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Abstract. Individual pitch control has shown great capability of alleviating the oscillating
loads experienced by wind turbine blades due to wind shear, atmospheric turbulence, yaw
misalignement or wake impingement. This work presents a bio-inspired structure for individual
pitch control where neural oscillators produce basic rhythmic patterns of the pitch angles, while a
deep neural network modulates them according to the environmental conditions. This mimics,
respectively, the central patterns generators present in the spinal chord of animals and their
cortex. The mimicry further applies to the neural network as it is trained with reinforcement
learning, a method inspired by the trial and error way of animal learning. Large eddy simulations
of the reference NREL 5MW wind turbine using this biomimetic controller show that the neural
network learns how to reduce fatigue loads by producing smooth pitching commands.

1. Introduction

Most modern wind turbines are capable of varying both their rotation speed and pitch angles.
To do so, they rely on two control systems working independently: a generator-torque controller,
maximizing the power captured below the rated operating point, and a collective blade pitch
controller (CPC), regulating the rotor speed above the operating point, as described by
Jonkman [I]. In addition to this, an increasing number of turbines is being equipped with
a third control loop: an individual pitch controller. Indeed, wind turbine blades experience
large once-per-revolution loads oscillations due to the varying velocity they see over the course
of their rotation. Individual Pitch Control (IPC) has proved effective in reducing these fatigue
loads relying on cyclic oscillations of the pitch angles. While the Coleman transform-based IPC
(CT-IPC) is widely used [2], we aim at showing that a bio-inspired IPC structure (BI-IPC) could
offer more adaptability as well as smoother commands for the pitch angles. We propose an IPC
structure inspired by animal locomotion, as it entails rhythmic motion and is able to adapt to
environmental conditions. Such agility and adaptability are enabled by a hierarchical structure
separating low-level tasks from high-level ones. On the one hand, we use neural oscillators
acting as the central pattern generators (CPG) present in animals’ spinal chord to generate the
low-level rhythmic patterns. On the other hand, we modulate those patterns with high-level
signals obtained through a deep neural network (DNN), similarly to the way the brain of an
animal would control the gait. After training the DNN with reinforcement learning (RL), the
controller is deployed within Large Eddy Simulations (LES) of the reference NREL 5MW wind
turbine [1]. The latter are performed by means of an in-house Vortex Particle-Mesh method
(VPM) in which the blades are modelled by immersed lifting lines [3]. The performances of the
BI-IPC are assessed against those of the CT-IPC.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOIL.
Published under licence by IOP Publishing Ltd 1



The Science of Making Torque from Wind (TORQUE 2020) IOP Publishing
Journal of Physics: Conference Series 1618 (2020) 022052  doi:10.1088/1742-6596/1618/2/022052

The paper is organized as follows. Section [2|recalls the principle of the CT-IPC and describes
the BI-IPC along with its training process. Results are presented in section 3 first by validating
the trained BI-IPC in the case of the turbine subject to an unsteady sheared flow, second by
assessing its performances thanks to LES of a sheared and turbulent flow. Conclusions are
eventually drawn in section [

2. Methodology

We first recall the state-of-the-art individual pitch controller, which is based on the Coleman
transform and was proposed by Bossanyi [2]. We then present the aforementioned biomimetic
structure, based on reinforcement learning, and we finally outline the learning process.

2.1. Coleman transform-based individual pitch control

The principle of the CT-IPC is to project the loads expressed in the rotating coordinate frame of
the blades on the fixed coordinate frame of the rotor. According to the azimuthal position 0(t)
of the first blade, defined from the upward vertical position, the flapwise bending moments of
the blades are projected on a mean bending moment M (t), a tilting one My (t) and a yawing
one My, (t) using the inverse Coleman transform (Eq. . The target values Mt target and
Myaw target are time-invariant and equal to zero. The tilt and yaw angles B (t) and Byaw(t) are
the control variables in the fixed frame. They are projected on the blades rotating coordinate
frame by means of the Coleman transform (Eq. , thus giving the expression of the individual
pitch angles 31 2.3. The mean pitch B(t) is the one computed from the collective pitch controller.

