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Introduction

When speaking about thin films, I like to start with the aesthetic bursting of viscous
bubbles. In a single experiment, you can follow the opening dynamics of a hole in a
viscous thin film of fluid and the buckling of a thin sheet.

film was formed. The crucial feature of
these systems without any surfactant sheet
is that the velocity gradients were of order
v/Rcap instead of v/h. The dissipation was
thus weak, which resulted in surprisingly
high drainage rates for such viscous bubbles.

Spontaneous breakup of the bubble gen-
erally occurred when h ! 70 nm. At this
thickness, long-range van der Waals inter-
actions tend to enhance the film thinning.
A hole spontaneously formed at the top of
the bubble and then rapidly expanded. The
bursting velocity was then greater than 10
m/s and did not allow any accurate mea-
surement. To get a quantitative insight, we
punctured the bubble at the pole at differ-
ent stages of the drainage, when the thick-
ness h, estimated using the Newton’s rings
that showed up during the last stages of the
drainage, ranged between 200 nm and a few
micrometers. In this particular experiment,
the volume of air injected was kept identi-
cal (10 ml), corresponding to Rcap " 1.7
cm. The rupture was monitored with a
high-speed camera (1000 frames per sec-
ond) (Fig. 2A). Up to a radius R ! 2 mm,
the hole grew exponentially with time (Fig.
2B). This result is in agreement with our
earlier findings on flat film (5), where the
hole radius obeyed

R " R0 exp!#t
$h" (4)

Equation 4 can be understood from a “soft
balloon” model. Viscoelasticity is impor-
tant here. In conventional (Newtonian)
liquid films, when a hole opens, the cor-
responding amount of liquid collects into
a circular rise around the hole. The growth
velocity V is controlled by a balance be-
tween capillary and inertial (or viscous)
forces: it does not vary during growth. For
instance, in viscous regime, V ! C#/$ (C
is a constant).

Our liquids were different. At short
times, they behaved like rubbers with a
shear modulus %. For slow processes, they
flowed with a large viscosity $ " %Tr,
where Tr is a terminal relaxation time (of
order 10 ms for our silicone oils). When a
hole opened in our silicone film, the
Laplace pressure 2#/h acting at the periph-
ery of the hole was elastically propagated
outward at a velocity 2c, where c " (%/&)1/2

is the velocity of transverse shear waves (6).
For an infinite plane film, the radial elastic
stress component at a distance r from the
center of the hole is

'rr " (
2#

h !R
r"2

(5)

The stress 'rr varies with a typical frequen-
cy of order Ṙ/R )) 1/Tr. The flows v(r)
induced in the film thus correspond to a
purely viscous response described by

'rr " 2$
*v
*r (6)

Integration of Eq. 6 using Eq. 5 yields a flow
field

v " v(r) "
#

$h
R2

r
(7)

Writing Ṙ " v(R), one can finally derive
the exponential growth law of Eq. 4.

For our present experiment, this descrip-
tion remained valid as long as the hole
radius R was small compared to the exten-
sion of the top region of the bubble, where
the film was almost flat and uniform in
thickness. Bubble bursting demonstrated
the striking effect of a short time elasticity
on thin liquid film rupture. The viscous
dissipation was greatly reduced, and burst-
ing velocities were enhanced by a factor
R/h: the maximum observed velocities Ṙ
were thus in the range from 10 to 100 cm/s,
that is, up to 104 times the velocity expect-
ed for a Newtonian liquid of same viscosity.

At large R, however, the bursting slowed
down because the hole met progressively
thicker film. Simultaneously, a crumpling
instability appeared as the bubble deflated
and fell under its own weight: once punc-
tured, the overpressure that previously
maintained the hemispherical shape was re-
leased. This “parachute instability” (Fig.

t = 80 mst = 20 ms t = 30 ms

t = 0 t = 10 ms

A

Fig. 2. (A) Bursting sequence of an air bubble at the free surface of a PDMS bath of viscosity 103 Pa!s.
The bubble is punctured with a sharp needle at its top before spontaneous breakup (h ! 1.5 %m). The
images were obtained with a high-speed camera and a stroboscope simultaneously triggered at a
frequency of 1000 Hz. The width of the images is 1 cm. The optical axes for the camera and the
stroboscope are identical. They are tilted 10° from the horizontal to allow good visualization of the
opening hole. The Newton rings are visible in the first image and demonstrate the uneven thickness of
the film. In the last image, the bubble is falling under its own weight and displays a crumpling pattern. (B)
Evolution of the radius R of the hole for two bubbles punctured at different stages of the drainage. For
R ) 2 mm, R grows exponentially with time t (straight lines). At large R, the bursting velocity decreases
because the hole meets progressively thicker film. In these experiments, the viscoelasticity of the
material was crucial. The maximum velocity, reached for R " 2 mm, was equal to (!) 50 cm/s and (F)
20 cm/s, that is, !104 the bursting velocity V* " #/$ (21 %m/s in our case) expected for thin Newtonian
liquid films.
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Fig. 1.1 Bursting of a viscous bubble of polydimethylsiloxane from (Debregeas et al. 1998).

The dynamics of hole opening is determined by a balance of capillary forces and
viscous dissipation within the fluid film, the radial wrinkles observed in final stages
correspond to the buckling of the collapsed bubble.

This example beautifully shows that tiny mechanical or capillary forces can desta-
bilize the homogeneous flat state of a thin film leading to the growth of complex shapes
and patterns. Experimental and theoretical studies on pattern formation are driven
by the desire to understand the fundamental mechanisms by which such forces can
lead to the spontaneous formation of multi-scale structures via symmetry breaking
processes. This understanding is fundamental to envision applications in various do-
mains such as micro and nanofluidics, flexible electronics, and the development of new
surface-pattering technologies .

In the following, we will first discuss the stability of liquid films, thinner than 1
µm, deposited on solid surfaces with an emphasis on the nature of intermolecular
forces and thermal fluctuations that conspire to generate complex morphologies. We
will see how the global dewetting dynamics is driven by the solid-fluid interface and
that dewetting can be a powerful tool to study the nano-rheology of complex fluids,
such as polymer melts, in ultra thin films.

