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Abstract

As a step towards quantization of Higher Spin Gravities we construct the presymplectic AKSZ sigma-
model for 4d Higher Spin Gravity which is AdS/CFT dual of Chern–Simons vector models. It is shown 
that the presymplectic structure leads to the correct quantum commutator of higher spin fields and to the 
correct algebra of the global higher spin symmetry currents. The presymplectic AKSZ model is proved to 
be unique, it depends on two coupling constants in accordance with the AdS/CFT duality, and it passes 
some simple checks of interactions.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

Quantization of Higher Spin Gravities (HSGRA) is an important open problem together with 
the problem of constructing more viable HSGRA. Concrete quantum checks of HSGRA require 
concrete models. Topological theories in 3d , which are higher spin extensions of Chern–Simons 
formulation of 3d gravity [1–4] or 3d conformal gravity [5–7], are well-behaved perturbatively 
due to the lack of any propagating degrees of freedom, but their non-perturbative definition re-
quires further study, see e.g. [8]. Amplitudes of 4d conformal HSGRA [9–11] were studied in 
[12–14]. The most elaborate checks have been performed for Chiral HSGRA [15–19], which was 
shown to be one-loop finite [18–20]. In addition, there is a number of interesting computations of 
vacuum one-loop corrections [21–30]. Finally, the one-loop correction to the four-point function 
in the bulk dual of the free vector model can be reduced to a CFT computation and seems to be 
consistent with the vacuum one-loop results [31].2

The only class of perturbatively local HSGRAs with propagating massless fields and an action 
seems to be given by Chiral HSGRA and its various truncations. This was proved for flat space 
in [17] and it is likely to be the case for AdS4 as well. However, Chiral Theory does not have a 
covariant action at the moment and this hampers the study of quantum corrections. Furthermore, 
the chiral theory constitutes [34] only a subsector of the HSGRA that is dual to Chern–Simons 
Matter theories [35–40]. The latter HSGRA is known to feature non-localities beyond what is 
admissible by the field theory methods [41–45].

Nevertheless, the bulk dual of vector models [46,47] can be approached from the opposite end: 
abandoning perturbative locality one can get a very explicit description of this HSGRA at the 
level of formal algebraic structures; hence the name “Formal HSGRA”. In practice, this means 
that one can construct an L∞-algebra that extends a given higher spin algebra. Equivalently, one 
can think of the corresponding Q-manifold, where Q — an odd, nilpotent Q2 = 0 vector field 
— can be expanded as Q = f ABCwBwC∂/∂wA + ... with f ABC being the structure constants of a 
higher spin algebra. The same idea can be encoded in the formal dynamical system [48]

EA ≡ dwA −QA(w)= 0 , (∗)

2 In this regard it is worth mentioning the collective dipole approach, see e.g. [32,33], which is bound to reproduce the 
correct holographic correlation functions and all the other observables of vector models. However, its relation to the field 
theory approach is to be clarified [33].
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which is a sigma-model with the Q-manifold as a target and the space-time manifold as a base. It 
is rather remarkable that the Q’s of HSGRAs remain non-trivial despite non-localities and non-
local redefinitions hidden in the very definition of Q. With the proviso that the equations are only 
formally consistent and should not be taken at face value as PDE’s or as field’s theory equations, 
we can continue studying the formal structures restricted by the higher spin symmetries with 
the hope that we either find a ‘canonical’ Q with certain prescriptions that would lead to a 
reasonable field theory or the formal approach itself will allow one to define the theory as to be 
able to compute various physical observables.

The classical equations of motion (∗) are non-Lagrangian as they stand. There is no theorem 
prohibiting the action principle for HSGRA extended with suitable auxiliary fields; and yet no 
one has succeeded in formulating it. This prevents applying the standard quantization methods 
(canonical or path-integral) to this class of field-theoretical models. Therefore, it seems reason-
able to try other approaches to the quantization problem that are not so closely related to the 
Lagrangian or Hamiltonian form of classical dynamics. Let us stress that all holographic HS-
GRAs are Lagrangian theories, more or less by definition. The actions, however non-local they 
may be, can be reconstructed [42] from the CFT correlators. At the free level such actions reduce 
to the Fronsdal action [49] for an appropriate set of fields.

A possible alternative to the conventional quantization methods has been proposed long ago 
in [50]. It is based on the concept of a Lagrange anchor, which can be regarded as a covariant 
counterpart of (degenerate) Poisson brackets. In the non-degenerate case, the Lagrange anchor is 
just inverse to the integrating factor in the inverse problem of the calculus of variations. Degener-
acy manifests itself in the fact that not all classical degrees of freedom may fluctuate in quantum 
theory; some of them remain purely classical. Nonetheless, it is possible to define a full-fledged 
path integral for transition amplitudes and quantum averages. With the help of Lagrange anchor 
every (non-)Lagrangian field theory in d dimensions can equivalently be reformulated as a topo-
logical Lagrangian theory in d + 1 dimensions. Applying then the standard BV quantization to 
the latter induces a quantization of the former (non-)Lagrangian theory. It should be noted that 
the extension of a (non-)Lagrangian theory on the boundary to a topological Lagrangian theory 
in the bulk depends crucially on the choice of Lagrange anchor and different choices may result 
in different quantizations of one and the same classical theory.

In the HSGRA context, the quantization method above was first considered in [51]. How-
ever, the Lagrange anchor behind the topological model of [51] does not reproduce the standard 
propagators for free higher spin fields in Fronsdal’s theory. Therefore, the relation between the 
two theories is unclear beyond the classical equations of motion. In [52], the canonical Lagrange 
anchor was constructed for the subsystem of (∗) that describes a free scalar field. Contrary to 
the Lagrange anchor of the work [51], it involves an infinite number of spacetime derivatives, 
and it seems unlikely that one can remove them all by the inclusion of higher spin fields and 
interactions. As shown in [53], the Lagrange anchors for higher spin fields described by the 
Bargmann–Wigner equations also contain higher derivatives, the number of which increases with 
spin. In the two most recent papers [54], [55] a similar quantization method was implemented to 
reproduce propagators for free higher spin fields.

In the present paper, we consider another approach to quantizing (non-)Lagrangian theories. 
It employs the concept of a covariant presymplectic structure introduced in [56], [57]. The no-
tion of presymplectic structure is, in a sense, dual to that of Lagrange anchor; both coincide 
for Lagrangian theories, being non-degenerate and inverse to each other. The degeneracy of 
a presymplectic structure reduces the algebra of physical observables admitting quantization. 
More precisely, the kernel distribution of the presymplectic structure must annihilate quantiz-
3
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able observables. Hence, the bigger the kernel, the smaller the algebra of quantum observables. 
Since all the gauge symmetry generators of the classical equations of motion belong to the 
kernel distribution, the quantizable observables are automatically gauge-invariant. As with the 
Lagrange anchor, classical equations of motion do not specify a compatible presymplectic struc-
ture uniquely, and different choices may lead to different algebras of quantum observables. While 
the Lagrange anchor aims at the path-integral quantization of (non-)Lagrangian dynamics, the 
concept of presymplectic structure is more adapted to the deformation quantization.

As was proved in [115], each covariant presymplectic structure defines and is defined by some 
Lagrangian. The corresponding Euler–Lagrange equations, however, are weaker than the original 
ones whereby admitting more solutions. That is why we call such Lagrangians ‘weak’. One may 
regard a weak Lagrangian as a solution to the inverse problem of the calculus of variations where 
the integrating factor is not necessarily invertible. Finding a covariant presymplectic structure is 
thus fully equivalent to constructing a weak Lagrangian.

We will show that for 4d HSGRA the corresponding weak Lagrangian has the form of an 
AKSZ sigma-model3 [62], or more precisely, its presymplectic counterpart [60], [61]. For free 
higher spin fields such a weak Lagrangian was proposed in [63]. There is a number of immediate 
advantages of the presymplectic approach. Among these are (i)minimality: one does not have to 
introduce any auxiliary fields on top of what are already present in Eq. (∗); (ii) background in-
dependence and gauge invariance: we do not have to pick any particular vacuum, like AdS4 and 
the gauge symmetry is fully taken into account to every order in the weak curvature expansion; 
(iii) relation to the canonical quantization and to the Lagrangian formulation that HSGRAs must 
have in principle; (iv) a complete classification and an explicit description of admissible presym-
plectic structures in terms of the Chevalley–Eilenberg cohomology of the underlying higher spin 
algebra, which can be reduced to a much simpler Hochschild cohomology and, finally, computed 
with the help of the techniques of [64].

The main results of this paper can be summarized as follows:

• we prove the existence of the weak action – presymplectic AKSZ sigma-model – for 4d
formal HSGRA and construct the first few terms in the weak-field expansion. Higher order 
corrections are proved to be unobstructed and can be found with the help of general tech-
niques from [65–68]. The action depends on one additional coupling constant in accordance 
with conjectured duality to Chern–Simons vector models [35];

• In arbitrary dimension d the presymplectic AKSZ action for HSGRA begins with

S =
∫ 〈

V(ω, ...,ω,C) � (dω − ω �ω)〉 +O(C2) ,

where ω and C are a connection and a matter field valued in a given higher spin algebra, 
V(ω, . . . , ω, C) is a cocycle of this higher spin algebra and 〈−〉 is the invariant trace;

• for free fields we show that the corresponding presymplectic structure gives the correct quan-
tization for fields with s ≥ 1 (the scalar field’s presymplectic structure starts to contribute 
only at the next order). It also gives the correct commutation relations for the global higher 
spin symmetry currents. The action correctly reproduces the free field dynamics, i.e., on 
AdS4 it turns to be a genuine action, rather than a weak action;

3 Historically, the importance of the AKSZ construction for the development of action principles for HSGRA was 
pointed out in [51], see also [58,59], which have been an important reference frame for our work even though we deviate 
significantly from these papers by considering the presymplectic case, where the groundwork has been laid in [60,61].
4
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• it is shown that the presymplectic structure obtained from the Fradkin–Vasiliev part [69]
of the cubic action4 agrees with the one resulting from the presymplectic AKSZ model, 
as well as the cubic vertex does. Therefore, the perturbative analysis performed up to the 
cubic level over the anti-de Sitter background is consistent with the background independent 
considerations of this paper. We also clarify the origin of the action.

The paper is organized as follows. In the first sections we, to a large extent, review all the required 
material: formal dynamical systems are defined in Sec. 2; the details specific to HSGRA in 
four dimensions are introduced in Sec. 3; we discuss presymplectic AKSZ sigma-models in 
Sec. 4 with an example of gravity elaborated on. The covariant phase space of presymplectic 
models is discussed in Sec. 5. The central section, to which a skilled reader can immediately 
scroll down, is Sec. 6, where we present the presymplectic AKSZ action for 4d HSGRA and 
discuss its properties and relations to other results in the literature. Sec. 7 elaborates on the 
general properties of the presymplectic AKSZ models over the maximally symmetric higher 
spin backgrounds. The main statements of Sec. 6 are supported by technical Appendices A–D, 
where all necessary cohomology groups are computed.

2. Formal dynamical systems

The formal dynamical systems we are going to discuss are defined in terms of Q-manifolds, 
see e.g. [71–73]. By a Q-manifold we understand a Z-graded manifold endowed with an inte-
grable vector field Q of grade5 one. Since Q is odd, the integrability condition

[Q,Q] = 2Q2 = 0 (2.1)

is a non-trivial restriction on Q. In mathematics, such vector fields Q are usually called homo-
logical or Q-structure [62,74]. Let us present some typical constructions of Q-manifolds that we 
will need later for reference.

Example 2.1. A classical example of a Q-manifold is the ‘shifted’ tangent bundle T [1]M of 
an ordinary manifold M ; here, the tangent space’s coordinates θμ are assigned the grade one, 
while the local coordinates xμ on the base manifold M have grade zero. Let M denote the total 
space of T [1]M considered as a graded manifold. Then the algebra of ‘smooth functions’ on M
is clearly isomorphic to the exterior algebra of differential forms �•(M). The isomorphism is 
established by the relation

C∞(M) � f (x, θ) ⇐⇒ f (x, dx) ∈�•(M) . (2.2)

Upon this identification the de Rham differential on �•(M) passes to the canonical homological 
vector field

d = θμ ∂

∂xμ
(2.3)

4 This action contains a number of non-abelian cubic interactions that are consistent at the cubic level with the gauged 
higher spin algebra. However, it is not a complete action of the HSGRA up to the cubic level. The complete cubic action 
was found in [70] and with one more parameter available only in 4d in [34].

5 Here prefer the term grade to a more conventional degree; the latter is reserved to the “degree of a differential form”. 
The grade of a homogeneous element a is denoted by |a| ∈Z, e.g. |Q| = 1.
5
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on M. The cohomology of the operator d :C∞(M) → C∞(M) is obviously isomorphic to the 
de Rham cohomology of M .

Example 2.2. Let G = ⊕
n∈Z Gn be a graded Lie algebra with a homogeneous basis {eA} and the 

commutation relations [eA, eB ] = f CABeC . Then one can endow the vector space G[1], viewed as 
a Z-graded manifold, with the quadratic homological vector field

Q= −1

2
(−1)|eA|(|eB |−1)ξAξBf CAB

∂

∂ξC
. (2.4)

Here ξA are global coordinates on G[1] relative to the basis {eA}. By definition, |ξA| = −|eA| +1. 
It is easy to see that the condition Q2 = 0 is exactly equivalent to the Jacobi identity in G. 
Endowed with the action of Q, the space of smooth functions C∞(G[1]) becomes a cochain 
complex computing the cohomology of the Lie algebra G with trivial coefficients, the Chevalley–
Eilenberg (CE) complex.

Extending C∞(G[1]) to the algebra T (G[1]) of smooth tensor fields on G[1] wherein Q acts 
through the operator of Lie derivative LQ = iQd − diQ, we obtain a more general CE complex 
with coefficients in the tensor powers of adjoint and coadjoint representations of the Lie algebra 
G. For instance, considering the action of Q in the space of smooth vector fields on G[1] yields 
the standard CE complex with coefficients in the adjoint representation. The cohomology of this 
complex controls both the deformation of the homological vector field (2.4) and the underlying 
Lie algebra G. For our present purposes, the most interesting is the algebra of exterior differen-
tials forms �•(G[1]). This corresponds to the CE complex with coefficients in the symmetrized 
tensor powers S•G∗ of the coadjoint module of G, see Sec. 6.

Example 2.3. Given a Q-manifold (M, Q), consider the shifted tangent bundle T [n]M . The 
operator of Lie derivative LQ allows one to extend the homological vector Q from M to the total 
space of T [n]M considered as a Z-graded manifold. Let us denote the latter by M. If xi are 
local coordinates on M and vi are linear coordinates in the tangent spaces TxM relative to the 
natural frame {∂/∂xi}, then the extended vector field on M is given by

Q =Qi ∂
∂xi

+ (−1)nvj
∂Qi

∂xj

∂

∂vi
. (2.5)

By definition, |vi | = |xi | + n. We will refer to the Q-manifold (M, Q) as the first (tangent) 
prolongation of (M, Q). One can obviously iterate this construction producing bigger and bigger 
Q-manifolds. Moreover, the shifted tangent bundle may well be replaced by an arbitrary tensor 
bundle of M . The resulting Q-manifolds are particular examples of Q-vector bundles [75], [76].

In order to define a formal dynamical system we need a pair of Q-manifolds: the source and 
the target. As a source manifold M we always take the total space of the shifted tangent bundle 
T [1]M of a space-time manifold M equipped with the canonical homological vector field (2.3). 
Let N denote a target manifold with homological vector field Q. We will treat N in the sense of 
formal differential geometry [77], identifying ‘smooth functions’ on N with formal power series 
in globally defined coordinates wA:

wAwB = (−1)|wA||wB |wBwA .

In particular, the homological vector field Q is given by the series
6
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Q=
∞∑
n=0

wAn · · ·wA1QAA1···An
∂

∂wA
(2.6)

for some structure constants QAA1···An . Besides, two more assumptions about the structure of the 
target Q-manifold N will be made.

1. There are no coordinates of negative grade among {wA}, so that the manifold N is actually 
N-graded.

2. The expansion (2.6) starts with quadratic terms in coordinates, that is, QA =QAA1
= 0. Such 

homological vector fields Q are called minimal.

Notice that the structure constants QAA1A2
of a minimal homological vector field (2.6) satisfy the 

Jacobi identity of a graded Lie algebra as in Example 2.2.
Given the pair of Q-manifolds above, we identify the classical fields with the smooth maps 

w : T [1]M → N of degree zero. In terms of local coordinates, each map w is given by a 
set of relations wA = wA(x, θ), where wA(x, θ) are smooth functions of x’s and θ ’s with 
|wA(x, θ)| = |wA|. The true field configurations are, by definition, those relating the homologi-
cal vector fields, i.e., w∗(d) =Q. Upon identification (2.2), the last condition takes the form of a 
system of differential equations, namely,

dwA =
∞∑
n=2

QAA1···Anw
An ∧ · · · ∧ wA1 . (2.7)

The l.h.s. is given here by the differentials of the forms wA ∈�•(M), while the r.h.s. involves 
exterior products of the same forms. Equations (2.7) are thus adopted as field equations for a 
collection of form fields on M . In what follows we will systematically omit the wedge product 
sign and write Eq. (2.7) simply as

EA ≡ dwA −QA(w)= 0 , (2.8)

QA(w) being exterior polynomials in the w’s. Applying now the de Rham differential to (2.8), 
one can readily see that the field equations contain no hidden integrability conditions whenever 
Q2 = 0. Besides general covariance, system (2.8) enjoys the gauge symmetry transformations

δεw
A = dεA + εB∂BQA , δεE

A = (−1)|wA|+|wB |εC
(
∂B∂CQ

A
)
EB , (2.9)

where the infinitesimal gauge parameters εA are differential forms of appropriate degrees. Actu-
ally, the general coordinate transformations of the form fields wA are specifications of (2.9). If 
ξ is a vector field generating a one-parameter group of diffeomorphisms of M , then by Cartan’s 
formula

δξw
A = LξwA = diξwA + iξ dwA ≈ d(iξwA)+ iξQA(w) . (2.10)

Hereinafter, the sign ≈ means “equal when the equations of motion hold”, i.e., on-shell. There-
fore we can set εA = iξwA to reproduce the action of an infinitesimal diffeomorphism ξ on the 
solution space to the field equations (2.8).

Remark 2.4. The gauge symmetry (2.9) is known to be strong enough to gauge away all local 
degrees of freedom for any finite collection of fields {wA} provided that dimM > 1. The last fact 
can be seen as follows. Notice that each form field wA of degree > 0 comes ‘with its own’ gauge 
7
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parameter εA such that degwA = deg εA+ 1. In a topologically trivial situation, the correspond-
ing gauge transformation δεwA = dεA+ . . . allows one to remove all physical modes of the field 
wA subject to the first-order differential equation dwA = . . . This suggests that all physical de-
grees of freedom are accommodated in the zero-form fields, let us enumerate them wa . Without 
a detailed analysis it is clear that the solution space of the equations dwa = . . . is parameterized 
by constants ca whose number is equal to the number of zero-forms wa’s.6 Therefore if we are 
interested in non-topological field theories, i.e., models with propagating degrees of freedom, 
then we have to consider infinite multiplets of zero-form fields.