M(t) 3 3 3 M (t)
Mgy (t) | = %cos 0(t) %COS (0(t) — %’r) %COS 0t) + %ﬁ) M>(t) (1)
Myayw (1) Zsinf(t) Zsin(0(t) — &) Zsin(0(t) + 2F) Ms(t)
B1(t) 1 cos 0(t) sin 0(t) B(t)
Ba(t) | = | 1 cos(60(t)— %) sin(0(t) — ) Bt () (2)
Bs(t) 1 cos (0(t)+ ) sin (6(t) + ZF) Byaw (t)

2.2. Biomimetic individual pitch control

As mentioned previously, animal locomotion is made possible under the assumption of dividing
low level tasks from high level ones. For this reason, we decided not to consider each pitch angle
following periodic oscillations individually, but rather opt for coupled oscillators to produce the
pitching angles. Our control scheme takes the form of a three-block architecture, as shown in
Fig. |1l where neural oscillators generate the rhythmic patterns that are modulated by a neural
network. The latter is trained thanks to reinforcement learning according to the flow conditions.

Reinforcement learning

Flow sensing Flow conditions [ Trained neural Amplitude Central pattern \‘I’Wdividua\
and settings and phase pitch angles
. ) network generators
U,d,v,w,Bcpc 8,5y, Bs

[
(« (

Sensory feedback

Low-level control

Flapwise bending moments
MFny, MFng, M Fng

Figure 1. Biomimetic individual pitch controller.
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2.2.1. Flow sensing The first block of the control scheme is the flow sensing module, which
consists in using the wind turbine blades as sensors of the flow. It relies on an Extended Kalman
Filter to estimate a linear approximation of the instantaneous velocity field upstream of the rotor:

V(l' = xrotorvyvz) = U+7y+5z7 (3)

where z, y and z and respectively the streamwise, vertical and transverse directions. The
estimation is made from the measurement of the flapwise bending moments experienced by each
blade, M F,,, , ,, in the fashion of [4]. To do so, the filter is provided with a model of the physical
system, namely Blade Element Momentum theory (BEM), that expresses the bending moments
as a function of the velocity field. From a first guess of the velocity field parameters U, v, 6,
the filter uses the BEM to compute the bending moments M F) = that should be affecting the

n1,2,3
blades, given the knowledge of the operating settings (the blade azimuth 6, the blade pitch
and the rotation speed w). These estimated bending moments, M F}, , ., are then compared

to the measured ones, M F},, ,,, and the estimation of the upstream velocity field is updated
accordingly.

2.2.2. Central pattern generators The pitch angles are computed by central pattern generators
in the last block of the control scheme. CPGs are classically modelled by means of neural
oscillators and are used to produce coordinated patterns. In this work, the CPGs take the form
of a system of three oscillators (i = 1,2, 3), inspired by Crepsi [5], and implemented as follows:

=ty (%P -p)- 1) (@)

:U:km(lZE(X—x)—:b) (6)
Bi = x +acos (6; +p) =z + acos (p;) . (7)

The patterns of the individual pitch angles 3123 are computed from three internal variables: a
and x are respectively the amplitude and offset of the oscillations, p stands for the phase shift
between the azimuthal position of the blade 6; and the phase of the oscillator ¢; (Fig. .
0 B =2z + acos(p)
p ¥ 0 b =z + acos(6 + p)
27 A / z+a-
W=27/Tot

Tr—a

o
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Figure 2. Central pattern generators: parameters definition.

Equations 4 to 6 are those of second order systems whose responsiveness is characterized by
the positive gains k,, k, and k,. The internal variables smoothly converge to the target values
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P, A and X. The target value of the offset X is the collective pitch angle Scpc, determined by
the aforementioned variable-speed, variable-pitch baseline controller.