In the second part, we will consider thin elastic sheets constrained by mechanical
forces. The canonical example of such system is given by a simple paper ball. We will
see how the global geometry of these constraints drastically affects the final shape
adopted by the sheet.
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Films of Fluids

When a liquid is deposited on a solid surface, two situations can be observed. The fluid
can form a continuous film that perfectly wets the substrate or can be fragmented
in drops and droplets with a well defined contact angle. This contact angle, θ, is
determined by a balance of forces at the three phase contact line which yields the
Yound-Dupré relation (de Gennes et al. 2003).

γL cos θ = γS − γSL

with γL, γS , and γSL the free surface energy related to the liquid-air, solid-air and
solid-liquid interfaces.

The ability of a liquid to wet a surface is usually described with the spreading
parameter, S = γS − (γSL + γL). If S < 0, the liquid form droplets, we are in partial
wetting. By using spin-coating, it is however possible to “force” the liquid to wet the
solid surfaces even in partial wetting regime. The resulting liquid film is then unstable
and tends to spontaneously desegregate to form collections of droplets, this transi-
tion is called dewetting. Interestingly, the mechanisms of dewetting depends on the
film thickness (Bonn et al. 2009). In partial wetting conditions, the film destabilize to
expose “dry” patches, unless it is sufficiently thick to be stabilized by gravity. For rel-
atively thick films, the system is perturbed by the presence of surface heterogeneities
or dust particles, which form the initial nucleus for a hole. Dewetting proceeds via a
nucleation-growth mechanisms (i.e., heterogeneous nucleation) (Fig 2.1). In contrast,
if the nucleation is induced by thermal fluctuations, nucleation is homogeneous. This
is observed for very thin films 210 nm when long-range forces become significant. The
system can become linearly unstable, so the growth of thermal fluctuations leads to
spontaneous destabilization (Fig 2.1). This scenario has been called spinodal dewet-
ting, in analogy to the spontaneous decomposition of incompatible bulk phases (Reiter
1992; Bonn et al. 2009; Baumchen et al. 2003).

The free energy of film F (h) can explain the co-existence of these two mechanisms
(de Gennes et al. 2003). This free energy including gravity, surface energy and long
range van der Waals forces, is given by

F (h) = γSL + γL +
1

2
ρgh2 + P (h)

The long range free energy is determined by the Hamaker constant, H via the
relation P (h) = −H/12πh2, obtained by summing all atom-atom attractive contribu-
tions (∼ −1/r6). The Hamaker constant ranges between 10−18 and 10−21 J, for high
energy and low-energy organic surfaces, respectively (in the studies reported here,
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Fig. 2.1 (left) Labyrinthine or spinodal dewetting and (right) nucleation-growth pattern

(Baumchen et al. 2010).

we only consider positive Hamaker constants). As shown in Fig 2.2, a Maxwell con-
struction shows two transitions mechanism (similar to the VdW liquid-gas transition).
The instability domain is related to the spinodal dewetting while the metastable one
corresponds to the nucleation-growth mode.

γ + γ
SL

      γ
SG

 INSTABLE                  METASTABLE                             STABLE

Fig. 2.2 Evolution of the free energy of a thin film of fluid with thickness.

The two mechanisms generate different patterns, i.e., a characteristic wavelength
for spinodal, a well-defined holes opening dynamics for nucleation-growth regime.
These mechanisms can be qualitatively (and quantitatively) understood from scaling
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law theoretical models.

2.1 Spinodal Dewetting

For temperatures higher than absolute zero, the free surface of a liquid is always dis-
turbed by thermal capillary waves. These waves are characterized by a superposition
of various independent modes described by a continuous spectra, relating their am-
plitude A to their wavenumber, q. We consider each mode disturbing the fluid-air
interface, ζ(r) = A(q) cos qr separately. The free energy can be adequately described
by considering gravity and capillarity.

U =

∫ [
1

2
ρgζ2 + γ

(
1 + (∂xζ)2 + (∂yζ)2

)1/2]
dx dy (2.1)

'
∫ [

1

2
ρgζ2 + γ

(
1 +

1

2
(∂xζ)2 +

1

2
(∂yζ)2

)]
dx dy (2.2)

The excess energy due to this perturbation is given by

∆Uq '
[ρg

2
A2 +

γ

2
A2q2

]
L2

The spectra A2 can now be derived by considering the equipartition theorem, the
average energy of one mode is equal to kT

A(q)2 =
kT

ρg + γq2
(2.3)

Experimental observations of thermal waves by scattering methods, x-ray, neutron
reflectivity (via the extent of interfacial roughness) or by direct inspection of “frozen”
surfaces of glassy materials with atomic force microscopy agree well with the q−2 law
(eq 2.3) (Sferraza et al. 1997, Coppée et al. 2004).

For very thin films (h < 100 nm) undergoing spinodal dewetting, an additional
energy term corresponding to the interaction between air-fluid and fluid-solid interfaces
should be considered. To understand the stability of such thin films, long range VdW
forces should be added in the model. Neglecting gravity, the free energy of a perturbed
film surface (h→ h+ u) is given by

F =

∫
dx dy

[γ
2

(∇h)2 + P (h+ u)
]

(2.4)

Expanding P (h+ u) yields

δF =

∫
dx dy

[
γ

2
(∇u)2 +

1

2
P ′′(h) u2

]
(2.5)