Remark 2.5. It is known that any system of (gauge) partial differential equations can be brought 
into the form (2.7) at the expense of introducing an infinite number of auxiliary fields [78,79] and 
references therein. In the context of HSGRA this is known as an unfolded representation [48,80]. 
Of course, care must be exercised in treating (2.7) as a system of partial differential equations 
whenever an infinite number of fields and interaction vertices are involved into the game. That 
is why we refer to (2.7) as a formal dynamical system. In this paper, we leave aside all subtle 
analytical issues related to the field equations (2.7) focusing upon their formal consistency.

Remark 2.6. Notice that the system remains consistent if we omit all the vertices in the r.h.s. of 
(2.7) except the quadratic ones. The resulting system is defined solely in terms of the underlying 
Lie algebra G. Although the truncated equations of motion are still non-linear, one may think of 
them as describing free field dynamics; the ‘genuine’ interaction vertices start form the cubic or-
der. From this perspective switching on a consistent interaction amounts to deforming a quadratic 
homological vector field. Hence, all non-trivial interactions admitted by a free gauge system are 
fully controlled by the cohomology of the graded Lie algebra L as discussed in Example 2.2. 
This leads to a refined version of the Nöether procedure (see e.g. [81]) and may be regarded as a 
main technical advantage of the formal dynamical system approach. We will illustrate this point 
in the next section.

3. Higher spin gravity in four dimensions

The gauge theory of interacting higher spin fields delivers the major class of formal dynamical 
systems with propagating degrees of freedom. Being general covariant and involving a massless 
field of spin two, they are usually referred to as Higher Spin Gravities (HSGRA). As explained in 
the previous section, the structure of the corresponding equations of motion is largely controlled 
by the underlying graded Lie algebra G.

Below we specify the algebra G for the case of 4d HSGRA.

(1) G is concentrated in degrees zero and one, so that G = G0 ⊕ G1 as a vector space and

[G0,G0] ⊂ G0 , [G0,G1] ⊂ G1 , [G1,G1] = 0 .

This allows us to regard the odd commutative ideal G1 as a module over the even subalgebra 
G0.

(2) The G0-module G1 is given by the adjoint representation of G0. Therefore G0 � G1 as vector 
spaces.

6 In general, the higher-degree forms wA may also add up to the physical sector a finite number of global degrees of 
freedom associated with the de Rham cohomology of the space-time manifold M .
8
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(3) G0 = gln(A), that is, G0 is the Lie algebra of n × n-matrices with entries in an associative 
algebra A.

(4) A = A ⊗ A, where the complex associative algebra A is given by the smash product A =
A1 � Z2 of the first Weyl algebra A1 and the cyclic group Z2 generated by an involutive 
automorphism of A1. More precisely, A is the unital C-algebra on the three generators y1, 
y2, and κ obeying the relations

[y1, y2] = 2i , {κ, yα} = 0 , κ2 = 1 . (3.1)

Hereinafter, α = 1, 2 and the brackets (braces) stand for the commutator (anti-commutator). 
The first relation in (3.1) is just Heisenberg’s commutation relation for the ‘canonical vari-
ables’ y1 and y2. Adding the generator κ makes the outer automorphism yα → −yα of A1
into an inner automorphism of A.

In what follows we will denote the generators of the left and right tensor factors in A =A ⊗ A
by (yα, κ) and (ȳα̇, κ̄), so that the general element of A can be written as

a = f (y, ȳ)+ g(y, ȳ)κ + h(y, ȳ)κ̄ + v(y, ȳ)κκ̄ , (3.2)

f , g, h, and v being some ordered complex polynomials in y’s and ȳ’s. The complex conjugation 
of the ground field C extends to the semi-linear anti-involution of A that takes yα and κ to 
(yα)∗ = ȳα̇ and κ∗ = κ̄ .

Remark 3.1. The Lie algebra G0 contains sp4(R) � so(3, 2) as a real subalgebra. The latter is 
spanned by the unit n × n-matrix 1 multiplied by real quadratic polynomials in y’s and ȳ’s; 
in so doing, the complex conjugate polynomials {yα, yβ} and {ȳα̇, ȳβ̇} generate the complexi-
fied Lorentz subalgebra so(3, 1), while yαȳβ̇ correspond to the AdS4 transvections. The algebra 
so(3, 2), being the Lie algebra of isometries of 4d anti-de Sitter space, suggests that the empty 
AdS4 may appear as a natural vacuum solution of 4d HSGRA.

Remark 3.2. The full associative algebra generated by y’s and ȳ’s is clearly isomorphic to the 
second Weyl algebra A2 = A1 ⊗ A1. Let hs ⊂ A2 denote the subalgebra of all elements com-
muting with κκ̄ . It is spanned by the even polynomials f (y, ȳ) = f (−y, −ȳ) and is called the 
higher spin algebra [82,83], hence the notation. Since the element κκ̄ generates a Z2 subgroup 
in the Klein four-group Z2 × Z2 = {1, κ, κ̄, κκ̄}, one can also characterize hs as a Z2-invariant 
subalgebra of A2. Extending hs with κ and κ̄ , we get the smash product algebra hs� (Z2 ×Z2)

called usually the extended higher spin algebra.

Remark 3.3. For technical reasons explained in Appendix A, we will consider the Lie algebra of 
‘big matrices’. Formally, it is defined as the inductive limit gl(A) = lim→ gln(A) associated with 

the natural embedding gln ⊂ gln+1 (an n × n-matrix is augmented by zeros). The result is the 
Lie algebra G0 = gl(A) of infinite matrices with only finitely many entries different from zero. 
The algebra can also be augmented without harm by the matrices proportional to the unit matrix 
1.

Given the graded Lie algebra G = G0 ⊕ G1 above, we can define 4d HSGRA as a formal 
dynamical system with a one-form field ω and a zero-form field C, both taking values in gl(A). 
Eqs. (2.7) assume now the form
9
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dω = ω �ω + V3(ω,ω,C)+ V4(ω,ω,C,C)+ · · · , (3.3a)

dC = ω �C − C �ω + V3(ω,C,C)+ V4(ω,C,C,C)+ · · · . (3.3b)

Here � combines the wedge product of differential forms with the matrix product in gl(A). To 
look for the dynamical equations for interacting massless fields of all spins in this form was 
first proposed in [48]. Geometrically, the target space of fields C and ω is given by an infinite-
dimensional Q-manifold coordinatized by variables of degree zero and one. In the smooth setting 
such Q-manifolds are known to be equivalent to Lie algebroids [84]. This allows one to consider 
the field equations (3.3) as originating from a (formal) Lie algebroid over the target space of 
fields C. The natural vacuum solution C = 0 corresponds then to a singular point of the Lie 
algebroid with isotropy Lie algebra G0 = gl(A).

Omitting the interaction vertices Vk , we are left with the system describing a free HSGRA. 
Indeed, in that case one can view Eq. (3.3a) as the zero-curvature condition for the connection 
one-form ω associated with the gauge algebra gl(A). In topologically trivial situation, one can 
solve the equation in a purely gauge form as ω = dg � g−1, where g is a zero-form with values in 
GL(A). Then Eq. (3.3b) identifies C as a covariantly constant section with values in the adjoint 
representation of the gauge group GL(A). Again, one can write the general solution for C as 
C = g � C0 � g

−1, where C0 is an arbitrary element of the algebra gl(A). We thus see that, 
modulo gauge invariance, the solutions to the free equations form a linear space isomorphic to 
gl(A). When endowed with an invariant Hermitian inner product, the space can be identified with 
the Hilbert space of one-particle states of 4d HSGRA. More precisely, the usual interpretation 
in terms of particles arises from decomposition of the adjoint representation of GL(A) into the 
direct sum of irreducible unitary representations of the anti-de-Sitter group SO(3, 2) ⊂GL(A).

In a slightly different language this is the content of the Flato–Fronsdal theorem [85] stating 
that the tensor product of free massless 3d scalar and fermion with themselves decomposes into a 
direct sum of massless fields with all spins. As was shown by Dirac [86] many years before that, 
the free massless 3d scalar and fermion, as representations of so(3, 2), can be realized as even 
and odd vectors in the Fock space wherein A2 acts naturally.7 Together with the Flato–Fronsdal 
theorem, this equips the higher spin multiplet with the action of A2 (understood as a Lie algebra). 
The appearance of Z2 is a bit harder to explain. The group Z2 realizes an isomorphism that 
allows one to treat elements from the tensor product |v〉|w〉 (states) as elements |v〉〈w| from the 
higher spin algebra (operators). As a result one can embed the states into the higher spin algebra. 
This automorphism is realized by κ , κ̄ . The smash product algebra A, which extends the higher 
spin algebra hs with κ , κ̄ , is useful: it is the deformation of A that allows one to reconstruct all 
vertices Vk in (3.3), see below and [68] for explicit formulas.

Remark 3.4. It should be noted that the spectrum of fields generated by the graded Lie algebra 
G above is superfluous, containing more fields than actually needed to describe 4d HSGRA. The 
true physical degrees of freedom are accommodated in the graded subalgebra G′ ⊂ G, where 
G′

0 = gl(hs)�, � = (1 + κκ̄)/2 and G′
1 = gl(hs)K , K = (κ + κ̄)/2, K2 =�, see Remark 3.2. 

The corresponding field configurations are given by ω = ω(y, ȳ)� and C = C(y, ȳ)K such that 
ω(−y, −ȳ) = ω(y, ȳ) and C(−y, −ȳ) = C(y, ȳ). The use of the ‘extended’ algebra G offers 

7 Let us choose creation and annihilation operators, [aα, a†β ] = δαβ , instead of yα and ȳα̇ . Then, sp4(R) is realized 
by the bilinears in a and a†. The scalar/fermion states |v〉 correspond to the span of f (a†)|0〉 for even/odd f (a†) that 
act on the vacuum |0〉.
10
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considerable technical advantages over G′. In particular, it makes possible applying the Künneth 
formula to the tensor product A =A ⊗A. The redundant fields do not interfere the dynamics of 
the physical ones and can easily be excluded at the end of all calculations. This final projection 
onto the subspace of physical fields will always be implied in the sequel.

Remark 3.5. One can also deduce the spectrum of 4d HSGRA over AdS4 background by the 
conventional field-theoretic analysis. For this end, put ω = ◦

ω1, where the one-form field

◦
ω= − i

4
{yα, yβ}wαβ − i

4
{ȳα̇, ȳβ̇}wα̇β̇ − i

2
yαyβ̇h

αβ̇ (3.4)

takes values in the subalgebra so(3, 2) ⊂ gl(A), as discussed in Remark 3.1. The forms wαβ and 
wα̇β̇ are then naturally identified with the components of a unique spin-connection compatible 
with the vierbein hαβ̇ of AdS4, see Example 4.4 below for λ = 1. Upon this identification all 
the structure relations of AdS4 geometry are compactly encoded by the Maurer–Cartan equation 
d

◦
ω= ◦

ω� 
◦
ω. On substituting (3.4) into (3.3b) and restricting to the physical sector, one gets an 

infinite number of relativistic wave equations on the component spin-tensor fields accommodated 
in

C =
∞∑

n,m=0

Cα1···αnβ̇1···β̇m(x)yα1 · · ·yαn ȳβ̇1
· · · ȳβ̇mK . (3.5)

A closer inspection of these equations shows that they are equivalent to the Bargmann–Wigner 
equations for the (matrix-valued) massless fields of all integer spins, see e.g. [48,87].

Although C = 0 looks like a natural vacuum solution of 4d HSGRA, the most general 
Lorentz- and gl-invariant family of vacuums of Eqs. (3.3) is of the form

C = (μ+ ρκ + ρ̄κ̄ + λκκ̄)1 , (3.6)

where μ, ρ, λ are complex parameters. A useful particular solution corresponds to the centre of 
A, namely, C = μ1. On substituting this, Eq. (3.3a) takes the form dω = ω ◦ ω, where by ◦ we 
denoted the bilinear operator determining the r.h.s. of the equation, μ being a formal deformation 
parameter that is implicit. Eq. (3.3b) is trivially satisfied. Since d2 = 0, the ◦-commutator must 
obey the Jacobi identity, i.e., [[ω, ω], ω] = 0. A simple way to satisfy the last condition is to 
require the ◦-product to be associative. Then the r.h.s. of Eq. (3.3a) gives rise to deformation 
of the associative product in A = A ⊗ A that can depend on several parameters, in principle. 
The existence, non-triviality and the number of parameters of such a deformation (and hence, 
interaction) depend on the properties of the algebra itself. As explained in Appendix B, either A
factor in A admits a non-trivial deformation, which results in a two-parameter deformation. This 
is obtained by alteration of Heisenberg’s commutation relation in (3.1). Now it reads

[y1, y2] = 2i(1 + νκ) , (3.7)

ν being a complex parameter. The resulting one-parameter family of algebras A(ν) is known 
under the name of deformed oscillator algebra. Implicitly, it was first introduced by E. Wigner 
in his 1950 paper [88] on foundations of quantum mechanics. See [89–91] for subsequent discus-
sions. The general element of A(ν, ν̄) = A(ν) ⊗A(ν̄) is still given by an ordered polynomial in 
y’s, ȳ’s, κ , and κ̄ .8 There are explicit, albeit somewhat cumbersome, formulas for the product of 

8 In other words, the algebra A(ν, ̄ν) satisfies the Poincaré–Birkhoff–Witt condition.
11
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such polynomials [92–97]. Choosing, for example, the symmetric (or Weyl) ordering for y’s and 
ȳ’s, while keeping the generators κ and κ̄ in the rightmost position, one can write the following 
expansion for the ◦-product of two polynomials a(y, ȳ) and b(y, ȳ):

a ◦ b= a ∗ b+
∑
n+m>0

φnm(a, b)(νκ)
n(ν̄κ̄)m . (3.8)

Here ∗ stands for the usual Weyl–Moyal product in A2 and the collection of bilinear operators 
{φnm} defines a two-parameter deformation of the full algebra A ‘in the directions of κ and 
κ̄’. A nice integral representation for the first-order deformations φ10 and φ01 can be found in 
Appendix B.

The surprising thing is that knowledge of the interaction vertices for a particular vacuum 
solution C = μ1 permits reconstruction of the r.h.s. of Eqs. (3.3a), (3.3b) for arbitrary C! As 
was shown in [68], it is possible to express all the V’s through compositions of the bilinear maps 
φnm entering the expansion (3.8). For example,

V3(ω,ω,C)
i
j =

∑
n+m=1

νnν̄mφnm(ω
i
i1,ω

i1
i2) �Ci2 j ,

V4(ω,ω,C,C)
i
j =

∑
n+m=2

νnν̄mφnm(ω
i
i1,ω

i1
i2) �Ci2 i3 �Ci3j

+
∑

n+m=k+l=1

νn+kν̄m+lφnm(φkl(ωi i1,ωi1 i2),Ci2 i3) �Ci3 j .

(3.9)

Here we wrote down explicitly the gl-indices i’s and j ’s. As is seen, they are all contracted 
in chain. Of course, all the vertices are defined modulo field redefinitions. The modulus of the 
complex parameter ν can obviously be absorbed by rescaling C (or μ for C = μ1, which is why 
the value of μ played no role). Therefore, setting ν = eiθ we are left with the only free parameter 
θ , which allows one to interpolate between the HSGRAs of type A (θ = 0) and type B (θ = π/2) 
[47]. In the context of AdS/CFT correspondence, these two theories9 should be dual [46,47,98], 
respectively, to the free boson and fermion vector models on the boundary of AdS4. For general 
θ , this family of HSGRAs is expected to be dual to Chern–Simons matter theories [35].

Historically, explicit expressions for the first two vertices V3 and V4 were found in the works 
[48], [99]. In the subsequent paper [100], a systematic method was developed for generating 
all the formal interaction vertices in 4d HSGRA. A direct relation of the interaction problem 
with that of deformations of extended higher spin algebras was established in our papers [67,68]; 
this solves the problem of formal HSGRA for any given higher spin algebra and allows one 
to construct classical integrable systems out of any family of associative algebras. There is a 
number of formal HSGRA models available in the literature [59,68,100–107], which include 
original models, variations and different realizations.

4. Presymplectic AKSZ models

Like the previous two sections this one is mostly expository. In order to formulate a class of 
field-theoretic models in the title we need to equip the target space N with one more geometric 
structure discussed below.

9 to an extent to which formal dynamical systems represent the actual field theories behind them
12
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First of all, we note that the N-grading on the target space N can be conveniently described 
by means of the Euler vector field

N =
∑
A

|wA|wA ∂

∂wA
. (4.1)

By our assumption about target spaces all |wA| ≥ 0. We say that T ∈ T (N ) is a homogeneous 
tensor field of grade n if LNT = nT , where LN denotes the Lie derivative along N . In particular, 
the commutation relations [N, N ] = 0 and [N, Q] = Q mean that |N | = 0 and |Q| = 1. The 
highest grade of the coordinates {wA} is called the degree of N and is denoted by degN . For 
instance, the shifted tangent bundle T [1]M provides an example of an N-graded Q-manifold of 
degree one.

A presymplectic structure of grade n is, by definition, a closed two-form � on N such that

LN�= n�. (4.2)

The pair (N , �) is called a presymplectic manifold. If the matrix (�AB) of the two-form �
happens to be non-degenerate in some (and hence any) coordinate system, then one speaks of a 
symplectic structure and a symplectic manifold. In that case the inverse tensor � =�−1 defines 
a Poisson structure on N of grade (−n). Denote by ker� the space of all vector fields V on N
such that iV � = 0. Since d� = 0, the vector fields of ker� span an integrable distribution on 
M . We will refer to it as the kernel distribution of �.

A vector field X (a function H ) is said to be Hamiltonian if there exists a function H (a vector 
field X) such that

iX�= dH . (4.3)

The function H is called the Hamiltonian of the vector field X = XH . It follows immediately 
from the definition that (i) |X| + |�| = |H |; (ii) the presymplectic structure is invariant under 
the action of Hamiltonian vector fields, i.e., LX� = 0; (iii) given a Hamiltonian H , Eq. (4.3)
defines X up to adding a vector field from ker�; (iv) each Hamiltonian is invariant under the 
kernel distribution, i.e., LVH = 0 for all V ∈ ker�.

An important fact about the geometry of presymplectic manifolds (graded or not) is that the 
Hamiltonians of Hamiltonian vector fields form a graded Poisson algebra w.r.t. point-wise mul-
tiplication and the Poisson bracket

{H,F } = (−1)|H |LXHF = (−1)|H |iXH iXF �= −(−1)(|H |+|�|)(|F |+|�|){F,H } . (4.4)

One can easily verify that the bracket is well-defined and satisfies all the required properties: 
bi-linearity, graded anti-symmetry, the Leibniz rule, and the Jacobi identity. In the case of sym-
plectic manifolds any function is a Hamiltonian and {H, F } =�(dH, dF).

