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Introduction. The exact resolution of large-scale instances of combinatorial optimization problems
(COPs) requires a huge amount of computational resources. The first exact resolution of Ta056 [2],
an instance permutation flow-shop scheduling problem (FSP) [3], illustrates the required compu-
tational effort. Using B&B@Grid, a B&B algorithm designed for computational grids, the optimal
solution was found with proof of optimality within 25 days, exploiting on average 328 processors
belonging to 9 distinct clusters of the nation-wide experimental testbed Grid’5000 3. In 2006, the
most of the processors in Grid’5000 were either mono-core or dual-core CPUs. Today, according to
the latest Top500 (June 2017) ranking of the world’s largest supercomputers 4, 93% of the Top500
systems use processors at least 8 cores and 27% use processors with 18 or more cores. On the road
towards exascale computing, the ranking confirms the trend towards increasingly heterogeneous
systems, as a total of 91 systems on the list use accelerator/co-processor devices, 80% of which
are GPUs. In addition to their energy-efficiency, many-core devices have the potential to signif-
icantly boost the performance of traditional processors. This motivated us to revisit the design
and implementation of B&B for hybrid multi-core and multi-GPU platforms, from single-node sys-
tems to large-scale heterogeneous high performance computing clusters. [1, 5, 6] Our study focuses
on permutation-based COPs using the FSP, the Quadratic Assignment Problem (QAP) and the
n-Queens puzzle problem as test-cases.

B&B for heterogeneous CPU/GPU clusters. The B&B algorithm perform an implicit enumeration
of the search space by dynamically constructing and exploring a tree. This is done using four oper-
ators: branching, bounding, selection and pruning. The branching operator recursively decomposes
the initial problem into smaller subproblems and a bounding function computes lower bounds on
the optimal cost of these subproblems. The pruning operator uses these lower bounds to eliminate
subproblems that cannot lead to an improvement of the best solution found so far. The selection
operator guides the tree-traversal by returning the next subproblem to be processed according to a
predefined strategy. B&B is a highly irregular application, both at the application level and at the
instruction level. Because of the unpredictable pruning of branches, the shape of the explored tree
is highly irregular. At a lower level, the combinatorial nature of evaluated subproblems leads to
diverging control flows and irregular memory accesses. Most of the challenges one has to face when
mapping B&B onto massively parallel architectures are immediate consequences of this irregularity.
Namely, the main challenges we identified challenges include:

– the efficient storage and management of a huge number of subproblems, dynamically generated
at runtime,

– the dynamic distribution of these subproblem among workers, i.e. load balancing a highly
irregular application in a large-scale heterogeneous environment,

– the choice of the appropriate parallelization model, as the latter is strongly influenced by both
the characteristics of the problem to be solved and the target execution platform,

– and the efficient exploitation of SIMD processing capabilities, a key performance lever of ac-
celerator devices, at odds with he irregular nature of B&B.

Each of these challenges calls for answers that are, to a certain extent, hardware-specific and/or
problem-specific. For the efficient storage and management we uses an innovative data structure
3 https://www.grid5000.fr/
4 http://www.top500.org
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dedicated to permutation problems, called Integer-Vector-Matrix (IVM) [4] instead of conventional
data structures (e. g. stacks, deques, priority queues). The principle of parallel IVM-based B&B is
to have several independent B&B processes use their private IVM for the exploration of different
parts of the search space. The latter are compactly encoded as intervals, using a one-to-one cor-
respondence between the set of n-element permutations and the integer interval [0, n![. When the
bounding operation is moderately time-consuming or when the latter is coprocessor-accelerated,
the efficient management of subproblems is indeed a critical component of B&B. We demonstrate
that IVM-based B&B algorithms can significantly outperform their counterparts based on conven-
tional data structures. Also, the IVM data structure allows to implement the entire algorithm on
GPUs, completely bypassing the CPU and thus reducing overhead from CPU-GPU data transfers.

The compact encoding of the search space can be used to design efficient load balancing mech-
anisms. In order to dynamically distribute the irregular B&B among processing cores, IVM-based
B&B processes exchange intervals, used as work units, in a work stealing approach. However, the
design of work stealing strategies must take hardware-related constraints (e. g. the availability of
synchronization mechanisms) and the execution model (synchronous or asynchronous) into account.
Thus, different, but compatible, work stealing mechanisms are proposed for multi-core-based and
GPU-centric B&B. Using hierarchical work stealing approaches, inter-GPU and inter-node load
balancing mechanisms for single-node multi-GPU systems and hybrid distributed clusters are pre-
sented.

Performance optimization at the instruction-level, i. e. efficient SIMD processing, is strongly
problem-dependent. Targeting Intel multi-core and many-integrated core (MIC) processors, the
CPU-based B&B uses a vectorized implementation of the FSP bounding operator. In order to
improve control flow efficiency and reduce instruction replay overhead, the GPU-centric B&B uses
mapping schemes specifically adapted to each B&B operator. Moreover, the GPU-centric B&B uses
two different parallelization models, depending on the granularity of the problem being solved.

Experimental Evaluation. Experimental results demonstrate the scalability of the approach at
different levels, with respect to the number of CPU cores, GPU cores, GPU devices and hetero-
geneous compute nodes. In particular the use of multi-GPU systems and large clusters allows to
solve instances whose exact resolution is otherwise impractical. For a class of 20 jobs/20 machines
FSP instances with sequential execution times between 15 minutes and 22 hours, the resolution
time using four GPUs ranges from 1 second to 1 minute, i. e. an improvement of three orders of
magnitude compared to a single CPU core. The aforementioned large FSP instance Ta056, defined
by 50 jobs and 20 machines is solved within 9 hours on a cluster containing 36 Pascal P100 GPUs
and 18 Power8+ CPU (for a total of 180 CPU cores and 130 000 GPU cores). Fig. 1 shows the
execution time for instance Ta056 on different computing platforms.

Resolution of Flowshop instance Ta056
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Fig. 1. Resolution of FSP instance Ta056 (6.5×1012 evaluated nodes). 2006: B&B@Grid ([2]), 2015: multi-
GPU-B&B(4xGTX980), 06/2017: distributed GPU-B&B (16xGTX1080Ti), 08/2017 hybrid distributed
B&B (36xP100 + 18xPower8+).
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