With P ′′(h) = −H/2πh4
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waves due to the density fluctua t ions associa ted with
crysta lliza t ion . Indeed, the observed morphology is
reminiscent of a spinodal mechanism. Recent ly, Sharma
et al. repor ted that a density variation induced instabil-
ity of film surfaces could mimic a spinodal morphology.21
From a theoret ica l approach , they demonst ra te tha t an
increase(decrease) in density with the film th ickness
stabilizes (destabilizes) the film surface. At fir st sigh t ,
th is seems to be in contradist inct ion to our observat ions
(due to the crysta lliza t ion , Fsur f > Fbulk). However , we
can reconcile these resu lt s by consider ing tha t the
crysta lliza t ion of the film destabilizes the sur face,
provided that this crysta llizat ion is confined to the outer
surface of the film (this is really achieved by the rubbing
process).15 In th is case, the crysta llized outer sur face
direct ly exer t s a const ra in t on the amorphous inner
region. This const ra in t destabilizes the polymer surface
tha t r ipples to release the sur face st ress. The rela t ion
between the per iodicity of the cor ruga t ions and the
crysta lliza t ion process is under invest iga t ion .
Crysta llization . As shown here above, the crysta l-

liza t ion appears to begin well below the usua l crysta l-
liza t ion domain (T c ∼ 142 °C). The st retch ing of the
crysta llizat ion domain toward lower temperatures could
be due to the cha in a lignment dur ing the film rubbing
which makes the format ion of crysta lline nuclei easier .
The compar ison of opt ica l micrographs of rubbed crys-
ta llized films (CCR) and unrubbed crysta llized samples

shows cont rast ing morphologies. The unrubbed film
presents the spheru lit ica l morphology typica l of semi-
crysta lline polymers. In cont rast , the rubbed CCR film
exhibits a strong birefr ingence and a complete extinct ion
when the sliding direct ion is either para llel or perpen-
dicu la r to the pola r izers. These observa t ions are con-
sisten t with a uniform or ien ta t ion of the cha ins axis
para llel to the rubbing direct ion . The ra te of crysta l
format ion is drast ica lly enhanced in deformed polymer
th in films, due to the metastable character of the
preor iented layer . Such mode of growth yields polycrys-
ta lline films with a uniform or ien ta t ion .
The IR spect ra of the PET CCR film recorded with a

beam polar ized para llel and perpendicu la r to the rub-
bing direct ion confirm these observa t ions. The sur face
or ien ta t ion propaga tes to the whole film as suggested
by the observed dichroism. We can therefore consider
tha t the crysta lline aggrega tes, which appear on the
sur face vicin ity dur ing relaxa t ion , act as nuclei tha t
propaga te the or ien ta t ion to the film areas too deep to
be affected by rubbing. This kind of crysta lliza t ion can
be rela ted to epitaxia l growth , in which an organized
sur face is used as a templa te to in it ia te a bulk crysta l-
liza t ion .
Conclus ions . Our observa t ions confirm tha t the

dissipa t ion of mechanica l energy upon rubbing induces
plast ic deformat ions, appear ing as para llel grooves of
varying depth , and a lignment of the cha ins a long the
rubbing direct ion . Dur ing the relaxa t ion of the rubbed
sur faces, the format ion of a hiera rch ica l sur face st ruc-
ture with two character ist ic wavelengths (∼200 nm and
∼3 µm) is observed. We suggest that the small corruga-
t ions are direct ly rela ted to the surface st ress associa ted
with the crysta lliza t ion (the polymer sur face has to
shr ink to accommodate the increase in density associ-
a ted with the crysta lliza t ion). The la rgest cor ruga t ions
arise from the confinement of crystallizat ion to the outer
sur face and from the st ress exer ted by the crysta llized
sur faces to the amorphous region .
Our result s thus show that a combinat ion of different

physica l processes, such as plast ic deformat ion , sur face
relaxa t ion , and crysta lliza t ion , is actua lly a su itable
method to generate polymer surfaces with a well-defined
topography.
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recorded for a “frozen” surface of random PET copolymer, Tg ' 80◦C (Coppée et al. 2004).

Considering a periodic perturbation u(r, t) = uq cos qr et/τ , the excess free energy
becomes

δFq =

[
γ

2
q2 − H

4π h4

]
u2q (2.6)

For H < 0 the film is stable against all perturbation, for H > 0, the film surface is
unstable face to wavenumber smaller than a critical wavenumber qc deduced from Eq
2.6

qc ∼
(
H

γ

)1/2

h2 =
h2

`

(usually ` ' 1nm).
The observed wavelength corresponds to the fastest mode, considering viscous dis-

sipation in the flow required to accommodate the perturbation of the fluid interface.
In the lubrication approximation, the viscous dissipation is given by (de Gennes et al.
2003)

T∆Ṡ =

∫
η

(
∂v

∂x

)2

∼ η v
2
x

h2
h (2.7)

Considering volume conservation (div~v = 0, vx/λ ∼ u̇/h), we have[
γq2 − H

4π h4

]
uu̇ = −η u̇2

h3q2
(2.8)

Solving this equation for u = u0 e
t/τ yields the dispersion curve relating the growth

rate 1/τ and wavenumber q

1

τ
= −γ

η
h3q2

(
q2 − H

4πγ h4

)
(2.9)
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Fig. 2.4 Evolution of the growth rate 1/τ with the wavenumber q from Eq 2.9. Unstable

modes corresponds to positive value of 1/τ (0 < q < qc), the fastest mode qF being obtained

by maximizing the growth rate.

The wavelength and latent time of the fastest mode are,

qF =
1√
2

(
H

4πγ h4

)1/2

=
1√
2
qc and τF ∼

η γ

H2
h5 (2.10)

This rather crude model predicts a wavelength λ ∼ h2 (a density of holes N ∼
1/λ2 ∼ h−4) in close agreement with experimental observations for a large variety
of samples (Fig 2.5). Interestingly, the observed wavelength can be used to estimate
important data for interfacial phenomena, i.e., the Hamaker constant, H and/or the
interfacial free energy γ (see eq 2.10). Obviously, this is only valid for the first stages
of the dewetting since a coarsening of the pattern is observed due to the coalescence of
tiny holes into larger ones. Similarly, changing the environment of the fluid (replacing
air by another fluid for instance) will drastically affect the wavelength of the spinodal
dewetting (Reiter et al. 2000).

For nanometric thin films, the long range VdW forces favor spinodal dewetting
and the emergence of a labyrinthine pattern with a specific wavelength. In contrast,
for very thick films (h � 1µm), a continuous spectra of modes disturb the air-fluid
interfaces (i.e., the thermal capillary waves).