Proposition 4.1 ([71]). For any N-graded presymplectic manifold (N , �) the following hold.

1. If |�| = n > 0, then � = d�, where � = 1
n
iN�.

2. If V is a vector field of degree m > −n such that LV� = 0, then iV � = dH , where H =
−(−1)m n

n+miV� .
3. If � is non-degenerate, then degN ≤ |�| ≤ 2 degN .
13
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The first two statements follow immediately from Cartan’s homotopy formula LN = iNd +
diN . To prove the last statement, write the presymplectic form in terms of local coordinates as 
� = 1

2dw
A�AB(w)dw

B , whence10

|�| = |wA| + |�AB | + |wB | .
In case degN > |�| some of the differentials dwA do not enter � and the two-form is necessarily 
degenerate. If now |�| > 2 degN , then |�AB | > 0 and the supermatrix (�AB) is again non-
invertible being composed of elements that are at least linear in w’s.

The one-form � of item (1) is called a presymplectic potential for �. It is clear that11 |�| =
|�| and the equation

�= d� (4.5)

defines � up to an exact one-form d�, e.g. one can always take � = 1
n
iN�.

In the following we are interested in presymplectic Q-manifolds (N , �, Q) that satisfy the 
additional condition LQ� = 0. According to item (2) of the proposition this means that the 
homological vector field Q is Hamiltonian, i.e.,

iQ�= dH , (4.6)

H being the Hamiltonian. Since (LQ)2 = LQ2 = 0, one may also say that � is a cocycle of the 
differential LQ :�2(N ) →�2(N ) increasing the grade of a two-form by one unit. As one might 
suspect, only non-trivial Q-cocycles will be of interest to us below.

Consider now the N-graded presymplectic Q-manifold (N , Q, �) as the target space of a 
formal dynamical system (2.8), whose source manifold M fulfills the only condition

dimM = |�| + 1 . (4.7)

Given these data, the AKSZ Lagrangian for the form fields wA reads12

L =�A(w)dwA −H(w) , (4.8)

where �A(w) and H(w) are exterior polynomials in w’s defined by Eqs. (4.5) and (4.6). By 
definition, L is a form of top degree on M . With the help of (4.6) one can readily bring the 
variation of L into the form

δL = δwA�AB(dwB −QB)− d(�AδwA) . (4.9)

As usual the first term defines the Euler–Lagrange (EL) equations

EA ≡�AB
(
dwB −QB(w)) = 0 , (4.10)

while the second term specifies possible boundary conditions.

10 It follows from the definition that �AB =�BA(−1)|wA||wB |+|�|(|wA|+|wB |)+1.
11 To avoid confusion we note that the grade is defined by the Euler vector field (4.1); it counts the total degree of w’s 
irrespective of whether they appear as variables wA or differentials dwA . In other words, the Euler vector field does not 
take the exterior differential d into account.
12 We emphasize that wA ≡ wA(x, dx) are fields, while wA are just target space coordinates. Correspondingly, dwA
is a space-time form of degree |wA| + 1 and should not be confused with the 1-form dwA of grade |wA| on the target 
space. The grade (as opposite to degree) of all fields dwA is 1. Since dwA and dwA have different grade/degree, the 
position of various variables is important in the formulas below.
14
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If the two-form � happens to be symplectic, then its matrix (�AB) is invertible and the EL 
equations (4.10) are fully equivalent to the field equations (2.8). In this case, (�AB) plays the role 
of the so-called integrating multiplier in the inverse problem of variational calculus. Moreover, 
passing to global Darboux coordinates on (N , �) considerably simplifies the ‘kinetic term’ in 
(4.8), bringing the Lagrangian into the form

L = 1

2
�ABwAdwB −H(w) , �AB ∈ R . (4.11)

Remark 4.2. The Lagrangians of the form (4.11) are called AKSZ (sigma-)models after Alexan-
drov, Kontsevich, Schwartz, and Zaboronsky [62], who proposed them in the mid-1990s. A good 
deal of topological field theories can be formulated or re-formulated within the AKSZ approach 
for an appropriate quartet (M, N , Q, �), see [71,108–111] for reviews and developments. There 
is also a deep relationship between the AKSZ construction of topological field theories and 
the Batalin–Vilkovisky (BV) formalism of gauge theories [112, Ch. 17]. This manifests itself 
in a simple and elegant form of the BV master action associated with the gauge invariant La-
grangian (4.11). In order to construct the corresponding BV action one simply allows the fields 
w : T [1]M → N to be the maps of arbitrary Z-degree and this yields automatically the right 
spectrum of auxiliary (anti-)fields of the BV formalism. When evaluated on such promoted form 
fields w and integrated over M , the Lagrangian (4.11) gives the desired BV master action.

Remark 4.3. Contrary to the symplectic case, the general presymplectic AKSZ models have re-
ceived much less attention in the literature. Here we should mention the three papers [60,61,113], 
where the presymplectic AKSZ approach to gauge theories was put forward together with the 
analysis of some models. In the first paper, the authors discuss the presymplectic AKSZ models 
from the perspective of frame-like formulations known for many gauge theories, including higher 
spin fields. The second paper introduces the AKSZ formalism into the geometric theory of PDEs 
through the notion of an intrinsic Lagrangian. It was also demonstrated that a large class of La-
grangian gauge theories admits a presymplectic ASKZ action. The papers [61,113] focus on the 
presymplectic AKSZ formulation for Einstein’s gravity and [113] adds a BV interpretation. We 
also review the last model and the scalar field in Examples 4.4 and 4.5 below.

Turning back to the general case, we need to examine the equality

EA =�ABEB (4.12)

relating Eqs. (2.8) and (4.10). Rather than discuss this in full generality, let us only highlight some 
key points. First of all, any solution to the equations EB = 0 obviously satisfies EA = 0 whatever 
the matrix (�AB). Furthermore, if the matrix is degenerate it seems reasonable to declare the EL 
equations to be ‘weaker’ than the original ones. This, however, is not always the case. The crux 
of the matter is hidden integrability conditions that must be allowed for. In order to make them 
explicit, suppose that all null-vectors of the matrix 

(
�AB(w)

)
come from the kernel distribution 

of the presymplectic structure �. Let us further assume that the distribution ker� is spanned by 
a set of vector fields Ka on N . The integrability of ker� implies the commutation relations

[Ka,Kb] = f cabKc (4.13)

for some structure functions f ’s. Besides, it follows from the identity LQiXa� = 0 that the kernel 
distribution is Q-invariant, i.e.,
15
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[Q,Ka] =UbaKb (4.14)

for some functions U ’s. Now Eq. (4.10) says that the forms EA determining the l.h.s. of Eq. (2.8)
constitute a null-vector of the matrix 

(
�AB(w)

)
. Under the assumptions above, this amounts to 

the equality

dwA −QA(w)= λaKAa (w) . (4.15)

Here λa are new form fields of appropriate degrees and identification (2.2) is implied. Clearly, 
the last equations are completely equivalent to the EL equations (4.10). Although the new fields 
λa enter the equations in a pure algebraic way, their dynamics are not entirely arbitrary. Indeed, 
applying the de Rham differential to both sides of (4.15) and using Rels. (4.13) and (4.14), we 
find

(dλa +Uab λb + f abcλbλc)Ka = 0 . (4.16)

If all the vector fields Ka , being linearly independent, are contained in the r.h.s. of Eq. (4.15), 
then the last condition amounts to

dλa +Uab λb + f abcλbλc = 0 . (4.17)

By construction, Eqs. (4.15) and (4.17) are compatible to each other and define a new formal dy-
namical system extending (2.8). The question now is whether the extended system is dynamically 
equivalent to the original one. If the total number of λ’s is finite, then the number of physical de-
grees of freedom they can bring in is finite as well, see Remark 2.4. In case dimM > 1, these are 
global modes associated to the boundary conditions and/or topology of M . Hence, for genuine 
field theories the formal dynamical systems in question are essentially equivalent to each other 
(i.e., equivalent up to a finite ambiguity). Another typical situation is when M � Rd , d > 1, and 
all the form fields λa are of strictly positive degree. Being pure gauge and having no topolog-
ical modes, the fields λa can safely be set to zero. In this gauge, the equivalence of the formal 
dynamical systems at hand is again obvious.

The analysis of the general case is complicated by two points. First, it may happen that every
generating set {Ka} for ker� consists of linearly dependent vectors. This implies the existence 
of left null-vectors Zα for the rectangular matrix {KAa }, so that ZaαK

A
a = 0. If the system of 

null-vectors {Zα} is complete, then we can still divide the l.h.s. of Eq. (4.16) by the Ka’s at the 
expense of introducing new form fields ξα and adding the term ξαZaα to the r.h.s. of Eq. (4.17). 
The verification of formal integrability gives further equations for ξα and so on.13 The second 
point concerns the case where not all the null-vectors Ka are actually present in Eq. (4.15). Here, 
besides the differential equations, one can find some algebraic constraints on λa associated with 
those Ka’s that dropped out of the r.h.s. of Eq. (4.15) on account of degree. (Both the points 
are exemplified below.) Under reasonable assumptions one may repeat this construction once 
and again. The result is a formal dynamical system equivalent to the EL equations (4.10). All 
the above comments on equivalence to the original equations EA = 0 are still valid for the fully 
extended system. We are going to detail this construction elsewhere.

The last comment concerns gauge symmetries. One should realize that not every gauge trans-
formation (2.9) of the equations EA = 0 can be promoted to a symmetry of the corresponding 

13 The problem we have to deal with here is quite similar to that of reducible gauge symmetries, see e.g. [112, Ch. 10]. 
From the algebraic standpoint, each extension defines and is defined by a certain free resolution of the C∞(N )-module 
ker�.
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AKSZ model (4.8), unless � is non-degenerate. Some necessary and sufficient condition for this 
to happen are discussed in [60]. In particular, the general coordinate transformations (2.10) may 
no longer be part of (2.9). On the other hand, the null-vectors of the presymplectic structure �
give rise to extra gauge symmetries of the form δεwA = εaKAa provided that |KAa | ≤ |wA|.

Example 4.4 (Pure gravity). In order to construct a first-order formulation of 4d gravity with 
negative cosmological constant, we can start with the Lie algebra G = so(3, 2). As explained in 
Example 2.2, it gives rise to the homological vector field

QGR = ωacωcb ∂

∂ωab
+ωabeb ∂

∂ea
+ λeaeb ∂

∂ωab
(4.18)

on the graded manifold G[1] with global coordinates ea and ωab. Here the degree-one coordi-
nates ωab = −ωba correspond to the generators of the Lorentz subalgebra so(3, 1) ⊂ so(3, 2), 
while ea are associated with the AdS4 transvections. As usual we raise and lower the Lorentz 
indices a, b, ... = 0, 1, 2, 3 with the help of Minkowski metric ηab. Finally, the parameter λ < 0
is proportional to the cosmological constant.14 A relevant Q-invariant presymplectic form �GR
on G[1] reads

�GR = εabcdeadebdωcd . (4.19)

Notice that it does not depend on λ. The 2-form �GR, being obviously closed, turns out to be 
degenerate. In degree one and two, the kernel distribution is spanned by the family of null-vectors

K1
C = Cab,cdeaeb ∂

∂ωcd
, K2

H =Habc,deaebec ∂
∂ed

, (4.20)

where the constant parameters Cab,cd and Habc,d form traceless Lorentz tensors.
In accordance with the general philosophy, the target space coordinates ea and ωab are pro-

moted to the one-form fields ea = eaμdx
μ and ωab = ωabμ dx

μ associated, respectively, with the 
vierbein and the spin-connection on M . Applying now the general formulas of Proposition 4.1, 
we can write the following AKSZ Lagrangian:

LGR = 1

2
εabcde

ced
(
dωab − ωanω

nb − λ

2
eaeb

)
. (4.21)

Varying it w.r.t. the spin connection and vierbein, we learn that

εabcde
cDed = 0 , (4.22a)

εabcde
b(Rcd − λeced)= 0 . (4.22b)

Here Dea = dea −ωabe
b is the Lorentz-covariant differential of the vierbein and Rab = dωab−

ωacω
cb is the curvature tensor of D. As the presymplectic form (4.19) has no null-vectors of 

degree 1 ‘in the direction of e’, the first equation (4.22a) is actually equivalent to

Dea = 0 . (4.23)

It says that the spin connection ωab is torsion free and can be uniquely expressed via ea and 
dea . As to the second equation (4.22b), being Lorentz and general covariant and depending 

14 As λ → 0 the algebra so(3, 2) contracts to the Poincaré algebra iso(3, 1). Equally well we could start with the de 
Sitter algebra so(4, 1) taking λ > 0.
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on second derivatives of the vierbein through ω(e, de), it may be nothing else but the vacuum 
Einstein’s equation with cosmological constant. Thus, we are lead to conclude that the first-order 
formulation (4.21) is fully equivalent to that relied on the Einstein–Hilbert action. But wait a 
minute, not so fast! What about the kernel of the presymplectic form?

If the presymplectic form (4.19) were non-degenerate, we would get just the structure relations 
of anti-de Sitter geometry,

Dea = 0 , Rab = λeaeb , (4.24)

encoded in the homological vector field (4.18). Clearly, this leaves no room for local degrees of 
freedom. The explicit expressions for the null-vectors (4.20) suggest that Eq. (4.22b) is actually 
equivalent to the following one:

Rab − λeaeb = Cab,cdeced , (4.25)

where Cab,cd is now a collection of zero-form fields. Considered as a Lorentz tensor, Cab,cd is 
anti-symmetric in the first and second pairs of indices and has zero trace. Checking the formal 
integrability of the full system (4.23), (4.25), as explained above, we get both algebraic and 
differential constraints on C’s. The former are given by eaebecCab,cd = 0 and force the tensor 
Cab,cd to have the symmetry of ‘window’ Young diagram. Then Eq. (4.25) identifies Cab,cd as the 
Weyl tensor. As for the differential constraints, they have the standard form dCab,cd = . . ., where 
the r.h.s. involves new zero-form fields Cab,cd,e with the symmetry of a two-row Young diagram. 
These new fields owe their existence to the over-completeness of the null-vector system (4.20): as 
Cab,cd,e cannot have three anti-symmetric indices, the shift Cab,cd → Cab,cd + Cab,cd,nen does 
not affect K1

C . This gives the null-vectors Z’s of the second generation and so on. The above 
extension procedure never stops generating an infinite number of zero-form fields Cab,cd,···. This 
results in a formal dynamical system of the Einstein gravity (with infinitely many zero-forms, as 
promised for a field theory), whose explicit form is not known, but can, in principle, be obtained 
with the help of [78,79].

Example 4.5. (Gravity + scalar field). The above AKSZ formulation of pure gravity can easily 
be upgraded to include interaction with a scalar field. To illustrate the idea of how one can 
extend the construction based on an algebra with some of its modules we consider the simplest 
finite-dimensional module. Specifically, we extend the underlying Lie algebra so(3, 2) to the 
inhomogeneous anti-de Sitter algebra iso(3, 2) and prescribe the abelian ideal of the latter degree 
one.15 This results in the graded Lie algebra G = G0 ⊕ G1, where G0 = so(3, 2) and G1 � R3,2

(as vector spaces). The associated homological vector field on G[1] takes the form

Q=QGR −QS , QS = πaea ∂
∂ϕ

+ (πbωba + λϕea) ∂
∂πa

. (4.26)

Here (ϕ, πa) are new coordinates of grade zero associated with the ideal G1. In order to be 
Q-invariant the presymplectic form (4.19) is extended to

�=�GR + d�S , �S = εabcdeaebecπddϕ . (4.27)

The kernel of the form � is generated by the vector fields (4.20) together with

15 This can also be regarded as a trivial extension of so(3, 2) by its fundamental representation.
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K̃1
C = Cabea ∂

∂πb
, K̃2

H =Habeaeb ∂
∂ϕ
. (4.28)

Here the constant parameters Hab and Cab form, respectively, anti-symmetric and traceless 
Lorentz tensors. The corresponding AKSZ Lagrangian now reads

L = LGR + εabcdeaebec
(
πddϕ + (1

8
πaπa + λ

2
ϕ2)ed) . (4.29)

Eliminating the auxiliary fields πa with the help of their equations of motion, one obtains the 
standard second-order formulation for the scalar ϕ coupled to Einstein’s gravity with cosmolog-
ical constant. The mass of ϕ, however, is below the unitarity bound unless λ �= 0. By definition, 
the space G1 corresponds to the vector representation of so(3, 2). Instead one can take any finite-
dimensional module of so(3, 2) associated with the totally-symmetric traceless tensors of definite 
rank and get other discrete values of masses below unitarity. In order to let the mass be arbitrary 
one has to start with an infinite-dimensional so(3, 2)-module, see e.g. [114] and [60] for the 
presymplectic treatment.

5. Covariant phase space of a presymplectic AKSZ model

A glance at the AKSZ Lagrangian (4.8) is enough to observe its similarity with the least action 
principle in Hamiltonian mechanics and this is more than just an analogy. Actually, the target-
space presymplectic form � induces a presymplectic structure on the covariant phase space of 
fields, which then endows the algebra of physical observables with a Poisson bracket. We will 
not dwell here on the covariant Hamiltonian formalism in field theory referring the reader to 
the papers [56,57,63,115] for general discussions and examples. The basic idea is to treat the 
boundary term in (4.9) as defining a ‘functional one-form’ on the space of fields:

�̂=
∫
�

�A(w)δw
A . (5.1)

Here � ⊂M is an arbitrary Cauchy surface of initial data for the equations of motion. Treat-
ing now the variation symbol δ as an exterior differential on the functional space of fields and 
applying it to (5.1), we get the two-form

�̂= δ�̂= 1

2

∫
�

δwA�AB(w)δw
B , (5.2)

which is just a functional counterpart of the presymplectic form � on N . By construction, the 
form �̂ defines a presymplectic structure on the functional space of all field configurations and, 
through restriction, on every subspace therein. Let Sol(EA) and Sol(EA) denote the subspaces 
of all solutions to Eqs. (2.8) and (4.10). In view of Rel. (4.12) we have the natural embedding 
Sol(EA) ⊂ Sol(EA). Either space is then identified with the covariant phase space of the cor-
responding field theory. It is not hard to see that the restriction of the presymplectic form (5.2)
onto Sol(EA) (and hence, on Sol(EA)) does not depend on the choice of a Cauchy surface �; 
this justifies the adjective “covariant” in the name.

In general, the induced presymplectic structures on the solution spaces above are degenerate 
even if the original presymplectic form (5.2) is not. This is due to the gauge symmetries of the 
equations of motion. Let us check, for example, that the infinitesimal gauge transformations (2.9)
belong to the kernel of the form �̂ restricted to Sol(EA). We have
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iδεw�̂ =
∫
�

δεw
A�AB(w)δw

B =
∫
�

(
dεA + εC∂CQA(w)

)
�AB(w)δw

B

=
∫
�

(−1)|wA|εAd
(
�ABδw

B
) + εC∂CQA�ABδwB

≈ −
∫
�

εA(LQ�)ABδw
B = 0 .

