Large-eddy simulations of wind turbine wakes

P. Bénard¹, <u>A. Viré²</u>, V. Moureau¹, G. Lartigue¹, L. Bricteux³

¹ CORIA (France)
² TU Delft, Wind Energy Section (The Netherlands)
³ University of Mons, Faculty of Engineering (Belgium)

SES2018, Madrid – 12 October 2018

Outline

- Scope
- Numerical method
- Results
 - Tjaereborg wind turbine
 - NTNU Blind Test experiment
 - Interaction with a squared building
- Conclusions

Introduction on wake modelling

- Challenge
 - Complex geometry
 - Large range of spatial and temporal scales
- Computational modelling
 - DNS not affordable
 - Low dispersion and diffusion errors needed
- State-of-the-art:
 - Large-eddy simulations (LES)
 - Actuator line model
 - Structured mesh: missing hub, nacelle, tower + flat terrain
 - Second-order schemes: poor resolution of the far wake

Research questions

- How accurate can unstructured meshes be for this problem?
- What is the importance of high-order schemes?
- What is the influence of geometrical details?
- What is the effect of terrain topography

Numerical method

- YALES2 LES Solver
 - Developed at CORIA
 - Incompressible Navier-Stokes equations (variable density) solved with a projection method
 - 4th-order finite-volume and 4th order RK time integration
 - Unstructured meshes with adaptive grid refinement
 - Massively parallelised (>32,000 procs)
 - Additional applications to two-phase flows, combustion, etc.

Numerical method

- Actuator-line model
 - Blades are replaced by lines with a prescribed motion
 - Forces are computed on each point of the line
 - Forces are interpolated on the Eulerian grid
 - Used in the momentum conservation equation

Results Tjaereborg turbine

- Geometry
 - NACA4418 profiles 3-blade rotor
 - D = 61 m
 - Hub height = 60 m
- Operating conditions
 TSR = 7.07
- LES SIGMA model Nicoud et al. *Physics of Fluids (2011)*

The Tjaereborg wind turbine, Final report, Power Station Engineering, NEI-DK-1018 (1992)

	M1	M2	M3
# nodes	0.77M	6M	49.3M
⊿x/D in rotor zone [-]	0.031	0.015	0.008
# particles/blade	14	28	57
CPU hours / rotation	0.24	5.8	129.3

Results Tjaereborg turbine

Turbulent kinetic energy

- Geometry
 - S826 profile 3-blade rotor with D = 0.894 m
 - Circular nacelle and semi-spherical hub at z = 0.817 m
 - 4-cylinder tower
 - Wind tunnel $L \times I \times h = 12 \times 3 \times 2 m$
- Operating conditions
 - TSR = 6
 - U_{inf} = 10 m/s

[1] Eriksen et. al., Energy Procedia, 2012
 [2] Krogstad et. al., Renawable Energy, 2013
 [3] Sorensen et. al., Philosophical Transactions A, 2017

• Domain: 12 x 3 x 2m

 $\mathsf{U}_{\mathsf{inf}}$

	Mesh characteristics	
	# elements	130M
	⊿x/D in rotor zone [-]	0.015
	# particles/blade	32
ŤU	Delft	

No tower, no nacelle, just wind tunnel

0.0

50.0

100.0

150.0

200.0

With tower, nacelle and wind tunnel

- The profiles loose symmetry
- Better agreement with experiments

Velocity deficit **Turbulent kinetic energy** x/D = 1x/D = 5x/D = 1x/D = 5x/D = 3x/D = 32.02.01.51.51.01.00.50.5 $y/R\left[-\right]$ $\int y/R[-]$ 0.0 0.0-0.5-0.5-1.0-1.0-1.5-1.5-2.0-2.0 10^{-2} 10^{-6} 10^{-2} 10^{-6} 10^{-4} -0.2 0.0 0.2 0.4 0.6 0.0 0.20.4 0.60.0 0.20.4 10^{-6} 10^{-4} 10^{-4} 10^{-2} $k/U_{\infty}^{2}[-]$ $1 - U/U_{\infty}[-]$ exp order 4 exp order 4 1111 order 2 order 1 order 1 order 2

Results Effect of topography

- Rotor Diameter D=H/2
- 65M grid points (refined), 32 points per blades, 12.3K cpu hours
- Re=6.6x10^5
- Dynamic Smagorinsky model with smooth wall functions

Results Effect of topography

- Detached boundary layer interacts with wind turbine wake
- Structures emanate from the ground

Conclusions

- Validated LES-AL framework in YALES2 Benard et al., Computers & Fluids 173:133-139 (2018)
- Preliminary results on the interaction with urban environment and application to realistic turbines
- Future work
 - Further work on effect of topography
 - Realistic wind conditions
 - Extension to wind turbine farms
 - Role of adaptive grid refinement
 - Other wind energy concepts

Acknowledgments