2.2 Dewetting by nucleation and growth

As shown in the previous section, spinodal dewetting cannot be observed for thick
films. If the spreading parameter is negative, the “forced” fluid will break with a
nucleation mechanisms. As other phase transitions, the nucleation of holes in a liquid
film can be homogeneous (very rare) or heterogeneous (by far most frequent). In the
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FIG. 2. Temporal evolution of the number of circular full
thickness depressions N!t" and the characteristic wave vector
q!t" obtained from a 2D Fourier transform (q ! 2p#l; l is the
characteristic distance between depressions). The initial film
thickness was 105 nm. The bounding liquid was L77 aqueous
solution. t defines the characteristic time for the appearance of
holes. Nmax represents the maximum number of holes.

relative densities of holes among different liquids for any
given h are largely invariant of h. There is an inverse
power law dependence of Nmax on h as shown by the dotted
straight lines which adequately represent the data on a
double logarithmic plot. It is also clear that the exponent
of the power law is similar for different liquids.

We averaged these results, to obtain a higher accuracy,
by fitting straight lines of fixed slope 24 to the data for in-
dividual liquids. A slope of 24 is very similar to that given
by the best fitted values for the different liquids which are
24 6 0.3, 23.7 6 0.1, 24.4 6 0.5, and 23.6 6 0.4 for
the cases of L77, PP, PW, and EG, respectively. A slope of
24 is also in accordance with our earlier reported work on
similar samples [13]. It is worthwhile to recall at this point

20 100 300
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100

N
m
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  [
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 L77
 PP
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FIG. 3. The variation of maximum number density of holes
with film thickness for different bounding liquids. Results are
presented for the four liquids which have a varying level of
compatibility with PDMS: PW (open circles), PP (open squares),
L77 (filled squares), and EG (filled triangles).

that a slope of 24 strongly suggests that the instability is
engendered by long-range van der Waals (vdW) interac-
tions. According to the theoretical model for instability
engendered by vdW forces, Nmax is given by [1–5,19]

Nmax ! Asfb#!16p3gfbh4" ! Ch24, (2)

where Asfb is the effective Hamaker constant for the sys-
tem silicon-PDMS-liquid. Equation (2) clearly shows that
Nmax is directly proportional to Asfb and inversely propor-
tional to gfb and h4. In Table II we have normalized gfb
and Nmax with respect to the values for PW to highlight
the relative enhancement of the instability. We find that
for PW, PP, and L77 the relative hole density is inversely
proportional to the relative interfacial tensions. The large
error bar in the relative interfacial tension in the case of
L77 is a propagation of uncertainty in the initial measure-
ment of gfb . The deviation of data for EG from this in-
verse dependence is expected as the excess intermolecular
force field strength has to be different to that in the case
of aqueous solutions. To further prove this, we calculated
the Hamaker constants by using Eq. (2) and the measured
values of gfb for different liquids. Two important con-
clusions can be drawn from the results shown in Table II.
The addition of a few surfactant molecules results in the
same Hamaker constant which is, however, 2 to 3 orders
of magnitude higher than what is expected based on the
assumption of additive contribution of dispersive forces of
the individual media, a further confirmation of previous
results [8,9,21,25].

As an additional feature of these experiments we now
present a new approach to estimate the interfacial tension.
The standard methods suffer from large uncertainties when
the interfacial tensions are very low (refer to the L77 case).
We can apply the theoretical model of spinodal decom-
position to back calculate the interfacial tension from the
characteristic length AND time scales of the instability.
To highlight the robustness of the method we apply it for
a general form of intermolecular potential which can have
any arbitrary dependence on the film thickness. For a gen-
eral form of potential, Nmax, and t are given by [4,5,19]

Nmax ! P#!8p2gfb" , (3)

t $ 12hgfb#!h3P2" , (4)

where P is the force per unit volume at the initial film
thickness and h is the viscosity of the film liquid (PDMS).

TABLE II. Results obtained from the analysis of Fig. 3.

Asfb
Liquid (b)

gPDMS-PW

gPDMS-b

!Nmax"b

!Nmax"PW %10218 J&
PW 1 1 1.8 6 10%
EG 2.1 6 10% 1.4 6 2.5% 1.2 6 15%
PP 4.7 6 10% 4.6 6 15% 1.8 6 10%
L77 128 6 40% 96 6 20% 1.4 6 40%

1434

Fig. 2.5 Evolution of the density of holes vs film thickness for polydimethylsiloxane thin

films in various environments water (PW), ethylene glycol (EG) and a surfactant (L77) see

(Reiter et al. 2000) for details. The dotted lines correspond to h−4 laws.

following, we will not discuss the nucleation stage but focus instead on the dynamics
of hole opening. This dynamics is indeed directly related to the internal properties of
the fluid and to the boundary condition for the flow at the buried fluid-solid interface.

For relatively thick films of Newtonian fluids, such as PDMS oil, (we will see
later what means “thick”), the holes open with a constant velocity, independent of
the film thickness. As shown by Brochard-Wyart, this constant opening velocity can
be adequately described by a balance of capillary energy gained by dewetting (S =
γS − (γSL + γL)) and viscous dissipation in the rim wedge (Redon et al. 1991)

V ∼ γ

η
θ3 (2.11)

For thin films of complex fluid such a a polymer melts, completely different be-
haviors are observed. The opening velocities strongly depend on the film thickness
and decrease gradually with time according a well-defined power law V ∝ t−1/3 (re-
iter et al. 2000b; Damman et al. 2003; Gabriele et al. 2006). This behavior cannot
be understood by considering the energy dissipation within a flow through the whole
film (which yields a constant velocity). It was however suggested by de Gennes (1985)
that polymer melts could slip at repulsive solid surfaces (Fig 2.6). This slippage can
be quantified with the slippage length determined by a balance of friction and shear
stress at the solid-fluid interface.
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σf = kVs = σiv = η

(
∂vx
∂z

)
z=0

' ηVs
b

(2.12)

where η, k, and b are the viscosity, the friction coefficient and the slippage length,
respectively.