(5.3)

Our convention here is that

δd = −dδ, δwAwB = (−1)(|wA|+1)|wB |wBδwA,
δwAdwB = (−1)(|wA|+1)(|wB |+1)dwBδwA.

It is fit to and motivated by the concept of variational bi-complex, see e.g. [116–118].
Following the general recipe, the space of Hamiltonian function(al)s Ĥ = ∫

�
H(w), w ∈

Sol(EA), is then endowed with the covariant Poisson bracket (4.4), which can be viewed as a 
precursor for the canonical quantization of the theory.

Another important remark is that the correspondence between the presymplectic structure 
� on the target space N and its functional counterpart �̂ restricted to either solution space 
is far from being one-to-one. Indeed, shifting the integrand in (5.2) by an on-shell exact form 
χABδw

AδwB ≈ d�(w) does not affect the induced presymplectic structure (Stokes theorem). In 
the case of Sol(EA) this point can further be refined. The equations of motion w∗(d) =Q tell 
us that the action of the de Rham differential is on-shell equivalent to the action of the homo-
logical vector field. As a result Q-exact presymplectic forms LQ� on the target space N pass 
to the d-exact forms on the covariant phase space Sol(EA). This motivates the following def-
inition: two presymplectic forms � and �′ on N are said to be equivalent if � − �′ = LQ�
for some two-form �; correspondingly, the presymplectic structures of the form � = LQ� are 
considered trivial. Equivalent presymplectic structures on N give rise to the same presymplectic 
structure on the covariant phase space Sol(EA). In other words, the space of non-trivial presym-
plectic structures for the formal dynamical system (2.8) is identified with the cohomology group 
H dimM−1(LQ, �2(N )). It might be well to point out that a non-trivial presymplectic structure 
on Sol(EA) may become trivial upon restriction to the subspace Sol(EA). The last point is best 
exemplified by Einstein’s gravity with cosmological constant.

Example 5.1. Proceeding with Example 4.4, we note that the presymplectic structure (4.19) is 
Q-exact whenever λ �= 0:

�GR = LQGR�, �= 1

4λ
εabcddω

abdωcd . (5.4)

This is no surprise as the Lie algebra G underlying the homological vector field (4.18) is sim-
ple. It is easy to realize that Q-invariant presymplectic structures � of grade 3 correspond to 
one-cocycles of G with coefficients in S2G∗, the symmetrized tensor square of the coadjoint 
representation. But by Whitehead’s first lemma the first cohomology of any simple Lie algebra 
vanishes. The Q-exactness of the form (5.4) by no means implies that the induced presymplectic 
structure on the solution space of Einstein’s equations (4.22) is trivial. It is true, however, that 
the further restriction of �̂ to the subspace of locally (anti-)de Sitter geometries described by 
Eq. (4.24) does lead to the trivial presymplectic structure. This is in contrast with the case λ = 0
when G degenerates to the Poincaré algebra iso(3, 1). For the zero cosmological constant the 
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presymplectic form (4.19) is a non-trivial Q-cocycle. (The Poincaré algebra being not simple, 
the first Whitehead’s lemma is not applicable anymore.) The moduli spaces of flat geometries 
are finite-dimensional and depend on the topology of the space-time manifold M , see e.g. [119]
for a physicist-oriented discussion. Using �̂, one can equip them with presumably non-trivial 
symplectic structures.

6. Presymplectic AKSZ model for 4d HSGRA

In this section, we put 4d HSGRA into the framework of presymplectic AKSZ models and 
thereby provide its ‘weakly’ Lagrangian description. All we need is a presymplectic structure 
� compatible with the homological vector field Q defined by the right-hand sides of the field 
equations (3.3). We also expect the corresponding Euler–Lagrange equations (4.10) to be essen-
tially equivalent to the original equations of 4d HSGRA and this rules out some trivial choices 
like � = 0. Condition (4.7) implies that |�| = 3. Once an appropriate presymplectic 2-form � is 
found, the corresponding presymplectic potential � = 1

3 iN� defines immediately the ‘kinetic’ 
term of an AKSZ Lagrangian (4.8) in question as well as the Hamiltonian H= 3

4 iQ�.
The form of the equations of motion (3.3) suggests to look for a compatible presymplectic 

structure as an expansion in powers of C’s. In order to make contact with the general notation 
of Sec. 4 it is convenient to endow the target space N = G[1] of fields ω and C with the global 
coordinate system wA = (ωa, Ca) w.r.t. some basis eA = (e−1

a , e
0
a) in the graded Lie algebra 

G = G−1 ⊕ G0 underlying the free theory. To control formal powers series Ca we also introduce 
the vector field

NC = Ca ∂

∂Ca
, (6.1)

which prescribes degree one to C’s and degree zero to ω’s. Now the r.h.s. of Eqs. (3.3) come 
from a homological vector field on N of the form

Q=Q0 +Q1 + · · · , [NC,Qn] = nQn , (6.2)

where

Qn = Ca1 · · ·CanQaa1···anbcω
bωc

∂

∂ωa
+Ca0 · · ·CanQaa0a1···anbω

b ∂

∂Ca
. (6.3)

The leading term Q0, being a homological vector field by itself, determines the graded Lie al-
gebra G as explained in Example 2.2. A similar expansion for the thought-for presymplectic 
structure can be written as

�=�m +�m+1 + · · · , LNC�n = n�n , (6.4)

�n = Ca1 · · ·Can�(0)a1···anabc ω
a dωb dωc

+ Ca1 · · ·Can−1�
(1)

a1···anabc ω
a ωb dωc dCan

+ Ca1 · · ·Can−2�
(2)

a1···anabc ω
a ωb ωc dCan−1 dCan−2 ,

(6.5)

where we suppose that �m �= 0. The defining conditions of a presymplectic structure

d�= 0 , LQ�= 0 , (6.6)
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impose an infinite set of linear relations on the structure constants �
(0)

, �
(1)

, and �
(2)

. In particu-
lar, on substituting expansions (6.2) and (6.4) into the condition of Q-invariance (6.6), we obtain 
the chain of equations

LQ0�m = 0 , (6.7)

LQ0�n = Bn(�m, . . . ,�n−1) , Bn ≡
m+n∑
k=1

LQk�n−k , n=m+ 1,m+ 2, . . . (6.8)

Since (LQ0)
2 = 0, we are lead to the standard problem of homological perturbation theory. The 

first equation (6.7) tells us that the leading term of the expansion (6.4) is a Q0-cocycle. As 
explained in Sec. 5, we are interested in non-trivial Q0-cocycles, which then induce non-zero 
presymplectic structures on the solution space to the field equations. Given such a non-trivial 
cocycle �m, the remaining equations (6.8) are solved one after the other provided that no coho-
mological obstacles arise. Arguing by induction, one can see that the r.h.s. of the n-th equation, 
Bn, is Q0-closed whenever all the previous equations for �0, . . . , �n−1 are satisfied. Therefore 
the 2-form Bn defines a class of Q0-cohomology, whose vanishing provides the necessary and 
sufficient condition for solvability of the n-th equation (6.8). Notice that Eq. (6.8) defines �n, if 
it exists, up to adding to it an arbitrary Q0-cocycle �n (perhaps trivial). If the equivalence class 
�n+�n contains a d-closed representative, then one can take it to extend the sought-for solution 
one step further.

On the other hand, the cohomology of the coboundary operator LQ0 coincides with that of 
the graded Lie algebra G = gl(A) as discussed in Example 2.2. In particular, �m is determined 
by an element of H •

3 (G, S2G∗) and Bn defines a cohomology class of H •
4 (G, S2G∗), where the 

subscripts refer to grades. The existence of a non-trivial presymplectic structure thus implies 
H •

3 (G, S2G∗) �= 0, while the property that H •
4 (G, S2G∗) = 0 ensures extendibility of the leading 

term �m to all higher orders in C’s. A detailed analysis of the relevant cohomology is presented 
in Appendix D.

A short summary is that there is no non-trivial solutions to (6.7) for m = 0; and hence, expan-
sion (6.4) necessarily starts with terms involving at least one C or dC. The solutions with m > 2
are of little physical interest as they all vanish on the natural higher spin vacuum C = 0, which 
covers all maximally (higher spin) symmetric backgrounds. The remaining possibilities give a 2-
parameter family of presymplectic structures and Lagrangians. This is in line with Chern–Simons 
matter theories, which we discuss below.

Equations recap. While the general theorems of Appendix D guarantee that the presymplectic 
structure to be discussed below is unobstructed, we would like to work out a few terms explicitly 
as they are the most important ones. To this end let us write down Eq. (3.3) up to the first order 
in C as

dω = ω �ω + Vν(ω,ω,C)+O(C2) , (6.9a)

dC = ω �C − C �ω +O(C2) . (6.9b)

The simplest vertex has the factorized form [68,120], see [48] for the explicit expression,

Vν(ω,ω,C)=�ν(ω,ω) �C , (6.10)
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where �ν represents the first deformation, cf. (3.8), of the extended higher spin algebra A:16

�ν ≡�ν(ω,ω)= νφ10(ω,ω)κ + ν̄φ01(ω,ω)κ̄ . (6.11)

For manipulations below, it is convenient to rewrite (6.9) in a more compact form as

R =�ν �C mod C2 , DC = 0 mod C . (6.12)

Here

D = d − [ω,−]� , D2 = [R,−]� , R = dω − ω �ω , (6.13)

and we do not write the gl-indices of fields explicitly; it is assumed that all the matrix indices 
are contracted in chain as in (3.9). The main property of the space-time 2-form �ν(ω, ω), which 
provides the formal integrability of the differential equations (6.12) modulo C2, is

D�ν(ω,ω)≈ 0 mod C . (6.14)

The formulas above will suffice for all formal manipulations. In order to make contact with the 
field theory approach we have to adjust the cubic vertex (6.10).17 We will only need the fact that 
there exists a better representative Vcan

ν , one may call it ‘canonical’, such that

Vcan
ν (

◦
ω,

◦
ω,C)= νHαα∂α∂βC(y, ȳ = 0)+ ν̄H α̇α̇∂α̇∂β̇C(y = 0, ȳ) . (6.15)

Here 
◦
ω is the AdS4 connection (3.4), Hαβ ≡ hαγ̇ ∧ hβγ̇ , idem for Hα̇β̇ , and we projected the 

vertex onto the physical sector C = C(y, ȳ)K , see Remark 3.4. The consistency of Vcan
ν implies

DVcan
ν (ω,ω,C)= 0 mod C2 . (6.16)

More generally, one can perform a field redefinition in equations (6.9) that maps the vertex (6.10)
to another representative, e.g. Vcan

ν , which always obeys (6.16).

Presymplectic structure and AKSZ to LO. With the conventions and notation above the lead-
ing order term of the thought-for family (6.4) of presymplectic structures on N = G[1] is given 
by

�1 =�(0)1 +�(1)1 = d�1 , �1 = 〈C ��μ(ω,ω) � dω〉 . (6.17)

Here μ is an arbitrary complex parameter and the brackets 〈−〉 stand for the matrix trace and the 
trace in the �-product algebra A. It is important that μ differs from ν in the vertex (6.10). For the 
case of HSGRA in d > 4 the doubling of φ’s in (6.10) does not take place and there is a clear 
distinction between the cocycle participating in � and the cocycle that deforms the equations, 
which we will make a few remarks about at the end.

16 Thanks to the product structure A = A ⊗ A the deformation is built from a single two-cocycle φ(−, −) of the 
Weyl algebra A1; by definition, a � φ(b, c) − φ(a � b, c) + φ(a, b � c) − φ(a, b) � c̃ = 0, where c̃(y) = c(−y). Then on 
decomposable elements a(y, ̄y) = a(y) ⊗ ā(ȳ) ∈ A, we have φ10(a, b) = φ(a, b) ⊗ ā � b̄ and φ01(a, b) = a �b⊗φ(ā, ̄b).
17 As it stands the vertex (6.10) does not lead to the desired field equations even at the free level [48]. What happens 
is that the free equations mix fields of different spins. Nevertheless, one can diagonalize the equations by performing 
a linear change of variables; in so doing, the non-commutativity of covariant derivatives, [∇a, ∇b] ∼ λ, plays a crucial 
role. This example reveals a general fact that a formally integrable Q, i.e., Q2 = 0, has to be adjusted as to make contact 
with field theory.
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As is clear from the explicit form of �1, one can instead choose

�1 = 〈Vμ(ω,ω,C) � dω〉 (6.18)

for any representative Vμ in (6.9) as long as μ �= ν. The last inequality ensures non-triviality of 
the presymplectic structure to the leading order. Explicitly,

�
(0)
1 = 〈Vμ(dω,ω,C) � dω〉 − 〈Vμ(ω,dω,C) � dω〉 , (6.19a)

�
(1)
1 = 〈Vμ(ω,ω,dC) � dω〉 . (6.19b)

Notice that the component �(0)1 vanishes on the maximally symmetric background C = 0. With 
the help of (6.15) we find for free fields in AdS4:18

�= μHαα〈∂α∂αdC(y, ȳ = 0) � dω〉 + μ̄H α̇α̇〈∂α̇∂α̇C(y = 0, ȳ) � dω〉 =

=
∑
s=1

μ

(2s − 2)!H
ααdCα(2s)dω

α(2s−2) + μ̄

(2s − 2)!H
α̇α̇dCα̇(2s)dω

α̇(2s−2) .
(6.20)

This is an admissible presymplectic structure [63]. For free fields, the parameter ν in (6.15) does 
not play any role and can be eliminated by rotating (anti-)holomorphic Weyl tensors (Cα̇(2s)) 
Cα(2s) by the phase of ν. It is also clear that for μ = ν the presymplectic structure (6.20), being 
proportional to the r.h.s. of (6.15), is trivial.

It is especially interesting to see how the presymplectic AKSZ action look like to the leading 
order. The equations to this order

dω = ω �ω , dC = ω �C − C �ω , (6.21)

describe free fields C propagating over a maximally symmetric higher spin background ω. When 
linearized over AdS4 the C-equation reduces to a collection of the Bargmann–Wigner equations 
∇αβ̇ Cα̇(2s−1)β̇ = 0, ∇β α̇ Cα(2s−1)β = 0 for fields of all spins. It is clear that equations (6.21) are 
non-Lagrangian. For d = 3, the first one could be obtained from the Chern–Simons action; the 
second one, however, requires a two-form Lagrange multiplier, say B, to write the Lagrangian 
L = 〈B � (dC −ω �C +C �ω)〉. In four dimensions, even the first equation does not come from 
an action. Therefore, the main function of �1 is to provide a presymplectic treatment of (6.21). 
The corresponding presymplectic AKSZ Lagrangian reads

L1 = 〈
Vμ(ω,ω,C) �R〉 = 〈

Vμ(ω,ω,C) � (dω − ω �ω)〉 (6.22)

It acquires a particularly nice form for the canonical vertex Vcan
μ . Surprisingly, in that case it 

describes the right propagating degrees of freedom on AdS4 [121]. (In general, one might expect 
to obtain only a Lagrangian whose EL equations are weaker than the ones we need).

The presymplectic structure (6.20) or, equivalently, the action (6.22) can be checked against 
the well-known Fradkin–Vasiliev action [69] and its precursor [122]. First, we need to decompose 
the curvature R = dω − ω �ω as follows:

18 To save letters we denote all symmetric (or to be symmetrized) indices by the same letter.
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R(y, ȳ)=
∑
m,n

i

m!n!Rα(m),α̇(n) y
α · · ·yα ȳα̇ · · · ȳα̇ = R− + R0 + R+ , (6.23)

where R− (R+) takes the m < n (m > n) part of the sum and R0 corresponds to the terms with 
m = n. Note that the sum is over even m + n since we consider bosonic fields only. The two-
form R0 contains the (higher spin) torsions. As with the conventional gravity, one can solve the 
zero-torsion equation

R0 = 0 (6.24)

for some auxiliary fields in a purely algebraic way. With account of this equation, we can write 
the following integral for the Pontryagin topological invariant:

Stop =
∫

〈R �R〉 =
∫

〈R+ �R+〉 +
∫

〈R− �R−〉 . (6.25)

Here 〈−〉 combines the matrix trace and the trace on the Weyl algebra A2. The Fradkin–Vasiliev 
action now reads

SFV =
∫

〈R � σ(R)〉 =
∫

〈R+ �R+〉 −
∫

〈R− �R−〉 , (6.26)

where σ = sgn(Ny −Nȳ) and Ny = yν∂ν , Nȳ = ȳν̇∂ν̇ are the number operators for y and ȳ. The 
purpose of σ -map is to project out the torsion and to flip the sign of R− terms. For example, the 
usual Pontryagin’s invariant and the MacDowell–Mansouri action [123] have the form19

Stop =
∫
RααR

αα +Rα̇α̇Rα̇α̇ , SMM = i
∫
RααR

αα −Rα̇α̇Rα̇α̇ . (6.27)

As is well-known in the case of Yang–Mills theory and gravity one can add up the action and the 
topological invariant to get

S = τ+
∫

〈R+ �R+〉 + τ−
∫

〈R− �R−〉 , (6.28)

where τ± ∈ C are combinations of the coupling constant g2 and the theta-angle θ , τ± = (a/g2 ±
iθ/b) (here, a, b are some numerical constants). This introduces one more coupling θ , which is 
invisible in the equations of motion. This trick makes the action reminiscent that of 3d (higher 
spin) gravity, which is a non-degenerate sum of two Chern–Simons actions. With the help of τ
the SL(2, Z)-action on the space of 3d conformal field theories [124] extends to the higher spin 
fields in bulk [125,126].20 Any non-degenerate combination (τ− �= τ+) gives an action which is 
consistent with the required gauge symmetries up to the cubic order since (6.26) has this property 
[69]. The cubic part of the action can be evaluated on-shell to

− 1
2S3 = τ+

∫ 〈
Vcan
μ=1,μ̄=0(h,h,C) � (ω �ω)+

〉
+ τ−

∫ 〈
Vcan
μ=0,μ̄=1(h,h,C) � (ω �ω)−

〉
,

(6.29)

19 We put i in front of MacDowell–Mansouri action assuming the usual reality conditions, (Rαα)∗ = Rα̇α̇ , but will ig-
nore all such factors below. Note also that the RR-action does not contain the Maxwell/Yang–Mills action. Nevertheless, 
it can be added by hand as CααCαα −Cα̇α̇Cα̇α̇ . The Pontryagin term does include the s = 1 component.
20 It would be interesting to check if the normalization via a, b that can be read off from the spin-two part of the action 
is consistent for higher spin fields as well.
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where we indicated that Vcan consists of two terms and only one of them contributes to the first 
(second) part of the action. (Note that (6.15) involves the AdS4 vierbein hαα̇ rather than the full 
SO(3, 2)-connection 

◦
ω.)