In the case of an inflow with shear only, one could expect that P = 0 = ¢ = 6, so that the
oscillator is phased with the blade azimuth. Nonetheless, it is not trivial to find the value of P
when gusts are present in the flow or when a wake impinges on the rotor and neither is it to
find the optimal amplitude A of the pitch oscillations. Both the target amplitude A and phase
shift P of the oscillations are provided from a trained neural network, which helps close the gap
between the CPG control variables and the environmental conditions.

2.2.8. Neural network and reinforcement learning The control block between the sensing
module and the central pattern generators consists in a deep neural network. It constantly
redefines the pitching targets according to the environmental conditions. It can be seen as an
optimal controller that collects information on the flow and modulates the rhythms accordingly.
We use reinforcement learning to train the neural network, as it is the branch of machine learning
that best applies to control problems.

RL refers to how agents interacting with their environments learn the best way to behave,
depending on the state they are in, so as to maximize a cumulative reward. It is thus a matter
of finding the most appropriate mapping, which is called a policy 7 (as|s;), between the state s;
of the agent and the action a; to take, given a certain objective function J(m) [6].

In this paper, we consider the wind turbine as the agent, the environment being the flow
surrounding it, and the policy is expressed by the deep neural network. The role of the DNN is
to learn the action a; = [A, P], namely the amplitude and the phase shift of the CPGs oscillations
that most reduce the fatigue loads on the blades given the flow conditions determined by the
sensing module. The action is updated at every turbine rotation based on the state of the
system, described by

Sy = [U77757W7BCPC] ) (8)
with U, v and § respectively the mean velocity, vertical shear coefficient and horizontal shear

coeflicient of the flow impinging on the rotor, w the rotation speed of the turbine and Sopc the
collective pitch angle command. The reward associated to the action is computed as

-2
r (s, a) = (max MF,,, — min MFm> . (9)
(2 (2

The network is trained using an off-policy model-free reinforcement learning algorithm called
Soft Actor Critic (SAC) and presented by Haarnoja [7]. SAC is part of maximum entropy
reinforcement learning methods, which consider an entropy augmented objective

J(r) =B [Z r (s, a;) — alog (7 (atst))] , (10)

t

with « the non-negative entropy parameter. In such framework, the objective J(m) can be
viewed as a way to insure the trade-off between exploitation of proven actions, through return
maximization (first term of Eq. 10), and exploration of new ones, through entropy maximization
(second term of Eq. 10). SAC shows great sample efficiency, meaning that it makes the most of
each learning episode so as to reduce the number of episodes to learn a policy. It is also little
sensitive to hyperparameters, which avoids massive parameters tuning. The aforementioned
characteristics make SAC one of the most efficient algorithms available these days [7].

We use the open-source SAC implementation of Stable Baselines [§], a fork of Open Al
baselines. The policy DNN is a fully-connected multilayer perceptron built from TensorFlow [9].
The input layer consists of 5 neurons (one for each component of the state), while the output one
comprises 2 neurons (one for each component of the action), with tanh as activation function.
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2.8. Learning process and controller performances assessment

Using Reinforcement Learning implies going through two steps. The first one consists in training
the wind turbine so that it learns the policy. As this requires numerous learning episodes,
simple models of both the flow and the turbine are needed for the sake of maintaining affordable
computational costs. As far as the flow is concerned, we wish to reproduce the shear plane
variation that a turbine could see when gusts or wakes impinge on its rotor. To do so, we
use Porte-Agel’s model for the wake deficit [10], accounting for meandering of the wake center
through a sine motion. The wake deficit is superimposed on an exponential law to represent
the shear present in the atmospheric boundary layer. Regarding the turbine model, a fast yet
accurate way of computing loads acting on blades is the Blade Element Momentum Theory. We
make use of a modified BEM accounting for the effects of shear [I1]. This basic model of the
physics allows for an efficient learning from the system with low computational and data storage
costs. A learning step consists in a rotation of the turbine, while a learning episode contains
30 steps. We used early stopping [12] as a simple yet effective regularization method to avoid
overfitting and ensure generalization.