Interestingly, we are now able to determine when a film of fluid is “thick” (h� b)
or “thin” (h� b). The dissipation mechanisms are characterized by different boundary
conditions, no-slip for thick films (viscous flow dissipation) and full-slip for thin ones
(friction at fluid-solid interface).
J. Phys.: Condens. Matter 22 (2010) 033102 Topical Review

Figure 5. Different velocity profiles in the vicinity of the solid/liquid interface and illustration of the slip (extrapolation) length b. The
situation of ‘apparent’ slip is illustrated on the right: according to a thin liquid layer of thickness z0 that obtains a significantly reduced
viscosity, the slip velocity ux |z=0 is zero, but a substantial slip length is measured.

2.3. Free interface boundary condition

At the free interface of a supported liquid film, i.e. at the
liquid/gas or more typically the liquid/air interface, no shear
forces can be transferred to the gas phase due to the negligible
viscosity of the gas. In general, the stress tensor σ ∗

i j is given by
the stress tension σi j , see (2.2), and the pressure p:

σ ∗
i j = σi j + pδi j = η(∂ j ui + ∂i u j ) + pδi j . (2.17)

The tangential t and normal n (perpendicular to the interface)
components of the stress tensor are:

(σ ∗ · n) · t = 0 (σ ∗ · n) · n = γlvκ, (2.18)

where κ denotes the mean curvature and γlv the interfacial
tension (i.e. the surface tension of the liquid) of the liquid/vapor
interface. If the liquid is at rest, i.e. the stationary case u = 0,
the latter boundary condition gives the equation for the Laplace
pressure pL:

pL = γlvκ = γlv

(
1
R1

+ 1
R2

)
. (2.19)

R1 and R2 are the principal radii of curvature of the free
liquid/gas boundary; the appropriate signs of the radii are
chosen according to the condition that convex boundaries give
positive signs. Such convex liquid/gas boundaries lead to an
additional pressure within the liquid due to its surface tension.
In the section 2.4, the solid/liquid boundary condition will be
discussed, which yields a treatment of slip effects.

2.4. Slip/no-slip boundary condition

2.4.1. Navier slip boundary condition. In contrast to fluid
dynamics in a bulk volume, where the assumption that the
tangential velocity u‖ at the solid/liquid interface vanishes
(no-slip boundary condition), confined geometries require a
more detailed investigation as slippage becomes important. In
1823, Navier [31] introduced a linear boundary condition: the
tangential velocity u‖ is proportional to the normal component
of the strain rate tensor; the constant of proportionality is
described as the so-called slip length b:

u‖ = bn · γ̇ . (2.20)

In the case of simple shear flow in the x-direction, the
definition of the slip length can be alternatively written as

b = ux

∂zux

∣∣∣∣
z=0

= uxη

σ
= η

ξ
, (2.21)

where ξ = σ/ux denotes the friction coefficient at the
solid/liquid interface. The xy-plane thereby represents the
substrate surface. According to these definitions, the slip
length can be illustrated as the extrapolation length of the
velocity profile ‘inside’ the substrate, cf figure 5. Moreover,
both limiting cases are included within this description: for
b = 0, we obtain the no-slip situation, whereas b = ∞
characterizes a full-slip situation. The latter case corresponds
to ‘plug-flow’, where the liquid behaves like a solid that slips
over the support.

2.4.2. How can one measure the slip length? In recent
years, numerous experimental studies have been published
using diverse methods to probe the slip length at the boundary
of different simple or complex liquids and solid supports. For
details concerning these experimental methods, we refer to the
review articles by Lauga et al [32], Neto et al [33] and Bocquet
and Barrat [34] (and references therein). To probe the boundary
condition, scientists performed either drainage experiments
or direct measurements of the local velocity profile using
e.g. tracer particles.

In the case of drainage experiments, the liquid is squeezed
between two objects, e.g. a flat surface and a colloidal probe
at the tip of an AFM cantilever, and the corresponding force
for dragging the probe is measured (colloidal probe AFM).
Alternatively, in a surface force apparatus (SFA), two cylinders
arranged perpendicular to each other are brought in closer
contact and force/distance measurements are taken to infer the
slip length.

The use of tracer particles as a probe of the local flow
profile might bring some disadvantages. The chemistry of
these particles is usually different from the liquid molecules
and their influence on the results might not be negligible.
A similar method is called fluorescence recovery after
photobleaching. In this method, a distinct part of a fluorescent
liquid is bleached by a laser pulse and the flow of non-bleached
liquid into that part is measured. The disadvantage of this
method is that diffusion might be a further parameter that

6

Fig. 2.6 Scheme slip vs no-slip boundary conditions

For entangled polymer melts, the viscosity is given by the reptation model (Ru-
binstein et al. 2003). Considering the diffusion of the polymer chain through its tube,
made by the entanglements with neighboring chains, we obtain the viscosity,

η ∼ ζ

a

N3

N2
e

(2.13)

Where a, Ne, ζ, N are the monomer size, the number of chain segments between two
entanglements, the monomer friction coefficient and the number of segments in the
whole chain, respectively.

The friction coefficient k can be easily related to the monomer friction coefficient
with the relation k ∼ ζ/a2. With these relations, we can show that the slippage length
for entangled polymer melts is given by,

b = a2
η

ζ
∼ a N3

N2
e

(2.14)

As shown in Fig 2.8, the observed slippage length agree well with this law in
principle valid for chains on a perfectly repulsive surface. Due to the entanglements,
very large slippage length are observed for polymer melts. For example, a polystyrene,
PS, melt of very large chains (Mw = 106Da) has a slippage length exceeding one
centimeter ! In contrast, slippage lengths observed for small molecules are nanometric
and barely exceeds a few molecular sizes (Bocquet et al. 2010).