It is worth noting that each action of the family (6.28) fixes the relative coefficient between 
cubic vertices Vs1,s2,s3 for various spins s1,2,3 that contribute to the action, which is usually not 
the case for cubic interactions (any linear combination of consistent cubic vertices Vs1,s2,s3 is 
consistent again). This rigidity/uniqueness of the action is due to taking the higher spin algebra 
into account. Moreover, the relative normalization of free kinetic terms is also fixed in the free 
limit. The latter point is subtle: one could rescale all ωα(n),α̇(m), n +m = 2s − 2, by some spin-
dependent constants as and change this normalization, but then one would have to change the 
star-product accordingly. Therefore, the relative normalization makes sense as long as we insist 
on using the Moyal–Weyl star-product for R and for the gauge symmetries δω = dξ − [ω, ξ ]�.

After this detour into the Fradkin–Vasiliev action and Pontryagin invariant, we can extract 
the presymplectic structure and compare it with (6.20). The free part of the action (6.28) differs 
from the usual first order (AKSZ-type) actions by a total derivative. Varying the action (6.28)
and extracting the boundary term, we find the following presymplectic potential:

�̂= 2τ+
∫
�

〈R+ � δω〉 + 2τ−
∫
�

〈R− � δω〉 . (6.30)

On restricting to the solution space, we can replace the curvature R with its on-shell value (6.15)
and get an equivalent presymplectic potential � on the target space that yields

�= d�= 2τ+Hαα〈∂α∂αdC(y, ȳ = 0) � dω〉 + 2τ−Hα̇α̇〈∂α̇∂α̇C(y = 0, ȳ) � dω〉 . (6.31)

This is exactly (6.20) with μ’s replaced by 2τ ’s. Furthermore, (6.31), when decomposed into 
fields with definite spin, is equivalent to the presymplectic form

�= i(hβ α̇ dωα(s−1),α̇(s−1)dωα(s−1)β,α̇(s−2) − c.c.) , (6.32)

which comes from the free first-order action of Ref. [122]. It coincides in form with the presym-
plectic structure of the linearized gravity, cf. (4.19), and is one of the admissible presymplectic 
structures found in [63].

As another small test of interactions, the presymplectic AKSZ Lagrangian (6.22) does repro-
duce the correct cubic on-shell vertex (6.29) upon appropriate identification between τ and μ. 
However, since beyond the free level it is only a weak action (unless otherwise shown) we do not 
suggest to literally compare the actions in the literature, e.g. [34,42,70] with (6.21). In general, 
in physics terms, weak actions can suffer from defects of two kinds: (1) some interactions can 
disappear because the presymplectic structure is degenerate; (2) some extra interactions can be 
found due to the action being invariant under a subset of symmetries only. We expect that the 
presymplectic AKSZ action proposed in the paper does not suffer from either defect, the only 
real issue being locality, see also discussion in Section 8.

Presymplectic AKSZ Lagrangian (6.21) can also clarify21 the very form of the original action 
(6.26) or its refinement (6.28), i.e., the fact that it is very close to a topological one. Free param-
eters τ± of (6.28) get expressed in terms of a single coupling constant by requiring the action to 
be Hermitian and parity invariant. On relaxing these conditions (or at least the parity in view of 
the importance of the θ -term) we get a two-parameter family of actions, which is closely related 

21 E. S. is grateful to N. Boulanger for asking this question many years ago.
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to the fact that there are two independent deformations of the equations of motion and of the 
extended higher spin algebra, cf. (6.11). Therefore, the two-term structure of action (6.28) and 
the appearance of ‘almost’ the trace is explained by (6.21) without any reference to AdS4 or to 
cubic approximation.

Let us summarize, presymplectic AKSZ action (6.22) does reproduce the correct free dynamic 
over AdS4; it does reproduce the correct presymplectic structure, which leads to the canonical 
quantization of free higher spin fields; it does reproduce the presymplectic structure coming from 
cubic action (6.28) together with the normalization that is fixed by the higher spin symmetry. The 
last point should not be too surprising in view of the fact that both (6.22) and (6.28) are fixed by 
the higher spin symmetry. However, (6.28) is fixed up to the cubic terms over AdS4, while (6.22)
is fixed up to C2-terms, which is much more powerful. Nevertheless, it provides an additional 
check of the structure of interactions that goes beyond the classification [127–129] of cubic 
vertices Vs1,s2,s3 within the Noether procedure.

Let us make a few comments on the presymplectic structure of higher spin fields and its 
relevance for quantization. In the simplest, non-gauge, case of the scalar field C(x), � directly 
corresponds to the canonical commutation relations:

�̂=
∫
�

εabcd dx
bdxcdxd δC∂aδC ⇐⇒ [C(x), Ċ(x′)] = iδ3(x − x′) , (6.33)

with � ⊂ R3,1 being a Cauchy surface x0 = const. In the case of gauge fields, the situation is 
more complicated. For example, for s = 1 we have

�̂=
∫
�

εabcd dx
bdxcdxd δF an δA

n , (6.34)

which allows one to work out the commutators of physical observables. In particular, for the 
components of magnetic field Bi and electric field Ej we get

[B i (x),Bj (x′)] = 0 , [B i (x),Ej (x′)] = iεijk∂kδ3(x − x′) ,
[Ei (x),Ej (x′)] = 0 . (6.35)

Similar commutation relations can be found for the curvatures of higher spin fields. Indeed, let 
φα(s),α̇(s) be the traceless part of the Fronsdal field, which can be associated with the totally 
symmetric part of the higher spin vierbein eα(s−1),α̇(s−1). The expressions for the Weyl tensors 
are very simple in the spinorial language:

Cα(2s) = ∇αα̇ · · ·∇αα̇ φα(s),α̇(s) , Cα̇(2s) = ∇αα̇ · · ·∇αα̇ φα(s),α̇(s) . (6.36)

Upon 3 +1 split we get out of Cα(2s), Cα̇(2s) a pair of rank-2s spin-tensors, which can be mapped 
to higher spin electric Ej1···js and magnetic Bi1···is fields; both of the fields are symmetric and 
traceless SO(3)-tensors. The only non-trivial commutator implied by �̂ in Minkowski space-
time has the form

[B i1···is (x),Ej1···js (x′)] = iεi1j1k1∂
k1∂i2∂j2 ...∂is ∂js δ

3(x − x′)+ . . . , (6.37)

where the dots complete the r.h.s. to a traceless, symmetric and transverse bi-tensor. Note that 
(6.32) and (6.31) are equivalent in AdS4, but not in flat space-time.

The correct quantization of free higher spin fields is guaranteed by the fact that �1 coincides 
with the one obtained from the standard actions, all of which are equivalent to the Fronsdal 
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action. In particular, the frame-like actions are known [122] to reduce to the Fronsdal action. 
Note that the presymplectic structure should be used to compute the commutator of observables. 
The complete classification of observables in 4d HSGRA was obtained in [64] with the important 
results found first in [130,131]. For the free theory one set of gauge invariant observables is given 
by the components of C, e.g. by the electric and magnetic fields (6.35) and by the higher spin 
generalizations thereof. Another set of observables, currents of the global higher spin symmetry, 
is considered in Sec. 7.

Presymplectic structure and AKSZ to NLO. For the formal manipulations below, we will 
use the presymplectic potential �1 in the form (6.17). Applying the homological perturbation 
theory (6.7), (6.8), one can extend (6.17) to higher orders in C’s to make it invariant w.r.t. the 
full homological vector field (6.2) underlying 4d HSGRA. In particular, the sub-leading term of 
expansion (6.4), (6.5) has the following structure:

�2 =�(0)2 +�(1)2 +�(2)2 . (6.38)

By definition, the coefficients of the two-form �(0)2 vanish modulo C2; this allows us to ignore 
the contribution of �(0)2 in the first-order approximation (6.12) to the field equations. As for the 
rest two terms, we find

�
(1)
2 +�(2)2 = d�2 , �2 = 1

2 〈�μν � dC〉 , (6.39)

where

�μν(ω,ω,ω,C)=�μ(ω,ω) � �ν(ω,C)+�μ(ω,C) � �ν(ω,ω) , (6.40)

�ν(ω,C)=�ν(ω,C)−�ν(C,ω) . (6.41)

One can check that

D�ν(ω,C)≈ [C,�ν(ω,ω)]� mod C2 . (6.42)

All this allows us to reconstruct the corresponding AKSZ Lagrangian up to the second order in 
the zero-form field C. A straightforward calculation gives

L = 〈
C � �μ(ω,ω) �R − 1

2�μν(ω,ω,ω,C) � DC

− 1
2C � �μ(ω,ω) � �ν(ω,ω) �C

〉 +O(C3)
(6.43)

Let us check directly that the Lagrangian above leads to the equations of the form (4.10). We find

δL = 〈δC � �μ �R + C � δ�μ �R + C � �μ �Dδω

− 1
2δ�μν � DC − 1

2�μν � DδC

− 1
2δC � �μ ��ν �C − 1

2C � �μ ��ν � δC〉 +O(C2)

≈ d〈C � �μ � δω〉 + d〈 1
2�μν � δC〉

− 1
2 〈(D�μν − [C,�μ ��ν]�) � δC〉 +O(C2) .

(6.44)

It remains to observe that the last term vanishes due to the identity
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D�μν ≈ [C,�μ ��ν]� mod C2 (6.45)

that follows immediately form (6.14) and (6.42).
We see that the EL equations for the Lagrangian (6.44) are satisfied by all solutions to the 

equations (6.12) of 4d HSGRA. As expected, the total derivatives in (6.44) exactly reproduce the 
presymplectic potential � =�1 +�2 + . . . defined by Rels. (6.17), (6.39), cf. (4.9). We claim 
that the corresponding on-shell presymplectic structure

�̂= δ�̂ , �̂=
∫
�

� ,

where

� = 〈C � �μ(ω,ω) � δω〉 + 1
2 〈�μν(ω,ω,ω,C) � δC〉 +O(C2) (6.46)

and ω, C obey equations (6.12), becomes trivial modulo C2 whenever μ = ν. Indeed,

� ≈ 〈�ν �C � δω〉 + 〈D�ν � δω〉 + 1
2 〈�νν � δC〉 +O(C2)

� 〈R � δω〉 + 〈�ν �Dδω〉 + 1
2 〈�νν � δC〉 +O(C2)

� 〈R � δω〉 − 〈�ν � δR〉 + 1
2 〈�νν � δC〉 +O(C2)

= 1
2d〈ω � δω〉 + δ〈 1

2ω � dω − 1
3ω �ω �ω

〉 − 〈�ν � δR〉 + 1
2 〈�νν � δC〉 +O(C2).

(6.47)

Denoting

J = 〈
1
3ω �ω �ω +�ν(ω,ω) �C �ω

〉 +O(C2) , (6.48)

we proceed as

� � 1
2δJ − 〈�ν ��ν � δC〉 + 1

2 〈�νν � δC〉 +O(C2)

= 1
2δJ + 1

2 〈(�ν�ν −�ν�ν) � δC〉 +O(C2)

= 1
2δJ + 1

2 〈[δC,�ν]� � �ν +�ν � [δC,�ν]�〉 +O(C2)

≈ 1
2δJ + 1

2 〈D�ν(ω, δC) � �ν(ω,C)+�ν(ω,C) � D�ν(ω, δC)〉 +O(C2)

≈ 1
2δ

(
J + 〈[C,�ν(ω,ω)]� � �ν(ω,C)〉

) − 1
2d〈�ν(ω,C) � �ν(ω, δC)〉 +O(C2).

(6.49)

Hence, � degenerates into the sum of on-shell d- and δ-exact terms, so that �̂ = 0 modulo 
C2. The current (6.48) is conserved up to the first order in C, that is, dJ ≈ 0 (mod C2); its 
conservation, however, inevitably breaks down at the next order, see [64].

The general conclusion is that for μ = ν, the presymplectic structure (6.46) is equivalent to 
that of the form (6.4) with m > 2. In other words, even for μ = ν the presymplectic structure 
remains non-trivial, but starts at NNLO. However, this does not seem to be satisfactory from the 
physical point of view as long as we want to reproduce the correct quantization of free higher spin 
fields on maximally symmetry backgrounds, C = 0, e.g. on AdS4. Therefore, we keep μ �= ν.
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Another important comment is that the scalar field of the higher spin multiplet is somewhat 
separated from s > 0 fields: its presymplectic structure does not appear at LO and enters at NLO. 
Of course, the higher spin symmetry relates it to those of higher spin fields, which were found 
to be the correct ones. In order to extract the correct presymplectic structure for the free scalar 
field one has to choose �1 of the form (6.18) and perform the corresponding redefinitions of �2
(6.39), which is a problem closely related to the issue of (non-)locality of HSGRA. We hope that 
many useful statements can be proved first at the formal level, while the non-locality problem 
awaits its satisfactory resolution.

Lastly, the presymplectic structure is unobstructed, see Appendix D for the proof. Therefore, it 
can be extended to any order and the general expression can be written with the help of the tech-
niques introduced in [68] for equations. The presymplectic structure and AKSZ action depend 
on two coupling constants, as required by the AdS/CFT duality with Chern–Simons matter the-
ories (one should set μ = ν = Ñ−1eiθ and ν̄ = ν∗, μ̄= −μ∗, where θ = π

2 λ, Ñ = 2N sinπλ
πλ

are 
expressed in terms of the number of fields N and t’Hooft coupling λ =N/k for Chern–Simons 
level k).

7. Higher spin waves and currents

As has been mentioned above, the most symmetric vacuum in HSGRA corresponds to C = 0. 
In this case, the highly non-linear equations of motion (3.3) are greatly simplified taking the form 
of zero-curvature condition for the gauge connection ω associated with the Lie algebra gl(A). In 
other words, the solutions to

d
◦
ω= ◦

ω�
◦
ω (7.1)

describe the most symmetric geometric backgrounds against which the free higher spin fields can 
consistently propagate. A particular solution to these equations is provided by the anti-de Sitter 
space, in which case 

◦
ω∈ so(3, 2) ⊂ gl(A). We let C̃ and ω̃ denote the small fluctuations of fields 

about the vacuum. Then the linearized equations of motion (3.3) read
◦
D ω̃ =�ν( ◦

ω,
◦
ω) � C̃ ,

◦
D C̃ = 0 . (7.2)

Here we introduced the background covariant differential 
◦
D= d − [ ◦

ω, −]�. By definition, 
◦
D

2 =
0. The equations are invariant under the gauge transformations

δεω̃ = ◦
D ε , δεC̃ = 0 , (7.3)

ε being an infinitesimal gauge parameter. Besides, system (7.2) enjoys the global symmetries of 
the form

δξ ω̃ = [ξ , ω̃]� −�ν( ◦
ω, ξ) � C̃ , δξ C̃ = [ξ , C̃]� , (7.4)

where the infinitesimal parameter ξ obeys the condition 
◦
D ξ = 0. Notice the term involving �ν , 

which survives even for the anti-de Sitter background. In that case the κ-independent part of ξ
accommodates the whole set of Killing’s tensors of AdS4. Noteworthy also is the fact that the 
global symmetries form an associative algebra, Mat(A), w.r.t. the �-product of ξ ’s, and not just 
the Lie algebra gl(A) w.r.t. their �-commutators.

A nice property of (7.1), (7.2) is that this is a fully consistent system on its own. It requires only 
the Hochschild cocycle �ν and does not suffer from non-localities. It describes propagation of 
higher spin fields on backgrounds more complicated than just the anti-de Sitter space, providing 
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thus a way to overcome the Aragone–Deser no-go [132]. In d = 3 there is no r.h.s. in (7.2) since 
higher spin fields do not have propagating degrees of freedom. For d > 3, the Hochschild cocycle 
is required. The simplest solutions beyond empty AdSd could be topological black holes [133]
and higher spin generalizations thereof [134] along the 3d lines, see e.g. [135].22

The linearization of (6.43) over the vacuum C = 0 and ω= ◦
ω gives the following quadratic 

Lagrangian:23

L◦ =〈C̃ � �μ( ◦
ω,

◦
ω) �

◦
D ω̃ − 1

2�μν(
◦
ω,

◦
ω,

◦
ω, C̃) �

◦
D C̃

− 1
2 C̃ � �μ(

◦
ω,

◦
ω) � �ν(

◦
ω,

◦
ω) � C̃〉 .

The Lagrangian is obviously invariant under the gauge transformations (7.3), but not under the 
action of global symmetries (7.4) as one can easily check. Nonetheless, we can still use the 
underlying presymplectic structure to assign conserved currents to the global symmetry transfor-
mations. The linearized presymplectic form �◦ = d�◦ on the target space induces that on the 
configuration space of fields C̃ and ω̃. The latter is given by

�̂◦ =
∫
�

�◦ , �◦ = δ�◦ ,

�◦ = 〈C̃ � �μ( ◦
ω,

◦
ω) � δω̃〉 + 1

2 〈�μν( ◦
ω,

◦
ω,

◦
ω, C̃) � δC̃〉 .

(7.5)

In the case of AdS4 background, this presymplectic structure and the Lagrangian L◦ were first 
found in [63].

Let Xξ denote the variational vector field defined by the r.h.s. of equations (7.4). We leave it 
to the reader to check that the vector field Xξ , being tangent to the solution space, is Hamiltonian 
relative to �̂◦, i.e.,

iXξ
�◦ � δJ ξ , (7.6)

where

J ξ = 〈
C̃ � �μ(

◦
ω,

◦
ω) � ([ξ , ω̃] −�ν( ◦

ω, ξ) � C̃)− 1
2�μν(

◦
ω,

◦
ω,

◦
ω, C̃) � [ξ , C̃]〉

+ 1
2 〈C̃ � �μν( ◦

ω,
◦
ω,

◦
ω, ξ) � C̃〉 .

(7.7)

By construction, the Hamiltonian Jξ defines a conserved current for the higher-spin wave equa-
tions (7.2). The last fact is easy to verify directly:

dJ ξ ≈ 〈C̃ � �μ � ([ξ ,�ν � C̃]� − [ξ ,�ν] � C̃)〉
− 1

2 〈[C̃,�μ ��ν]� � [ξ , C̃]�〉 − C̃ � [ξ ,�μ ��ν]� � C̃〉 = 0 .
(7.8)

Here we used identities (6.14), (6.42), and (6.45) together with the cyclicity of the trace. As with 
the presymplectic structure (7.5), the currents (7.7) become trivial for μ = ν.

22 We are grateful to Per Sundell for this suggestion.
23 Note that to this order it is easy to write the Lagrangian in a more suitable form as

L◦ = 〈Vcan
μ (

◦
ω,

◦
ω, C̃) �

◦
D ω̃ − 1

2 �̃μν(
◦
ω,

◦
ω,

◦
ω, C̃) �

◦
D C̃ − 1

2V
can
μ (

◦
ω,

◦
ω, C̃) �Vcan

ν (
◦
ω,

◦
ω, C̃)〉 ,

see footnote 17. One just needs to perform the field redefinitions that lead from the factorized vertex to Vcan, inducing a 
certain change of �μν into �̃μν . It is the �-term that gives the presymplectic structure for the free scalar field.
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Notice that the conserved currents Jξ are not invariant under the gauge transformations (7.3)
in the sense that

δεJ ξ ≈ d〈C̃ � �μ( ◦
ω,

◦
ω) � [ξ ,ε]�〉 �= 0 . (7.9)

The violation of gauge invariance occurs due to the explicit dependence of ω̃ and cannot be 
removed by adding d-exact terms to the currents Jξ . Of course, this non-invariance does not 
affect the integrated conserved charges. It is significant that the currents (7.7) have non-zero 
projections onto the physical sector if one takes ξ ∈ gl(hs), see Remark 3.4.