The second step consists in testing the trained policy, which is no longer learning but is
only exploiting what is has learned. This is done, in a first step, by using a BEM to compute
residual loads. However, assessing the controller performances necessitates great accuracy in
the computation of the flow physics and in the loads evaluation. The biomimetic controller
is thus deployed within Large Eddy Simulations of the reference NREL 5MW wind turbine.
These simulations are performed by means of a Vortex Particle-Mesh method (VPM) in which
the blades are modelled by immersed lifting lines [3], coupled to the multi-body-system solver
Robotran in charge of the dynamics of the turbine [13].

3. Results

The trained control scheme is first studied with a BEM in the simplified case of varying shear
directions and intensities, providing a clear insight into the actions taken by the BI-IPC regarding
the flow conditions it senses. The performances of the controller are further assessed in realistic
wind conditions by analyzing results of large eddy simulations of turbulent flows. More precisely,

the temporal and spectral characteristics of the blade loads as well as the damage equivalent
loads are computed and compared for the cases of CPC, CT-IPC and BI-IPC.

3.1. BEM validation of the trained BI-IPC subject to unsteady sheared flows

We first test the policy with a BEM in the case of a sheared inflow with a meandering wake
impinging on the turbine. This is seen by the turbine as a shear plane whose direction and
intensity are changing in time. Figure [3|shows how the turbine perceives the flow it is subjected
to as well as the actions that its neural network takes. The sensing module feels the passing of
the wake, as the horizontal plane coefficient § evolves with time. It also senses the presence of
the constant vertical shear that is imposed, with a constant non-zero v plane coefficient (Fig.
(a)). The wake impingement is also detected by the estimator, a reduction of velocity is indeed
correlated with the wake passage (Fig. 3| (b)). The actions taken by the neural network show
it has acquired the ability to shift the phase of the CPGs when the orientation of the upstream
flow shear plane evolves (Fig.|3| (c)). It has also gained the capability of slightly adjusting the
pitching amplitude regarding the overall shear perceived by the blades over the course of their
rotation (Fig. 3| (d)).

The resulting pitching patterns and flapwise bending moments are shown in Fig. They
are compared to the use of collective pitch control only, showing that BI-IPC offers a significant
reduction of the fatigue loads. While this case study is far from realistic wind conditions, it
enables to outline the impact of the flow conditions on the actions taken by the neural network
and to highlight the resulting pitching patterns.



The Science of Making Torque from Wind (TORQUE 2020) IOP Publishing
Journal of Physics: Conference Series 1618 (2020) 022052  doi:10.1088/1742-6596/1618/2/022052

&
Shear 4, v [1/s]

=
Velocity U [m/s]

—0.03 T T T

T T 125 T T T T T
0 25 50 75 100 125 150 0 25 50 75 100 125 150
t [s] t [s]
i;f 20 g 1.7
A, 10 < 1.61
(c) & (d) g
= o
G 07 2 157
() =
o
:_—wu —10 T T T T T E 14 T T T T T
a 0 25 50 75 100 125 150 < 0 25 50 75 100 125 150

t [s] t[s]

Figure 3. BEM validation of the BI-IPC: Estimated shear planes (a) and velocity U (b),
instantaneous value (dots) and rotation-averaged one (solid line). Phase shift P (c) and
amplitude A (d) determined by the trained neural network.
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Figure 4. BEM validation of the BI-IPC and comparison with CPC: Pitching patterns and
resulting flapwise bending moments in the case of collective pitch control, (a) and (b), and
biomimetic pitch control, (c¢) and (d).

3.2. LES assessment of the BI-IPC' in sheared and turbulent flows

This section offers a comparison between large eddy simulations of CPC, CT-IPC and BI-IPC in
the case of a sheared inflow characterized by a hub velocity of 15 m/s and a turbulence intensity
of 6%. The synthetic turbulence is generated by using Mann’s algorithm [I4].