This drastic change of the boundary conditions at the solid-fluid interface have a
strong impact on dewetting dynamics. For the opening of holes in viscous bubbles,
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Fig. 2.7 Evolution of slippage length with molecular weight (Baumchen et al. 2009).

the capillary stress at the edge of the hole propagates throughout the entire fluid films
(Debregeas et al. 1998). In contrast, for a viscous film on a solid substrate, the capillary
stress will propagate on a much smaller distance, determined by the slippage length
(or the friction at the fluid-solid interface). Balancing friction and viscous forces (for
large slippage length, we can assume a plug flow: σx ∼ η∂xVx) yields a differential
equation (Vilmin et al. 2006, Vilmin 2006)

kVx ∼ h0∂x(σx) = ηh0∂xxVx

Solving this ODE shows that the velocity field exponentially decays from the dewet-
ted edge with a characteristic length-scale, ∆ =

√
bh0

v(x, t) = V exp

(
−x− L(t)

∆

)
(2.15)

where L(t) is the dewetted distance.
Due to the friction of the fluid at the solid surface, there is a minimum size for the

rim ∆ ∼
√
bh, even for the very initial stages of dewetting.

For polymer melts in thin films (h� b), the dynamics of hole opening is thus given
by a balance of capillary power gained by dewetting (SV ) and the energy dissipated
by the friction of the moving rim (kWV 2).

S V ∼ η

b
W V 2 and V =

Sb

η
W−1 (2.16)

where S, V , and W are the spreading parameter, the dewetting velocity and the rim
width (k = η/b).
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The rapid decrease of dewetting velocity when the rim width increases (V ∝ 1/W )
is a signature of the slippage mechanisms. For dissipation in a purely viscous flow in
the rim wedge, the velocity is insensitive to the rim width (and the film thickness)
(Redon et al. 1991).

The global dynamics can be easily obtained from volume conservation, the dewetted
fluid should be in the rim hD ∼ θW 2. We obtain,

dD

dt
=
Sb

η

θ√
hD

(2.17)

where D is the dewetted distance.
Solving this equation fully characterize the dewetting dynamics,

D(t) ∼
(
γθ5/2

ηh1/2

)2/3

b2/3t2/3 (2.18)

V ∼
(
Sθ

k
√
h

)2/3

t−1/3 (2.19)

W (t) ∼
(
γθh

η

)1/3

b1/3t1/3 (2.20)

b ∼ η

γθ2

(
D(t)W (t)

t

)
(2.21)

These relations are in close agreement with the dewetting dynamics observed for
various polymers (Fig 2.8). The last relation also suggests that the slippage length can
be easily estimated from the dewetting data (Reiter et al. 2000).

2.3 Viscoelasticity

In the previous section, we discussed the dewetting dynamics for purely viscous poly-
mer melts (i.e., very small Deborah numbers, De � 1). This behavior is usually
observed at temperatures well above the glass transition temperature, such as room
temperature experiments with PDMS, Tg ' 150K. It can be however interesting to
adjust the dewetting temperature to follow the elastic - viscous transition which oc-
curs at the reptation time (De ' 1). Indeed, slightly above Tg, the elastic/rubber
state of the polymer melt extents over large time intervals, for PS Tg ' 373K. To
describe the dynamics of entangled polymer melts, two characteristic times are used
the entanglement time, τE and disentanglement/reptation time, τrep. We will focus
our discussion on the reptation time corresponding to the elastic-viscous transition.
Due to entanglements, the reptation time is a strong function of the chain length (or
the molecular weight) and is given by the relation (Rubinstein et al. 2003),

τrep ∼
ζa2

kT
N2
e

(
N

Ne

)3

(2.22)

The temperature dependence of the relaxation times, related to friction coeffi-
cient ζ, is usually accounted for by using the William-Landel-Ferry relation. This
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d ~ t2/3

Reiter et al. Phys. Rev. Lett. 
2000; Langmuir 2000

Autophobic polymer dewetting

Third regime  R > b       (3)

Fig. 2.8 Dewetting dynamics for PDMS on Si wafer coated with PDMS brushes (Reiter et

al. 2000).

(quasi)universal law gives an estimate of the aT coefficient used to re-scale the exper-
imental curves (with Tg as reference temperature).

aT =
τ(T )

τ(TG)
exp

(
−17.4

(T − TG)

(T − (TG − 51.6K))

)
(2.23)

The dewetting of PS at temperatures close to Tg thus reveals the occurrence of
two well defined morphologies for the rim collecting the dewetted fluid. For short
times (t � τrep), when PS behaves as a purely elastic material, asymmetric rims
shapes are observed with an exponential decay morphology (Fig 2.9) that can be
related to the interfacial slippage (Vilmin et al. 2006). For long times (t � τrep),
equilibrated rim with a round shape are observed. This cylindrical rim morphology
equilibrates the Laplace pressure within the fluid in motion. This rounded morphology
is usually observed for purely viscous fluids in the mature regime (already discussed
in the previous section).

The dewetting dynamics of PS at temperature close to Tg also show different
regimes. From the evolution of dewetted distance with time, Fig 2.10, three regimes can
be observed, i) constant velocity, ii) decrease of velocity with time (t−1/2) followed by
a change of slope indicating iii) a shallower decrease of velocity (t−1/3). Interestingly,
the first two regimes (V ∝ t0, V ∝ t−1/2) are independent of the Mw, while the
last one (V ∝ t−1/3) exhibits a strong influence of chain length (Damman et al.
2007). These regimes are related to the two major relaxation times, τe and τrep. The
short relaxation time τe corresponds to the Rouse dynamics of single strands between
entanglements, the melt behaves like a viscous fluid (of very low viscosity). Since the



12 Films of Fluids

a) b) 

Fig. 2.9 Short (a) and long (b) time morphology of the rim collecting the liquid for a high

molecular weight PS close to the glass transition.
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Fig. 2.10 Dewetting dynamics, evolution of the dewetted distance for PS at temperature

close to Tg (T ∼ 400K). As indicated.

density of entanglements is constant, τe is independent of the chain length. The long
relaxation time τrep corresponds to the time required for the chain to escape from
the tube or to disentangle from other chains. The length of the tube is determined by
the density of entanglements and the chain length, τrep thus strongly varies with the
molecular weigth (τrep ∝ N3).