Gauge invariant and non-invariant conserved currents for the free higher spin fields on the 
AdS4 background have been intensively studied in the literature, see [136–138] and references 
therein. In [138], an infinite family of gauge non-invariant currents of the form ω̃ × ω̃ have been 
explicitly constructed. Our gauge non-invariant currents (7.7) have a different structure, schemat-
ically C̃ × ω̃+ C̃ × C̃. The gauge invariant currents were completely classified in Ref. [136,137]. 
Being gauge invariant, they may only depend on the zero-form field as C̃ × C̃. It goes without 
saying that none of the currents above can be extended to or come from the non-linear theory. 
Furthermore, a straightforward cohomological analysis exposed in the Appendices shows that the 
aforementioned currents ω̃ × ω̃ and C̃ × C̃ cannot be even extended from AdS4 to the general 
higher spin background (7.1).

The Poisson bracket associated with the presymplectic structure (7.5) makes the conserved 
currents (7.7) into the Lie algebra:

{J ξ ,J ξ ′ } = iXξ
iXξ ′ �

◦ � δξJ ξ ′ � J [ξ ,ξ ′]� . (7.10)

In general, the currents Jξ being quadratic in fields, one may expect a non-trivial central charge 
to appear in the r.h.s. of (7.10) upon quantization. The vanishing of the second cohomology group 
H 2(gl(A)) (see [139, Sec. B.4]), however, precludes such a possibility, so that the commutation 
relations (7.10) have to survive quantization as they are.

8. Final comments and discussion

We have constructed a presymplectic AKSZ sigma-model for 4d HSGRA at the formal level, 
that is, we showed that it does exist and depends on the right number of coupling constants. We 
also worked out the first two orders explicitly and proved that the higher orders are unobstructed. 
To a great surprise the free action turns out to be a genuine action for higher spin fields rather than 
just a weak action. The action leads to the right quantum commutators for various observables: 
the gauge-invariant field strengths and the currents of the global higher spin symmetry (leftover 
of the gauge symmetry at the free level). The AKSZ action reproduces some of the cubic vertices, 
while the rest should come from higher orders in the C-expansion.

Among the future developments of interest we can mention: (i) to find a compact form for 
the presymplectic AKSZ action of HSGRA in arbitrary dimension, which should be a variation 
of the techniques from [65–68]; (ii) guided by the examples of lower spin theories, to develop 
a path-integral quantization of HSGRA by means of presymplectic AKSZ models; (iii) to see if 
concrete quantum checks of HSGRA can be done already at the formal level, i.e., without paying 
attention to the non-locality of the models.

Quantization I. The main purpose of the approach advocated in this paper is to shed some 
light on the quantization of HSGRA. The basic ingredient of any quantization method is a Pois-
son structure on the space of physical observables of a classical theory. This is, for example, 
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a starting point of the deformation quantization technique and the canonical quantization. In 
other approaches, the Poisson brackets manifest themselves and can be recovered through the 
semi-classical limit of equal-time commutation relations. Each Lagrangian field theory enjoys 
a canonical presymplectic structure that induces a non-degenerate Poisson bracket on gauge-
invariant functionals of fields.

It is particularly remarkable that one can define and classify all suitable presymplectic struc-
tures independently of Lagrangians; the only input one needs for that are classical equations 
of motion. In this paper, we solved this classification problem for 4d HSGRA. Applying co-
homological analysis, we found that all physically relevant presymplectic structures form a 
two-parameter family that can be read off or encoded in an AKSZ-type sigma-model (6.43). 
Moreover, we were able to find the explicit expressions (6.46) for (some representatives of) 
these presymplectic structures up to the second-order in C. As an immediate application of these 
presymplectic structures, we computed the Poisson brackets of the conserved currents (7.7) in 
free theory. We also argued that the classical commutation relations of the currents (7.10) should 
survive quantization.

The deformation quantization of finite-dimensional presymplectic manifolds has been con-
sidered in the works [140,141]. Appropriate adaptation of this method to the context of field 
theory (see e.g. [142] and references therein) will hopefully work for the model at hand. As an 
alternative, one can try to apply the path-integral quantization to the presymplectic AKSZ model 
of Sec. 6. It is well to bear in mind that the weak Lagrangian (6.43) may not be a Lagrangian in 
the ordinary sense and its relevance to the path-integral quantization of HSGRA calls for further 
investigation.

Quantization II. More abstractly one could check what are the possible counterterms in a HS-
GRA, which does not require actual quantization. The beauty of the counterterm argument is 
that one might be able to prove renormalizability or finiteness even without having to quantize 
anything. However, the naive argument – the more symmetries, the less counterterms – does 
not seem to apply without further fuss: there exists infinitely many invariants of the higher spin 
symmetry that can serve as potential counterterms [64]. Nevertheless, additional physical restric-
tions might potentially rule most of them out. Therefore, the direct quantization of HSGRA is an 
important open problem too.

Vacuum corrections. The on-shell AKSZ action is proportional to the corresponding Hamilto-
nian; the latter is an example of on-shell observables which were classified in [64]. The on-shell 
action starts with ω4C2-type terms and appears to vanish on any maximally symmetric back-
ground (C = 0).

However, the value of the classical action on AdS4 vacuum should not be zero. Moreover, it is 
known to contain a rather peculiar numerical factor 1

16

(
log(4) − 3ζ(3)

π2

)
for the   = 1 boundary 

conditions [46,47], the free energy of the free scalar field on the three-sphere. Some contribution 
might come from the boundary terms (a higher spin analog of the Gibbons–Hawking term) that 
the action should be supplemented with. All possible on-shell non-trivial three-forms can be 
found in [64] and again there is no candidate among ω3-type observables. A more rigorous 
approach to the problem would be to carefully take into account the near boundary behaviour of 
fields and gauge parameters, which may lead us to reconsider the problem of boundary terms.

It should also be borne in mind that the on-shell action is actually ill-defined and requires regu-
larization. Formally, it is the indeterminate form 0 ·∞, where 0 corresponds to the on-shell value 
of the integrand, while ∞ comes from integration over an infinite volume. To evaluate the inte-
gral properly, one could choose a family of solutions approaching the AdS4 vacuum; in so doing, 
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each C of the family must satisfy an appropriate fall-off condition to ensure convergence. The 
limit of the integral as C → 0 may then be identified with the value of the presymplectic AKSZ 
action (6.43) on the AdS4 vacuum. Unfortunately, not many exact solutions to HSGRA are avail-
able in the literature to implement the above regularization procedure. It seems reasonable to use 
a family of solutions that preserves as much symmetry as possible, e.g. as in [130,143].

Note that in the ordinary (non-higher-spin) cases the on-shell value is proportional to the 
volume of (Euclidian) AdSd , which is divergent and needs to be regularized. One can also regard 
the space-time integral as the volume of the quotient SO(d + 1, 1)/SO(d, 1), which relates it 
to the ‘gauge’ group. In the higher spin case the group is not yet well-defined, see e.g. [144]. 
Moreover, higher spin transformations mix the metric gμν with all higher spin fields and the 
on-shell value of the action should not be thought of as the volume of AdSd , rather it should be 
related to the (regularized) volume of the higher spin group.

How degenerate the presymplectic AKSZ action is? In general, as is discussed in Sec. 4, 
presymplectic actions cannot reproduce all of the equations of motion. Nevertheless, in some 
cases, e.g. gravity, the hidden integrability conditions allow one to get equations that are com-
pletely equivalent to the one we started with. In order to have such a miracle one needs the right 
balance between fields and equations (e.g. in gravity the torsion constrain has the same number 
of components as spin-connection ωa,b and the Einstein equations can, in principle, be repro-
duced from the variation of vielbein ea , which is what happens). However, in any HSGRA in 
d > 2 this balance is broken: the equations for C and ω are one- and two-forms valued in a 
higher spin algebra. This argument is not precise enough since we do not have to reproduce all 
of the equations, only the ones that lead to the differential equations for the dynamical fields (for 
example, torsion-like constraints can be imposed by hand).

Nevertheless, the following observation can save the day: variation with respect to ω can, in 
principle, reproduce all of the C-equations, (C.5). Suppose this is true. Then we can show, see 
Appendix E, that the ω-equations resulting from the integrability of the C-equations have to be 
exactly (3.3a) up to a two-form B

dω = ω �ω + V(ω,ω,C)+O(C2)+ B , (8.1)

where B belongs to the centre of the higher spin algebra, i.e. it is B = 1 ·B and B is a non-trivial 
two-form belonging to the de Rham cohomology, if any.24

As was mentioned in Sec. 4, weak Lagrangians associated with degenerate presymplectic 
structures may violate some of the gauge symmetries of the original equations of motions. The 
surprising thing is that this does not happen at the free level. The Lagrangian for higher-spin 
waves is obviously invariant under linearized gauge transformations (7.3) (while some of the 
global symmetries are broken). Whether this observation extends to the non-linear level is not 
clear at the moment and requires a more detailed study of the kernel of the presymplectic struc-
ture. The information about the kernel is also needed for the identification of physical observables 
that admit consistent quantization using the presymplectic structure. We are going to address all 
these issues in future publications.

Higher dimensions. It is instructive to have a look at the presymplectic AKSZ model for the 
d-dimensional formal HSGRA. As argued in [64], the basis of the Hochschild cohomology of 

24 We are grateful to Ergin Sezgin for a useful discussion on the ambiguities of the equations, see also [58] for the 
discussion of interactions’ ambiguities related to de Rham cohomology.
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the (extended) higher spin algebra is given by a two-cocycle φ and a (d − 2)-cocycle ψ . The 
two-cocycle is the one that drives the deformation of the free equations. The (d − 2)-cocycle 
contributes to higher form observables. We see that at d = 4 both of these, rather different in 
nature, cocycles happen to be two-cocycles. Algebraically the doubling of two-cocycles is due to 
the fact that the extended higher spin algebra A =A ⊗A is the tensor square of A =A1 �Z2.

With the cocycle ψ we can write the following natural expression for the presymplectic po-
tential on fields:

�1 = 〈ψ(ω, . . . ,ω) �C � δω〉 . (8.2)

It is also plausible that there exists a field redefinition that brings this �1 into the form

�1 = 〈V(ω, . . . ,ω,C) � δω〉 (8.3)

such that for the anti-de Sitter vacuum 
◦
ω= haPa + 1

2w
a,bLab we have

�1 = εv1···vd−2u1u2h
v1 · · ·hvd−2Cu1a(s−1),u2b(s−2)δω̃a(s−1),b(s−1) . (8.4)

Here, ha is a vielbein, wa,b is a spin-connection, Pa and Lab are the generators of transvec-

tions and Lorentz transformations, and ω̃ is the fluctuation about 
◦
ω. This gives the canonical 

presymplectic form

�◦ = εv1···vd−2u1u2h
v1 · · ·hvd−2δC̃

u1a(s−1),u2b(s−1)
δω̃a(s−1),b(s−1) (8.5)

for free fields ω̃, C̃ on C = 0 background. The non-linear presymplectic AKSZ action should 
have then the form

S =
∫

〈V(ω, . . . ,ω,C) � (dω − ω �ω)〉 +O(C2) . (8.6)

We are going to detail this construction elsewhere, but it is tempting to compare it with the 
Einstein–Hilbert action in the frame-like formulation

S[e,ω] =
∫
εv1···vd−2u1u2e

v1 · · · evd−2(dωu1,u2 −ωu1
c ω
c,u2) . (8.7)

The first factor is nothing else but the Chevalley–Eilenberg cocycle of the Poincaré algebra.
In 3d , one should not be surprised that to leading order the only presymplectic structure is 

the one of Chern–Simons theory and the presymplectic AKSZ action is just the Chern–Simons 
action. It would be interesting to explore the 3d case further.

As a step towards the complete AKSZ sigma-model it is worth noting that the non-linear 
equations of any HSGRA are integrable in the sense of being equivalent to the following ‘free 
system’ [68]:

dω̂ = ω̂ ∗ ω̂ , dĈ = ω̂ ∗ Ĉ − Ĉ ∗ ω̂ . (8.8)

Here ∗ is the product in the deformed (extended) higher spin algebra Ah̄,

a ∗ b= a � b+ h̄ φ(a, b)+ · · · ,
and the fields ω̂, Ĉ take values in Ah̄. The deformed algebra features the same structure of 
Hochschild cocycles, e.g. it has 2-cocycle ϕ(a, b) = ∂h̄(a ∗ b), it also has an invariant trace 〈−〉
and should have an appropriate cocycle V̂(ω̂, . . . , ω̂, Ĉ). Now, one can write a complete action 
as
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S =
∫

〈V̂(ω̂, . . . , ω̂, Ĉ) ∗ (dω̂ − ω̂ ∗ ω̂)〉 , (8.9)

which may be a good starting point for exploring the quantum properties of HSGRA in the future.
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Appendix A. Hochschild, cyclic, and Lie algebra cohomology

In this appendix, we collect some basic definitions and constructions related to the cohomol-
ogy of associative and Lie algebras. For a more coherent exposition of the material we refer the 
reader to [145], [146], [147]. A word about notation: all unadorned tensor products ⊗ and Hom’s 
are taken over k, a ground field of characteristic zero. We systematically follow the Koszul sign 
convention. As in the main text, the grade of a homogeneous element a is denoted by |a|. Many 
formulas below are considerably simplified if one uses the shifted grade ā= |a| − 1.

The Hochschild cohomology HH •(A, M) of a graded associative k-algebra A with coef-
ficients in a graded A-bimodule M is the cohomology of the Hochschild cochain complex 
C•(A, M) composed by the vector spaces

Cp = Hom(A⊗p,M) , A⊗p =A⊗ · · · ⊗A︸ ︷︷ ︸
p

and the homomorphisms ∂ : Cp → Cp+1 defined by

(∂f )(a1, . . . , ap+1)= (−1)(ā1+1)(f̄+1)a1f (a2, . . . , ap+1)

− (−1)ā1+···+āpf (a1, . . . , ap)ap+1

+
p∑
(−1)ā1+···+āk f (a1, . . . , akak+1, . . . , ap+1) . (A.1)
k=1
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In the special case M = A∗ it is convenient to identify the spaces Cp(A, A∗) with
Hom(A⊗(p+1), k). Then the formula for the Hochschild differential takes the form

(∂g)(a0, a1, . . . , ap+1)=
p∑
k=0

(−1)ā0+···+āk g(a0, a1, . . . , akak+1, . . . , ap+1)

+ (−1)(ā0+1)(ā1+···+āp+1)g(a1, . . . , ap, ap+1a0) ,

(A.2)

where, by definition, g(a0, . . . , ap−1, ap) = (−1)|ap |f (a0, . . . , ap−1)(ap).
As was first observed by A. Connes, the complex C•(A, A∗) contains a subcomplex C•

cyc(A)

of cyclic cochains, i.e., cochains g ∈ Hom(A⊗(p+1), k) satisfying the additional condition

g(a0, a1, . . . , ap)= (−1)ā0(ā1+···+āp)g(a1, . . . , ap, a0) . (A.3)

The cohomology of the complex C•
cyc(A) is called the cyclic cohomology of A and the corre-

sponding cohomology groups are denoted by HC•(A). Upon restricting to cyclic cochains, one 
can bring the differential (A.2) into a more familiar form25

(∂g)(a0, a1, . . . , ap+1)=
p∑
k=0

(−1)ā0+···+āk g(a0, a1, . . . , akak+1, . . . , ap+1)

+ (−1)āp+1(ā0+···+āp+1)g(ap+1a0, a1, . . . , ap) .

(A.4)

Considering, for example, the ground field k as a one-dimensional algebra over itself one readily 
concludes that C2n

cyc(k) � k and C2n+1
cyc (k) = 0. Hence, HC2n

cyc(k) � k and HC2n+1
cyc (k) = 0.

It follows from the definition that the cyclic cohomology groups are contravariant functors 
of the algebra, so that any algebra homomorphism h : A → B induces a homomorphism h∗ :
HCp(B) →HCp(A) in cohomology.

Depending on coefficients some standard operations can be defined on Hochschild and cyclic 
cohomology. Below we discuss two such operations: the cup product and the action of deriva-
tions. The former relates the cohomology of algebras A and B with that of their tensor product 
A ⊗B and is defined as follows.

Let M and N be bimodules over algebras A and B , respectively. Then for any f ∈ Cq(A, M)
and g ∈ Cp(B, N) we put

(f � g)(a1 ⊗ b1, . . . , aq+p ⊗ bq+p)

= (−1)εf (a1, . . . , aq)aq+1 · · ·aq+p ⊗ b1 · · ·bqg(bq+1, . . . , bq+p) ,
(A.5)

where (−1)ε is the Koszul sign resulting from permutations of a’s, b’s, and g. By definition, f �
g ∈ Cq+p(A ⊗B, M⊗N). The cup product (A.5) is differentiated by the Hochschild coboundary 
operator (A.1) thereby inducing a product in cohomology:26

� :HHq(A,M)⊗HHp(B,N)→HHq+p(A⊗B,M ⊗N) . (A.6)

If all the cohomology groups HHp(B, N∗) turn out to be finite-dimensional, then (A.6) defines 
a natural isomorphism

25 Notice that the signs in either form obey the Koszul sign rule if one shifts the grade of all a’s by −1, so that the dot 
product acquires degree 1. Upon this interpretation the dot product and cyclic permutation of a’s go first and the map g
after.
26 Not to be confused with Gerstenhaber’s ∪-product on HH •(A, A).
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HHn(A⊗B,M ⊗N)�
⊕
p+q=n

HHp(A,M)⊗HHq(B,N) (A.7)

for any A-bimodule M . This is just the dual version of the Künneth formula for Hochschild 
homology, see [148, Ch. X, Thm. 7.4].

Unlike the Hochschild cohomology, the cup product

� :HCq(A)⊗HCp(B)→HHq+p(A⊗B) (A.8)

for cyclic cohomology groups cannot be defined at the level of complexes; one has to multiply 
cyclic cocycles. The explicit formula for this cup product is somewhat cumbersome and we do 
not present it here. The reader can found it in many places, e.g. [145, Sec. 4.4.10], [149, II.1]. 
The cyclic analog of the isomorphism (A.7) is given now by the exact sequence

0 →HC•(A)
⊗
HC•(k)

HC•(B) �→HC•(A⊗B)→TorHC
•(k)(HC•(A),HC•(B))→ 0

(A.9)

under the assumption that all groups HCp(B) are finite-dimensional, see [150, Thm. 1]. (The 
commutative algebra HC•(k) and its left/right action on cyclic cohomology are defined be-
low.) As is seen, the �-product homomorphism from the tensor product of HC•(k)-modules, 
being injective, is not generally surjective, yet it becomes an isomorphism whenever either of the 
HC•(k)-modules is torsion free.

