complete		
Intersection of WMP, Inf, Sup, LimInf, LimSup	EXT TIME-complete	expon	iential
Intersection of WMP [CDRR15]			
Intersection of Inf, Sup, LimInf, LimSup	PSPACE-complete]	
and refinements	See Table of Section "Inf, Sup, LimInf, LimSup		nf, LimSup"
Intersection of <u>MP</u> [VCD ⁺ 15]	coNP-complete	infinite	
Intersection of MP [VCD+15]	NP ∩ coNP	mmite	memoryless
Unidimensional MP [ZP96, BCD ⁺ 11]		memoryless	
Unidimensional WMP [CDRR15]	P-complete	pseudo-polynomial	
$WMP \cap \cap \Omega_m \text{ with } \Omega_m \in \{Inf, Sup, LimInf, LimSup\}$	(Polynomial windows)		
Unidimensional Inf, Sup, LimInf, LimSup [GTW02]	P-complete	memo	oryless

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Future Work

- General results for ω -regular objectives,
- General results for multidimensional lexicographic games,
- Mix non ω -regular objectives,

Value of WMP.

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Thank you for your attention

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Lubos Brim, Jakub Chaloupka, Laurent Doyen, Raffaella Gentilini, and Jean-François Raskin.

Faster algorithms for mean-payoff games.

Formal Methods in System Design, 38(2):97-118, 2011.

Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin.

Generalized mean-payoff and energy games.

In Kamal Lodaya and Meena Mahajan, editors, *IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai, India,* volume 8 of *LIPIcs,* pages 505–516. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin.

Looking at mean-payoff and total-payoff through windows.

Inf. Comput., 242:25-52, 2015.

Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors.

Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

Marcin Jurdzinski.

Deciding the winner in parity games is in UP n co-up. *Inf. Process. Lett.*, 68(3):119–124, 1998.

Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, Alexander Moshe Rabinovich,

and Jean-François Raskin.

The complexity of multi-mean-payoff and multi-energy games. *Inf. Comput.*, 241:177–196, 2015.

Yaron Velner.

Robust multidimensional mean-payoff games are undecidable.

In Andrew M. Pitts, editor, Foundations of Software Science and Computation Structures - 18th International Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9034 of Lecture Notes in Computer Science, pages 312–327. Springer, 2015.

Quentin Hautem UMONS

Introduction	Heterogeneous games	General case	Inf, Sup, LimInf, LimSup	Polynomial fragment	Conclusion

Uri Zwick and Mike Paterson.

The complexity of mean payoff games on graphs.

Theor. Comput. Sci., 158(1&2):343-359, 1996.