For very short times t < τe (for PS at dewetting temperatures, τe ∼ 1s), the melt
behaves as a fluid of low viscosity ηi. Very large dewetting velocity is then expected,
and can be related to the monomer viscosity and moderate slippage length. As for
viscous fluids, we assume a balance of capillary and friction at solid-fluid interface,
equ 2.16,

Vi ∼
S

k
∆−1i =

S√
kh ηi

For intermediate times τe < t < τrep, the rheology of melt is dominated by elas-
ticity. We thus assume that the polymer behaves as a true elastomer (Damman et al.
2007). The capillary stress at the three phase contact line σ ∼ S/h generates a strain
given by the relation
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S

h
∼ E (H − h)

h
' EH

h
where S, E, H, h are the spreading parameter, the plateau elastic modulus, the actual
and initial film thicknesses.

The observation of a constant film thickness during the elastic plateau agrees with
a maximum of deformation and supports this assumption (Fig 2.11 (a)).
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Fig. 2.11 (a) Evolution of the maximum rim height, H with time for a PS melt at temper-

ature close to Tg (Mw = 100k, T ∼ 400K, h ∼ 100nm). (b) Evolution of the rim width with

the dewetted distance.

The volume conservation of the dewetted fluid yields the relation

h0D ∼WH 'W S

E
(2.24)

W ∼ Eh0
S

D (2.25)

The linear dependance of the rim width with the dewetted distance is perfectly
supported by various experimental observations in the plateau regime, see Fig 2.11
(b). For such polymer melt in a rubber state, we expect a very large slippage length
(b = η/k ' ∞). The dewetting velocity is then determined by a balance of capillarity
gain vs friction dissipation, V ∼ S/k W−1. Combining this relation with the volume
conservation, the velocity is expected to decrease as t−1/2 during all the plateau elastic
regime, in close agreement with the experimental observations (Fig 2.10).

V ∼
(

S√
kEh0

)
t−1/2 (2.26)

For very long times τrep < t, the melt flows like a highly viscous fluid η � ηi,
its viscosity being determined by the relaxation of entanglements (η ∼ Eτrep). The
dewetting dynamics of such a viscous fluid on a slippery surface was described in the
previous section, and is given by the relation,

S V ∼ η

b
W V 2, V =

Sb

η
W−1 and V ∼

(
Sθ

k
√
h

)2/3

t−1/3 (2.27)
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The predicted decrease of dewetting velocity according t−1/3 is in agreement with
experimental observations. At the transition between elastic and viscous regime, both
velocities should be equal,

S√
kh0

η−1/2 ∼
(

S√
kEh0

)
τ−1/2rep (2.28)

This equation can be easily re-organized to yield the classical relation for viscoelas-
tic fluids, η ∼ Eτrep showing the self-consistency of the model.

The elastic - slippage model can be tested by using the dependence of viscosity
with temperature and MW since the maximum viscous dewetting velocity (Vmax at
the elastic-viscous transition) is given by,

Vmax ∼
S

k
∆−1 =

S√
kh
η−1/2 ∝M−3/2w a

−1/2
T (2.29)

With these relations, all the data collapse on master curves, V/Vmax vs time (Fig
2.12).
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Fig. 2.12 Master curve obtained for the dewetting velocity for various PS at different tem-

peratures. The normalized velocity are obtained with the relation Vmax ∝ M
−3/2
w a

−1/2
T .

Normalization of temperatures was achieved with the aT parameter (see text).

2.4 Conclusions - Nano-rheology

The model based on the elastic-viscous transition is a very powerful tool to study
the rheology of strongly confined fluids. The very large slippage length associated to
long polymer chains, that can be as large as one centimeter, enhances the minute
modifications in the fluid or at the interface (Coppée et al. 2011). From the dewetting
dynamics recorded with various experimental conditions, the evolution of the reptation
time with temperature and molecular weigth can be obtained for thin films ∼ 100nm
thick (Fig 2.13). Interestingly, the observed reptation times follow the bulk behavior
τrep ∝ aT and τrep ∝M3.4

W . The adequacy between bulk and confined chain dynamics
clearly shows that confinement has no influence on the collective dynamics of chains
(at least for h ' 100nm, for comparison 10 < Rg < 200nm for the studied chains).
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stant film thickness, elastic deformations should be inde-
pendent of Mw (the elastic modulus is determined by the
mass between entanglements, Me). Instead, we observed a
large increase of strain with chain length. The behavior of
shortest studied PS chains is close to the one of equili-
brated samples, the departure from equilibrium being very
large for high Mws.

As ! is given by the ratio of "=E, the very large values of
! and its increase with Mw may be linked to larger residual
stresses and/or smaller elastic modulus, both parameters
that could be related to the preparation of the films by spin
coating. First of all, high strains were observed even for
film thicknesses much larger than the unperturbed dimen-
sion of the chains. Thus, chain confinement can be ruled
out as the cause for high values of !. At room temperature,
PS is a glassy polymer (Tg ! 373 K) and thus rapid solvent
evaporation is similar to a thermal quench from the melt
(the PS/toluene solution vitrifies at room temperature for a
polymer volume fraction # of about 80%) [4]. In addition,
in entangled polymer solutions, the molar mass of the
chain segments between entanglements, Me, is strongly
related to # (Msln

e !Mmelt
e #"5=4) [11]. Thin spin-coated

films of PS were obtained from solution with # around 1%,
having an entanglement density reduced by several orders
of magnitude. Thus, depending on the solvent evaporation
rate and the relaxation times of polymer chains (strongly
varying with Mw), the entanglement density in the dry
spin-coated films should be somewhere in between the
low value of the initial solution and the one of equilibrated
melts. As an ultimate limit, PS films can be composed of an
assembly of independent, nonentangled, fully collapsed
polymers. A related decrease of interchain entanglement
density was recently reported from a study of plastic
deformation of thin PS films [12].

We know that spin-coated PS films should exhibit
stresses; i.e., chains are trapped in strongly out-of-
equilibrium conformations. In addition, the elastic modu-
lus of such spin-coated thin PS films should be low, be-
cause an increase of Me induces a decrease of the modulus
according E # $RT=Me. In agreement with the evolution
of the strain (Fig. 3), less entangled states should be more
pronounced for high Mws, because of long relaxation times
and short evaporation stage. Interestingly, ! saturated for
high Mws (>300 kDa) (Fig. 3) which may either be inter-
preted by constant or by simultaneously decreasing/in-
creasing values of E and ", independent of Mw. We note
that Msln

e # 300 kDa for # $ 10% which may give a hint
on the origin of the Mw independence of !.