By way of illustration let us take B to be the matrix algebra Matn(k) viewed as a bimod-
ule over itself. Then A ⊗ B = Matn(A) and M ⊗N = Matn(M). Since the algebra Matn(k) is 
separable [145, Sec. 1.2.12],

HH •(Matn(k),Matn(k))�HH 0(Matn(k),Matn(k))� k , (A.10)

where the group HH 0(Matn(k), Matn(k)), being isomorphic to the centre of Matn(k), is gener-
ated by the unit matrix 1. By the Künneth formula (A.7),

HHp(A,M)�HHp(Matn(A),Matn(M)) . (A.11)

At the level of cochains the isomorphism is induced by the so-called cotrace map: cotr(f ) =
f � 1 for any f ∈ Cp(A, M). As Rel. (A.5) suggests,

cotr(f )(a1 ⊗m1, . . . , ap ⊗mp)= f (a1, . . . , ap)⊗m1 · · ·mp (A.12)

for ai ⊗mi ∈A ⊗ Matn(k).
In the case of cyclic p-cochains (A.3) the map (A.12) takes the form

cotr(g)(a0 ⊗m0, . . . , ap ⊗mp)= g(a0, . . . , ap)tr(m0 · · ·mp) (A.13)

and gives rise to the isomorphism

HCp(A)�HCp(Matn(A)) (A.14)

of cyclic cohomology groups.
As was mentioned above HC2n(k) � k. Let σ denote the basis 2-cocyle for HC2(k) obeying 

the normalization condition σ(1, 1, 1) = 1. Note that for each k-algebra A, there is the natural 
isomorphism A ⊗ k � A. Using this isomorphism and the 2-cocycle σ , we can define a homo-
morphism
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S :HCp(A)→HCp+2(A) (A.15)

by setting

Sf = σ � f = f � σ , ∀f ∈HCp(A) . (A.16)

The homomorphism S of degree 2 is called the periodicity map. For example, applying S to a 
1-cocycle φ, one obtains

(Sφ)(a0, a1, a2, a3)= (−1)|a3|+(|a2|+|a3|)(|a0|+|a1|)φ(a2a3a0, a1)+ (−1)|a1|φ(a0a1a2, a3) .

It is instructive to verify the cyclic property (A.3) of the resulting 3-cocycle Sφ. If we take A = k, 
then (A.15) makes HC•(k) into an associative commutative algebra; in fact HC•(k) � k[S]. 
This allows one to regard each k-vector space HC•(A) as a bimodule over the k-algebra HC•(k).

Let Der(A) denote the space of all derivations of the graded algebra A. By definition, homo-
geneous elements of Der(A) are homomorphism D :A →A obeying the graded Leibniz rule

D(ab)= (Da)b+ (−1)|a||D|a(Db) .

The derivations are known to form a graded Lie algebra w.r.t. the commutator. Furthermore, each 
derivation D gives rise to a cochain transformation LD : Cpcyc(A) → C

p
cyc(A) defined by

(LDg)(a0, a1, . . . , ap)=
p∑
k=0

(−1)D̄(ā0+···+āk−1)g(a0, . . . ,Dak, . . . , ap) . (A.17)

As usual, this induces a homomorphism L∗
D :HCp(A) →HCp(A) in cohomology. The induced 

homomorphism is known to be trivial for inner derivations. A similar action of derivations can 
be defined for Hochschild cohomology as well.

Each derivation D of an algebra A trivially extends to the derivation D̂ of the tensor product 
A ⊗ B by setting D̂(a ⊗ b) = Da ⊗ b. This extension appears to be compatible with the cup 
product of cyclic cocycles in the most natural way:

L
D̂
(f � g)= LDf � g . (A.18)

As a result, each D ∈ Der(A) generates a homomorphism L∗
D̂

:HCp(A ⊗ B) →HCp(A ⊗ B)
in cohomology.

The fact that the cyclic complex C•
cyc(A) is a subcomplex of the Hochschild complex 

C•(A, A∗) gives rise to the long exact sequence in cohomology

· · · HHp(A,A∗) B
HCp−1(A)

S
HCp+1(A)

I
HHp+1(A,A∗) · · · .

(A.19)

The sequence involves the periodicity map (A.15) and is known as Connes’ Periodicity Exact Se-
quences. In many interesting cases it reduces the problem of computation of cyclic cohomology 
to that of Hochschild cohomology. The map I is induced by the inclusion C•

cyc(A) → C•(A, A∗), 
while the definition of B is more complicated, see [146].

Among important applications of cyclic cohomology is computation of the cohomology of the 
Lie algebra gl(A) of ‘big matrices’. By definition, the algebra gl(A) consists of infinite matrices 
with only finitely many entries different from zero. Formally, it is defined through the inductive 
limit gl(A) = lim→ gln(A) corresponding to the natural inclusions gln(A) ⊂ gln+1(A) (an n × n-

matrix is augmented by zeros). A precise relationship between the cohomology of the Lie algebra 
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of matrices and cyclic cohomology is established by the Tsygan–Loday–Quillen theorem [151], 
[152].

In order to formulate this theorem precisely we need some more terminology. Recall that 
the Chevalley–Eilenberg cochain complex of a graded Lie algebra L = ⊕

Ln consists of the 
sequence of groups Cp(L) = Hom(�pL, k) endowed with a coboundary operator δ : Cp(L) →
Cp+1(L). By definition,

c(a1, . . . , ak, ak+1, . . . , ap)= (−1)āk āk+1c(a1, . . . , ak+1, ak, . . . , ap) (A.20)

and

(δc)(a1, . . . , ap+1)=
∑

1≤k<l≤p+1

(−1)εkl c([ak, al], a1, . . . , âk, . . . , âl , . . . , ap+1) , (A.21)

where

εkl = āk + āk(ā1 + · · · + āk−1)+ āl(ā1 + · · · + āk−1 + āk+1 + · · · + āl−1) .

As usual the hats indicate omitting of the corresponding arguments. By definition, the Lie algebra 
cohomology with trivial coefficients is the cohomology of the Chevalley–Eilenberg complex 
above. The corresponding cohomology groups are denoted by H •(L).

Viewing the cochains (A.20) as exterior forms on the graded vector space L we can make 
C•(L) into a differential graded algebra w.r.t. the exterior product of forms and the differential 
(A.21). As a result, the cohomology space H •(L) acquires the structure of graded commutative 
algebra:

[c1] · [c2] = [c1 · c2] = (−1)c̄1c̄2[c2 · c1] , (A.22)

ci being cocycles representing the cohomology classes [ci]. Denoting H •+(L) =
⊕
p>0H

p(L), 
we define the space of indecomposable elements of the algebra H •(L) as the quotient

IndecH •(L)=H •(L)/H •+(L) ·H •+(L) .

Given an associative algebra A, denote by L(A) the associated Lie algebra with the Lie 
bracket given by the commutator in A. Restricting a cyclic p-cochain f : A⊗(p+1) → k to 
the subspace of anti-symmetric chains �(p+1)A ⊂ A[−1]⊗(p+1) gives then a cochain of the 
Chevalley–Eilenberg complex associated to the Lie algebra L(A). Moreover, the restriction ap-
pears to be a cochain map, so that

(∂f )(a0 ∧ a1 ∧ . . .∧ ap+1)= (δf )(a0 ∧ a1 ∧ . . .∧ ap+1)

for any f ∈ Cp(A). As a result we have a homomorphism of cohomology groups

ε∗p :HCp(A)→Hp(L(A)) (A.23)

induced by the inclusion εp :�p+1A → A[−1]⊗(p+1). This is known as an antisymmetrization 
map [145, Sec. 1.3.4].

Composing now the antisymmetrization map with the cotrace (A.12), one can define a homo-
morphism from the cyclic cohomology of A to the cohomology of the Lie algebra gln(A):

ϕ∗ = ε∗ ◦ cotr∗ :HC•−1(A)→H •(gln(A)) . (A.24)
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At the level of cocycles the homomorphism is given by the formula27

ϕ(g)(a0 ⊗m0, . . . , ap ⊗mp)=
∑
σ∈Sp

(−1)εσ g(a0, aσ(1), . . . , aσ(p))tr(m0mσ(1) · · ·mσ(p)) .

(A.25)

Here (−1)εσ is the Koszul sign caused by elementary transpositions (A.20) of arguments.
Now we are in position to state the aforementioned Tsygan–Loday–Quillen theorem.

Theorem A.1. The image of the map (A.24) lies in the indecomposable part of the algebra 
H •(gln(A)) and induces an isomorphism

HCp−1(A)� IndecHp(gln(A))

for all n ≥ p. As an exterior algebra, H •(gl(A)) is freely generated by the graded vector space 
HC•−1(A).

In other words, the cohomology group Hp(gln(A)) does not depend on the size of matrices 
provided it is large enough.

Appendix B. Cohomology of Weyl algebras and their smash products

The polynomial Weyl algebra An over C is a unital algebra on 2n generators qi and pj subject 
to Heisenberg’s commutation relations

[qi, qj ] = 0 , [pi,pj ] = 0 , [qi,pj ] = δij1 . (B.1)

It is known to be a simple Noetherian domain with a k-basis consisting of the ordered monomials 
in q’s and p’s, see e.g. [153].

The Hochschild cohomology groups of Weyl algebras are known for various coefficients. For 
instance, applying the Koszul resolution (see e.g. [154], [155]) yields

HH •(An,An)�HH 0(An,An)� C (B.2)

and

HHp(An,M)�HH 2n−p(An,M∗) , HHp(An,M)= 0 ∀p > 2n (B.3)

for any bimodule M . Among other things, the isomorphisms (B.2) mean that all Weyl algebras 
are rigid, have only inner derivations, and their centre is generated by the unit element. Combin-
ing (B.2) and (B.3), one also obtains

HH •(An,A∗
n)�HH 2n(An,A

∗
n)� C . (B.4)

An explicit formula for a non-trivial 2n-cocycle τ2n generating the group HH 2n(An, A∗
n) was 

found in the 2005 paper [156] by Feigin, Felder, and Shoikhet. It was derived as a consequence 
of Shoikhet’s proof [157] of Tsygan’s formality conjecture. It should be noted that fifteen years 
earlier Vasiliev had found an explicit expression for τ2 in the context of 4d HSGRA [48]. In 
order to present the cocycle τ2 explicitly it is convenient to identify the elements of A1 with 

27 There is no need to antisymmetrise all p+ 1 arguments due to cyclicity of g and tr.
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the polynomials a(q, p) in (commuting) indeterminates q and p endowed with the Weyl–Moyal 
star-product

a � b=m expα(a ⊗ b) , (B.5)

where

α = 1

2

(
∂

∂p
⊗ ∂

∂q
− ∂

∂q
⊗ ∂

∂p

)
∈ End(A1 ⊗A1) (B.6)

and m(a⊗ b) = ab. We also introduce the maps α01, α12, α02:

α01(a0 ⊗ a1 ⊗ a2)= 1

2

(
∂a0

∂p
⊗ ∂a1

∂q
⊗ a2 − ∂a0

∂q
⊗ ∂a1

∂p
⊗ a3

)
∈ End(A1 ⊗A1 ⊗A1)

(B.7)

and similarly for α12 and α02. Finally, we define the homomorphism μ :A1 ⊗A1 ⊗A1 →C by

μ(a0 ⊗ a1 ⊗ a2)= a0(0)a1(0)a2(0) . (B.8)

Here a(0) is the constant term of the polynomial a(q, p). Now the expression for the 2-cocycle 
reads

τ2(a0, a1, a2)= μ ◦ F(α01, α12, α02)(a0 ⊗ a1 ⊗ a2) , (B.9)

where the operator F(α01, α12, α02) ∈ End(A1 ⊗A1 ⊗A1) is determined by the following entire 
analytic function of three variables:

F(x, y, z)= (z2 − y2)ez+y−x + (y2 − x2)ey+x−z + (x2 − z2)ex+z−y

(x − z)(z− y)(y − x) . (B.10)

Clearly, the action of the operator F is well defined on polynomials. Unlike the Hochschild 
2-cocycles of Refs. [156] and [48], the cocycle (B.9) enjoys cyclic invariance,

τ2(a0, a1, a2)= τ2(a2, a0, a1) , (B.11)

thereby generating the cyclic cohomology group HC2(A1) � C.
In the context of HSGRA, Weyl algebras usually appear in smash products with finite groups 

of their automorphisms. Recall that, given an associative k-algebra A and a finite group G ⊂
Aut(A), the skew group algebra A �G (aka smash product algebra) is defined to be the k-vector 
space A ⊗ k[G] endowed with the product

(a1 ⊗ g1)(a2 ⊗ g2)= a1a
g1
2 ⊗ g1g2 . (B.12)

Here ag denotes the action of g ∈G on a ∈A.
Notice that the automorphism group of An contains a subgroup Sp2n(C) acting by linear 

transformations on the 2n-dimensional complex space V spanned by the generators q’s and 
p’s. If G is a finite subgroup of Sp2n(k), then g|G| = e for any g ∈ G and the action of g is 
diagonalizable in V . Denote by 2μg the multiplicity of the eigenvalue 1 of the operator g : V →
V . Notice that μg = μhgh−1 and the set of all element g ∈ G with 2μg = p is invariant under 
conjugation. The next theorem is due to Alev, Farinati, Lambre, and Solotar [154] (see also 
[155]).
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Theorem B.1. Let np(G) denote the number of conjugacy classes of elements g ∈G with 2μg =
p, then

dimHH 2n−p(An �G,An �G)= dimHHp
(
An �G,(An �G)∗

) = np(G) .

As an example, consider the most simple skew group algebra A =A1 � Z2. Here the group 
Z2 = {e, "} acts on A1 by the involution

q" = −q , p" = −p . (B.13)

Since 2μe = 2 and 2μ" = 0, all non-trivial groups of Hochschild cohomology mentioned in the 
theorem above are

HH 2(A,A)�HH 0(A,A∗)� C �HH 2(A,A∗)�HH 0(A,A) . (B.14)

In particular, we see that the algebra A admits a unique non-trivial deformation.
Since HHn(A, A∗) = 0 for n > 2 one can easily see from Connes’ exact sequence (A.19)

that

HC2k−1(A)= 0 , HC0(A)� C , HC2k(A)� C2 , k = 1,2,3, . . . , (B.15)

see [139, Appendix B.4] for details. Furthermore, the groups HC•(A) form a free HC•(C)-
module generated (via S) by the pair of elements φ0 ∈ HC0(A) and φ2 ∈ HC2(A). The first 
one is the trace φ0 = Tr : A → C defined by the projection onto the one-dimensional subspace 
C(1 ⊗") ⊂ A. We can normalize it by setting Tr(1 ⊗") = 1. The trace is known to give rise to a 
non-degenerate inner product on A defined by (a, b) = Tr(ab). This inner product allows one to 
identify the A-bimodules A and A∗. An explicit expression for a 2-cocycle representing the class 
φ2 is given in [139, Eq. (4.15)]. We refer to φ0 and φ2 as primary classes of cyclic cohomology. 
All the other classes in (B.15) are obtained from these two by successive application of the 
periodicity operator: Snφ0 ∈HC2n(A), Snφ2 ∈HC2n+2(A).

As discussed in Sec. 3, the skew group algebra A = A1 � Z2 is a building block for the 
extended higher spin algebra A underlying 4d HSGRA. The latter is given by the tensor square

A = A⊗A =A2 � (Z2 ×Z2) . (B.16)

One may also regard it as the smash product of the Weyl algebra A2 and the Klein four-group 
Z2 × Z2 acting on A2 by symplectic reflections. By the Künneth formula (A.7) for Hochschild 
cohomology

HHn(A,A)=
⊕
q+p=n

HHq(A,A)⊗HHp(A,A) ,

whence

HH 0(A,A)� C , HH 2(A,A)� C2 , HH 4(A,A)� C , (B.17)

and the other groups vanish. Again, the standard interpretations of the second and third groups of 
Hochschild cohomology suggest that the algebra A admits a two-parameter family of formal de-
formations. A representative cocycle generating the group HH 0(A, A) defines a non-degenerate 
trace on A, which implies the isomorphism A �A∗. Hence,

HH 0(A,A∗)� C , HH 2(A,A∗)� C2 , HH 4(A,A∗)� C . (B.18)

We could also arrive at these isomorphisms by the direct application of Theorem B.1.
43



A. Sharapov and E. Skvortsov Nuclear Physics B 972 (2021) 115551
Now the cyclic cohomology of A can be computed by means of the Connes exact sequence 
(A.19) or by the Künneth formula

HC•(A)
⊗

HC•(C)
HC•(A)�HC•(A) . (B.19)

In either approach one finds

HC0(A)� C , HC2(A)� C3 , HC4+2k(A)� C4 ,

HC2k+1(A)= 0 , k = 0,1,2 . . . .
(B.20)

For detail, see [139, Appendix B.5]. As we already know HC•(A) is a free HC•(C)-module of 
rank two generated by the primary cohomology classes φ0 and φ2 in degrees 0 and 2. Denoting 
by φ̄0 and φ̄2 the same cohomology classes for the second copy of A in (B.19), we see that 
HC•(A) is a rank-four HC•(C)-module freely generated by the cup products

�0 = φ0 � φ̄0 , �2 = φ0 � φ̄2 , �̄2 = φ2 � φ̄0 , �4 = φ2 � φ̄2 . (B.21)

These are the primary cocycles of HC•(A).

Appendix C. Cohomology of Grassmann algebras

Let �n denote the Grassmann algebra over C on n generators θ1, . . . , θn subject to the rela-
tions

θiθj = −θj θ i .
As the algebra �n is supercommutative one concludes immediately that

HH 0(�n,�n)= Z(�n)=�n and HH 1(�n,�n)= Der(�n) .

Geometrically, one can think of �n as the algebra of smooth functions on a supermanifold G
with odd coordinates θ ’s. Then the Lie superalgebra Der(�n) of derivations of �n can be iden-
tified with the algebra of smooth vector fields on G w.r.t. the supercommutator. The last fact 
is a particular manifestation of the Hochschild–Kostant–Rosenberg theorem for smooth graded-
commutative algebras [145, Sec. 5.4.5]. In the case under consideration it states the isomorphism

HHp(�n,�n)��p
(
Der(�n)

)
, (C.1)

the r.h.s. being the space of polyvector fields on G. In terms of the odd coordinates θi , each 
p-vector φ is given by

φ = φi1···ip (θ)∂i1 ∧ · · · ∧ ∂ip , ∂i ≡ ∂

∂θi
, (C.2)

where the coefficients φi1···ip ∈�n are totally symmetric in permutation of indices.
The cyclic cohomology of �n is also well known. As was shown by Kassel [150, Prop. 2]

HCp(�n)�HCp(C)⊕ V p , (C.3)

where HC2k(C) � C, HC2k+1(C) = 0, and the complex dimensions of the vector spaces V p

are encoded by the Poincaré series
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ch(V )=
∞∑
p=0

tp dimV p = 2n − (1 − t)n
(1 + t)(1 − t)n . (C.4)

In particular, dimHC0(�n) = dim�n = 2n. Actually, �n is a bialgebra with the standard co-
product

 θi = 1 ⊗ θi + θi ⊗ 1 .