A qualitative analysis shows that the pitch angles evolution obtained by both IPC methods
present similar patterns (Fig. [5). This comes from the fact that the CT-IPC solves the load
alleviation problem by projecting bending moments on a plane around the rotor while the BI-
IPC does so with the upstream velocity field, the two being inextricably linked. Yet, it must
be outlined that the BI-IPC commands smoother variations of the pitch angles, being less
demanding for the pitch actuators. Even though the BI-IPC significantly reduces fatigue loads
(Fig. @, both the temporal and spectral analyses show that the CT-IPC further cuts flapwise
bending moments oscillations at the frequency of the turbine rotation.
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Figure 6. LES assessment of the BI-IPC: Flapwise bending moments MF),, (one color per
blade) and their power spectral density PSD (average over the three blades) with collective
pitch control only (a), with Coleman transform-based individual pitch control (b) and with
biomimetic individual pitch control (c)

A more quantitative analysis of the impact of ITPC on fatigue loads is put forward by
computing damage equivalent bending moments [I5]. The damage D perceived by a blade
submitted to a varying bending moment M F),(t) over a finite time period is given by Palmgren-
Miner’s rule

p$ i o
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where n; in the number of cycles according to the rainflow algorithm and Npg; is the number
of cycles to failure given a bending moment oscillating with an amplitude M, ;. Using M-N
curve and assuming that the bending moment is proportional to the stress, we obtain that
Np; = kM a /", with k& and m being material properties. The equivalent bending moment M.,
is the moment, alternating at a chosen frequency f.,, that generates the same damage over the
time period considered than the measured time-varying moment. It is expressed as

Ne m 1/m
- (S5 12)

=0

where we choose m = 10 for glass fiber and the number of equivalent cycles N, so that the
equivalent loading frequency is the turbine rotation frequency.

Table [1| gives the value of the equivalent alternating moments for the different pitching
strategies. BI-IPC reduces the fatigue damage by 44%, while CT-IPC does so by 61%. A
fair quantitative comparison would also include the fatigue of the pitching actuators.

Table 1. Damage equivalent bending moments depending on the chosen pitching strategy

Method My [MNm]

CpPC 2.54
CT-IPC 0.99
BI-IPC 1.40

3.2.1. Results discussion The linear approximation of the upstream velocity field proposed in
this first-stage study is quite reductive, yet it demonstrates the learning capability of the system
to alleviate fatigue blade loads. If provided with more information such as the local velocity
experienced by the blades, the neural network could control the amplitude and phase offset
of pattern generators oscillating at higher harmonics of the rotation frequency of the turbine.
This would lead to more flexibility in terms of pitching patterns and, therefore, to further load
reduction, while the intrinsically gentle pitching commands of the BI-IPC would be maintained.
In brief, it would be a great compromise between the optimal load reduction of the CT-IPC and
the smooth commands of the BI-IPC.

4. Conclusions

We present an individual pitch controller inspired by animal locomotion. The pitch angles are
generated by neural oscillators that are modulated by a neural network. The former is trained
with reinforcement learning based on the upstream flow conditions. After being trained with
simple wake models and blade element momentum theory, the controller is deployed within
large eddy simulations of the NREL 5MW to assess its performances and compare them with
the state-of-the-art Coleman transform-based IPC. The latter performs better at alleviating
loads, but produces jerkier pitching commands.

The range of actions made accessible to the BI-IPC is still quite limited in what is, to the
authors’ knowledge, the first study of reinforcement learned IPC. Nevertheless, the controller
manages to significantly reduce fatigue loads, while providing smooth pitching commands. This
work thus demonstrates that a wind turbine pursuing a certain objective can learn how to
behave in the flow it is subjected to. BI-IPC should outperform CT-IPC if oscillators with
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higher harmonics of the turbine rotation frequency are added to the scheme. Further work will
then consist in providing the neural network with local information on the velocity field and not
the global linear approximation anymore. Such improvement can clearly be envisioned thanks
to the flexibility of the BI-IPC and should benefit from its smooth generation of commands.
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