This enables us to equip the complex vector space HC•(�n) with the structure of a graded-
commutative algebra. Indeed, composing the k-algebra homomorphism   :�n →�n⊗�n with 
the cup product (A.8), we get a new product28

 ∗ ◦ � :HC•(�n)⊗HC•(�n)→HC•(�n) (C.5)

that makes HC•(�n) into a graded associative algebra. The algebra HC•(�n) contains HC•(C)
as a subalgebra and the action of the periodicity map S on HC•(�n) is induced by the inclusion 
HC2(C) ⊂HC•(�n). The map S generates the first summand in (C.3) and acts trivially on the 
V p’s.

As was first shown in [158] cyclic cocycles representing the spaces V p admit a nice interpre-
tation in terms of the polyvector fields (C.2). See [159] for subsequent discussions. Specifically, 
to each p-vector φ one first associates a Hochschild p-cocycle by the rule

φ(a0, a1, . . . , ap)=
∫
a0φ

i1···ip ∂i1a1 · · · ∂ipap ∈ Cp(�n,�∗
n) . (C.6)

Here ak ∈ �n and the integral sign stands for the Berezin integral on the Grassmann algebra. 
One can easily check that the property ∂φ = 0 is automatically satisfied for any φ. The cyclicity 
condition

φ(a0, a1, . . . , ap)= (−1)(|a0|+1)(|a1|+···+|ap |+p)φ(a1, . . . , an, a0) , (C.7)

however, requires the p-vector φ to be divergence-free, i.e.,

∂i1φ
i1···ip (θ)= 0 . (C.8)

In order to analyse the last condition, it is convenient to identify the polyvector fields with the 
elements of the Berezin algebra Bn on n anti-commuting generators θi and the same number of 
commuting generators yi :

θiθj = −θj θ i , yiyj = yjyi , θ iyj = yj θ i .
Clearly, there is the one-to-one correspondence

φi1···ip (θ)∂i1 ∧ · · · ∧ ∂ip ⇐⇒ φ(θ, y)= φi1···ip (θ)yi1 · · ·yip . (C.9)

Upon this identification the operator of divergence (C.8) passes to the odd Laplace operator

 = ∂2

∂θi∂yi
. (C.10)

Since  2 = 0, we may say that the divergence-free polyvectors correspond to the cocycles (per-
haps trivial) of the odd Laplacian:

28 Recall that cyclic cohomology is a contravariant functor of algebra.
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 φ = 0 .

The non-trivial cocycle can easily be computed with the help of the homotopy operator h = θiyi ·. 
Clearly,

 h+ h = n+ yi ∂
∂yi

− θi ∂
∂θ i

. (C.11)

In view of this relation there is the only (up to a multiplicative constant) non-trivial  -cocyle

C = θ1 · · · θn . (C.12)

All other cocycles are of the form φ = ψ .
Since  is a second-order differential operator, the product of two  -cocyles is not a cocycle 

in general. Instead, the  -cocycles form a graded Lie algebra w.r.t. the bracket

(φ1, φ2)= (φ1φ2)− ( φ1)φ2 − (−1)|φ1|φ1 φ2 . (C.13)

This is just the Schouten bracket on polyvector fields. It follows from the definition that the 
bracket is differentiated by  ; and hence, it maps  -cocycles to  -cocycles. Taken together the 
odd Laplacian and the bracket endow Bn with the structure of Batalin–Vilkovisky algebra.

One can use the 0-vector (C.12) to write non-trivial 2m-cocycles representing the first direct 
summand in (C.3) in terms of the Berezin integral, namely,

c2m(a0, . . . , a2m)=
∫
Ca0a1 · · ·a2m = a0a1 · · ·a2m|θ=0 . (C.14)

Notice that the first member of this family, c0, also comes from (C.6).
Let us now specify the above constructions to the case of �2. The corresponding Berezin 

algebra B2 is generated by θ , θ̄ , y, and ȳ. As a complex vector space, B2 is spanned by the 
monomials

ynȳm , θynȳm, θ̄ynȳm, θ θ̄ynȳm .

Applying  to them, we conclude that the space of  -cocycles is generated by

Anm = nθ̄yn−1ȳm −mθynȳm−1 , Bnm = ynȳm , C = θ θ̄ (C.15)

for m, n = 0, 1, 2, . . .. They form the following Lie superalgebra:

(C,C)= 0 , (C,Anm)= 0 , (C,Bnm)=Anm , (Bnm,Bkl)= 0 ,

(Anm,Bkl)= (ln−mk)Bn+k−1,m+l−1 , (Anm,Akl)= (ln−mk)An+k−1,m+l−1 .

Thus, we are lead to conclude that the cyclic cohomology of �2 is generated by the  -exact 
polynomials (C.15) together with the cyclic cocycles (C.14) associated with the non-trivial  -
cocycle C = θ θ̄ .

Appendix D. Presymplectic structures in 4d HSGRA

We begin with an algebraic reformulation of the problem. At the free level the homological 
vector field underlying 4d HSGRA comes from the graded Lie algebra G described in items (1) 
- (4) of Sec. 3. The construction of the algebra G also admits the following geometric interpre-
tation. Starting from the Lie algebra G0 = gl(A) of ‘big matrices’ associated with the extended 
higher spin algebra A, we can define the canonical homological vector field
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Q= 1

2
ωAωBf CAB

∂

∂ωC
(D.1)

on the N-graded manifold N = G0[1], as explained in Example 2.2. Here ωA are global coordi-
nates on N associated with a basis {eA} ⊂ G0 wherein the commutation relations take the form 
[eA, eB ] = f CABeC . Next, following the recipe of Example 2.3, we construct the first prolonga-
tion of (D.1) to the total space of the shifted tangent bundle N = T [−1]N . This is given by the 
homological vector field

Q = 1

2
ωAωBf CAB

∂

∂ωC
+ωACBfKAB

∂

∂CK
, (D.2)

CA being linear coordinates in the tangent spaces. By definition, |CA| = 0. Since Q is quadratic, 
it defines and is defined by some graded Lie algebra G = G−1 ⊕ G0, so that N = G[1]. One can 
regard G as the trivial extension of the Lie algebra G0 with its adjoint module put in degree −1
(adjoint extension). It is the homological vector field (D.2) that determines the free equations of 
4d HSGRA. One can iterate this construction to produce higher prolongations of the homological 
vector field (D.1). Of particular interest to us is the second prolongation of Q to the homological 
vector field Q on the total space N of the tangent bundle29 T [1]N = T [1]T [−1]N . From the 
algebraic viewpoint this yields the double adjoint extension G = G−1 ⊕ G0 ⊕ G0 ⊕ G1 of the 
Lie algebra G0. Geometrically, we can identify the algebra of smooth functions on N = G[1]
with the algebra of exterior differential forms �(N ), see Example 2.1. Upon such identification 
the Q-invariant differential forms on N correspond to Q-invariant functions on N and vice 
versa. To emphasise this correspondence we denote the linear coordinates in the tangent spaces 
of T [1]N by δωA and δCA. Then

C∞(N ) � f (ω,C, δω, δC) ⇐⇒ f (ω,C,dω,dC) ∈�•(N ) . (D.3)

It should be pointed out that |δωA| = 2 and |δCA| = 1, while |dωA| = 1 and |dCA| = 0. There-
fore, equivalence (D.3) does not mean the equality of N-degree, if one regards the symbol δ as 
the ‘exterior differential’ of the coordinates ωA and CA.

As an intermediate summary of our discussion we state the following isomorphisms of coho-
mology groups:

H •(LQ,�(N ))�H •(Q,C∞(N ))�H •(G) . (D.4)

This reduces the classification of non-trivial presymplectic structures on the NQ-manifold 
(N , Q) to the computation of certain Lie algebra cohomology groups with trivial coefficients. 
Notice that the form degree on the left induces an additional grading in the Lie algebra cohomol-
ogy groups H •(G), which will be introduced in a moment under the name of weight. Looking for 
Q-invariant presymplectic structures on N , we are thus interested in certain elements of H •(G)
of weight two.

The next step is to reinterpret the Lie algebra G – the double adjoint extension of G0 = gl(A)
– in terms of the underlying associative algebra A. A simple observation is that G � gl(A ⊗�2), 
where �2 is the Grassmann algebra on two odd generators θ and θ̄ . For our purposes, it is 
convenient to prescribe them the following Z-degrees:

|θ | = −1 , |θ̄ | = 1 . (D.5)

29 This can also be seen as a double tangent bundle of N . The construction of the homological vector field Q by Q is a 
particular example of a tangent prolongation Lie algebroid [160, Ch. 9].
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Since

θ2 = 0 , θ̄2 = 0 , θ θ̄ + θ̄ θ = 0 , (D.6)

the general element of gl(A ⊗�2) has the form

f = f0 + θf−1 + θ̄f1 + θ̄ θ f̄0 , fi ∈ gl(A) . (D.7)

It is easy to see that the commutation relations in gl(A ⊗�2) coincide exactly with those in 
G = G−1 ⊕ G0 ⊕ G0 ⊕ G1 if we set f0, f̄0 ∈ G0, f−1 ∈ G−1, and f1 ∈ G1. On passing to field 
theory, the element (D.7) is promoted to the ‘superfield’

f (θ, θ̄ )= ω + θC + θ̄ δω + θ̄ θδC , (D.8)

which accommodates the zero- and one-form fields C and ω together with their variational dif-
ferentials δC and δω.

By Theorem A.1, H •(gl(A ⊗ �2)) is a graded associative algebra freely generated by the 
elements of the subspace

IndecH •(gl(A⊗�2))�HC•−1(A⊗�2) . (D.9)

We also know that the cyclic cohomology groups HC•(A) constitute a free HC•(C)-module 
generated by the four primary classes (B.21). This implies the Künneth isomorphism

HC•(A⊗�2)�HC•(A)
⊗

HC•(C)
HC•(�2) (D.10)

defined by the cup product (A.8). The problem thus reduces to identifying those cohomology 
classes on the right that correspond to free presymplectic structures and their obstructions to 
deformation. We proceed with a closer examination of the right tensor factor in (D.10).

Keeping the notation of Appendix C, we endow the Berezin algebra B2 with an auxiliary 
Z-grading by setting

w(θ)=w(y)= 0 , w(θ̄)= −1 , w(ȳ)= 1 . (D.11)

We will refer to this grading as the weight, lest one confuse it with many other degrees. Besides, 
we introduce the differential

δa = (a, ȳ)= ∂a

∂θ̄
, ∀a ∈ B2 . (D.12)

Clearly, w(δ) = 1, δ2 = 0, and [ , δ] = 0. Taken together with the Schouten bracket (C.13)
this differential makes the space B2 into a differential graded Lie algebra. When restricted to 
�2 ⊂ B2, δ becomes a derivation of the Grassmann algebra �2. By formula (A.17) it induces a 
homomorphism L∗

δ :HCp(�2) →HCp(�2) in cyclic cohomology, which then trivially extends 
to the tensor product (D.10). As should be evident from (D.8) the differential (D.12) just mimics 
the action of the de Rham differential on �(N ). The non-trivial presymplectic structures come 
from those elements of B2 that are both  - and δ-closed and have weight one.30 It follows from 
(C.15) that all  -cocycles of weight one are given by linear combinations of the divergence-free 
polyvector fields

30 It is well to bear in mind that the Berezin integral (C.6) implies one more differentiation by θ̄ , so that the resulting 
cyclic cocycles have weight two and correspond to 2-forms on N .
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αn+1 =An2 = nθ̄yn−1ȳ2 − 2θynȳ , βn+1 = Bn1 = ynȳ . (D.13)

Applying to them δ, we readily find

δαn+1 = nyn−1ȳ2 , δβn+1 = 0 . (D.14)

Hence, only the first element α1 = −2θȳ of the α-series and all elements of the β-series (D.13)
may generate presymplectic structures. Notice that

βn+1 = δ(θ̄ynȳ)= δ
( 1

n+ 1
An+1,1

)
. (D.15)

Translated into the language of presymplectic geometry the last equality means that the 
divergence-free polyvectors

γn+1 = θ̄ynȳ − 1

n+ 1
θyn+1 , w(γn+1)= 0 , (D.16)

generate Q0-invariant potentials for the presymplectic forms �n+1 on N associated with βn+1, 
see Rels. (6.2), (6.5). The corresponding cyclic cocycles read

γn(a0, . . . , an)=
n∑
k=1

∫
a0θ̄∂a1 · · · ∂̄ak · · · ∂an −

∫
a0θ∂a1 · · · ∂an

= −(−1)|a0|
(
∂̄(a0∂a1 · · · ∂an)+

n∑
k=1

∂(a0∂a1 · · · ∂̄ak · · · ∂an)
)
θ=θ̄=0

=
n∑
k=0

∂a0 · · · ∂̄ak · · · ∂an
∣∣∣
θ=θ̄=0

,

(D.17)

βn(a0, a1, . . . , an)= (Lδγn)(a0, a1, . . . , an)=
n∑
k=1

∫
a0∂a1 · · · ∂̄ak · · · ∂an

=
n∑
k=1

∂̄∂(a0∂a1 · · · ∂̄ak · · · ∂an)=
n∑
k=0

∂̄(∂a0 · · · ∂̄ak · · · ∂an) ,
(D.18)

α1(a0, a1)=
∫
a0θ∂̄a1 = (−1)|a0|∂̄a0∂̄a1|θ=θ̄=0 . (D.19)

This agrees with explicit computations for n = 0, 1, 2 presented in [158,161]. The fact that α1
is a non-trivial δ-cocycle in the space of  -closed elements of B2 means that any presymplectic 
structure associated with α1 admits no Q0-invariant presymplectic potential in distinction to the 
case of βn’s.

Turning now to the left tensor factor in (D.10), we recall that the HC•(C)-module HC•(A)
is freely generated by the four primary classes (B.21). Of these, only �2 and �̄2 can generate 
presymplectic structures on N of degree 3. In other words, all ‘free’ presymplectic structures of 
4d HSGRA come from the two infinite series of cyclic cohomology classes

#n =�2 � βn , #̄n = �̄2 � βn . (D.20)

The direct computation of the �-products shows that the resulting presymplectic structures are 
of the form �

(1)

n , see Eq. (6.5). The corresponding presymplectic potentials originate from the 
classes
49



A. Sharapov and E. Skvortsov Nuclear Physics B 972 (2021) 115551
ϑn =�2 � γn , ϑ̄n = �̄2 � γn . (D.21)

Notice that the remaining class (D.19) gives no presymplectic structure in degree 3.
We claim that all free presymplectic structures associated with the series (D.20) survive upon 

switching on interaction. More precisely, by means of homological perturbation theory of Sec. 6, 
they can always be deformed so as to become compatible with non-linear field equations (3.3a), 
(3.3b), whatever the interaction vertices. The existence of such a deformation is ensured by the 
absence of obstructing cocycles. The last fact can be seen in two equivalent ways. First, one can 
try to deform a free presymplectic 2-form by itself. For reasons of degree, all the obstructing 
cohomology classes, if any, must belong to the linear span of �2 � αn and �̄2 � αn. However, 
Eq. (D.14) says that the corresponding 2-forms are not closed for n > 1; and hence, they can-
not appear as obstructions to deformation. The remaining case n = 1 is also excluded as the 
corresponding 2-forms do not depend on C, while the interaction vertices do. An alternative pos-
sibility is to deform the free presymplectic structure through the deformation of its presymplectic 
potential. Again, by degree considerations, all potential obstructions are spanned by the classes 
�4 � Bn0 = L∗

δ (�4 � Bn1), so that the corresponding 1-forms turn out to be exact. The exact 
1-forms represent natural ambiguity in the choice of a presymplectic potential and can thus be 
disregarded. The details are left to the reader. All in all, we see that the classes (D.20) span the 
space of all presymplectic structures in 4d HSGRA.

Finally, let us note that the map I : HC2(A) → HH 2(A, A∗) of the long exact sequence 
(A.19) is actually an isomorphism, so that each Hochschild 2-cocycle is cohomologous to a 
cyclic one. The existence of a non-degenerate trace on A implies further isomorphisms A �
A∗ and HH 2(A, A∗) � HH 2(A, A). In view of these isomorphisms it is little wonder that the 
same pair of the Hochschild 2-cocycles of HH 2(A, A) define the cubic vertices (6.10) and the 
presymplectic structure (6.17) of 4d HSGRA gravity.

Appendix E. Integrability of zero-form equations

Since equations (3.3) for ω and C do not seem to be Lagrangian, it is interesting to ask the 
following question: to which extent do the equations of motion for C’s control those for ω’s? 
The equations in question have the form

dωα = 1

2
f
γ
αβ(C)ω

αωβ , (E.1a)

dCi = V iα(C)ωα . (E.1b)

Here the indices α and i, labelling the fields, are essentially equivalent and originate from the 
same algebra gl(A). At this point, however, it is useful to consider them as independent. We also 
assume (and this is indeed the case for HSGRA) that the right sides of equations (E.1) define a 
Lie algebroid with anchor V . In other words, the vector fields Vα = V iα∂/∂Ci form an integrable 
distribution on a manifold coordinatized by Ci :

[Vα,Vβ ] = f γαβVγ . (E.2)

Notice that we do not assume the vector fields Vα to be linearly independent in general position. 
Nevertheless, the Jacobi identity [[V, V ], V ] = 0 is presumably satisfied in the strongest form:

f λαμf
μ
βγ + Vαf λβγ + cycle(α,β, γ )= 0 . (E.3)

Let us now examine the integrability conditions for the second equation (3.3b). Applying the 
de Rham differential d to both sides, we find
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(
1

2
f
γ
αβω

αωβ − dωγ
)
Vγ = 0 . (E.4)

If the Vα’s are linearly independent, then the last condition implies the first equation (E.1a). 
In that case Eq. (E.1b) ‘knows’ about Eq. (E.1a), and we may omit the later without any con-
sequences for the system. In the general case, there may be some null-vectors ZαA = ZαA(C)
spanning the kernel of the anchor V , that is,

ZαA V
i
α = 0 . (E.5)

Then Eq. (E.4) implies that

dωλ = f λαβωαωβ +ZλABA (E.6)

for some collection of 2-forms BA. These 2-forms should be regarded as new independent vari-
ables describing arbitrariness in the dynamics of ω’s whenever equations (E.1a) are omitted. The 
dynamics of B’s are not completely arbitrary. Checking the integrability condition and assuming 
the null-vectors ZA to be linearly independent, one can find

dBA = ωαUAαB(C)B
B (E.7)

for some structure functions U ’s. In such a way we arrive at the natural extension of the original 
system (E.1) by the 2-form fields BA subject to (E.7).

When applied to 4d HSGRA, these ideas instruct us to look for null-vectors (E.5). To leading 
order in C, one gets then the equation Z �C − C � Z̃ = 0, where Z̃(y, ȳ) = Z(y, −ȳ) (we deal 
with the physical fields only). It is easy to see that the last equation has only constant solutions, 
Z = const · 1, which also satisfy the entire equation (E.5).
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