The dewetting dynamics of thin PS films should be
strongly influenced by a reduced initial entanglement den-
sity and by the subsequent reentanglement process. As
shown in Fig. 1, we could define two transition times, %V
and %W , associated with transitions in dewetting velocity
and in the rim shape, respectively. Their evolutions with
temperature and chain length will be discussed in the
following.

First, we can identify a transition time %W , correspond-
ing to a change in morphology of the rim, defined by the
time required to reach the maximum value of the rim
width. After %W , the rim width either remained constant
or decreased; i.e., the highly asymmetric rims became
more and more symmetric. Evolutions of %W with dewet-
ting temperature and Mw are shown in Fig. 4. Surprisingly,
the relaxation of the rim strongly depended on the chain
length. For low Mws, this relaxation was clearly related to
the reptation of the whole chains, %W ! %rep. In contrast,
for high Mws, very large deviations with respect to bulk
reptation times were observed, the most striking feature
being the independence of %W on chain length.

As shown in Fig. 4, the evolution of %W with temperature
is well described by the Vogel-Tammann-Fulcher (VTF)
law of bulk PS [13], suggesting that this relaxation process
is dominated by the segmental mobility of PS chains.
Moreover, the observation of a plateau value for Mw >
300 kDa suggests that the relaxation of the rim only re-
quires the motion of a part of such long chains. For the
longest chains studied, we found %W % %rep. Interestingly,
the evolution of %W with Mw qualitatively follows the
Mw dependence of the strain (Fig. 3).

As previously proposed, the relaxation of the rim shape
can be directly related to the relaxation of the residual
stress [10,14]. Our observations thus indicate that the
major fraction of the residual stress can be relaxed via
Rouse motion of parts of the polymer chain, their maxi-
mum length being fixed by the entanglements density. It
should be noted that even after %W the conformations of
long chains probably still remain out of equilibrium; i.e.,
most of the residual stresses may relax without fully re-
entangling the polymers.

(a) (b)

FIG. 4. Evolution of the relaxation times %W and %V deduced
from the rim width and the dewetting dynamics with (a) dewet-
ting temperature for PS (Mw # 654 kDa) and (b) molecular
weight (dewetting temperature 403 K). The film thickness was
set at 100 nm. For both graphs, the solid line corresponds to bulk
reptation times as determined from rheological measurements
(from Refs. [20,21]).

PRL 99, 036101 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
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Fig. 2.13 Evolution of reptation times measured at the dewetting transition with tempera-

ture and molecular weight. The solid lines represent data from classical rheological measure-

ments (Damman et al. 2007).
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Stability of thin sheets

Homogeneous states of constrained thin sheets are very often unstable. Their final
states can exhibit a zoo of complex morphologies made of wrinkles, creases, crumples,
folds, and blisters, several morphologies sometimes co-existing in a single experiments.
Transition from one morphology to another can be observed depending on various
experimental conditions. For instance, by decreasing adhesion, you switch from reg-
ular wrinkles to blister. Increasing compression could also reveal nonlinear regimes
with increasing complexity. As fluids, thin elastic sheets appears to be very promising
systems that bear similarity with classical problems of linear and nonlinear pattern for-
mation such as period-doubling bifurcations, Fig 3.1. Their study open new prospects
to understand the emergence of complexity, breaking of symmetry and singularities.

Even the buckling of a sheet shows intrinsic behaviors that raise fundamental ques-
tions such as, why do films become folded upon confinement whereas a thick slab of
an identical material generates creases ? why does paper sheets crumple into singu-
larities whereas rubber sheets would smoothly wrinkle ? Answering these questions
(and many others) is important, first for our natural curiosity, and to understand the
emergence of complex shapes and patterns in Nature. Understanding thin sheets be-
havior is also extremely important for many technological applications. The design
of new materials combining extreme mechanics with optical, electronic or chemical
properties is very often achieved with specific coatings on thin sheets. In this case, the
failure of the coating, or even the thin sheet itself, should be avoided. The opposite
is also true ! These complex features can be very interesting for some applications,
essentially in micro- and nano-technology . Indeed, understanding how complex pat-
terns emerge spontaneously under featureless forces may inspire efficient methods for
tailoring a desired surface pattern to achieve the required property (e.g., reversible
superhydrophoby, flexible electronics).

The energy of a thin sheet is usually described within the Foppl-von Karman
approximation. It includes stretching and bending energy related to the different modes
of deformation of the sheet, quantified by strains and curvatures.

U ∼ Y (strain)2 +B(curvature)2

where Y ∼ Eh and B ∼ Eh3, E, h being the elastic modulus and sheet thickness,
respectively.

For constrained thin sheets, e.g. a paper sheet confined in a sphere, the deformation
energy can be distributed in pure stretching and/or pure bending modes. Considering
an out-of-plane deformation (amplitude Z) of a sheet (size L), the balance of stretching
and bending energy
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3Laboratoire Reproduction et Développement des Plantes and Laboratoire Joliot-Curie, INRA, CNRS, ENS,
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We study the formation of localized structures formed by the point loading of an internally pressurized

elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we

show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting

scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in

terms of the internal pressurization and material properties of the shell. These results are validated by

numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can

be understood for highly pressurized shells from membrane theory. These results suggest that the position

and number of wrinkles may be used in combination to give simple methods for the estimation of the

mechanical properties of highly pressurized shells.
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The wrinkling of elastic membranes under tension is as
important in a range of fields as it is visually arresting. In
recent years, particular attention has been paid to the use of
such wrinkling patterns to facilitate measurements in a
wide range of settings from the traction forces exerted
by fibroblasts during cell division [1] to the mechanical
properties of the membranes themselves (such as Young’s
modulus and thickness) [2,3]. There has also been consid-
erable interest in understanding fundamental aspects of
wrinkled membranes including the size and number of
wrinkles [4–6], the transition from wrinkling to folding
[7], and situations in which the wrinkle wavelength varies
spatially [6,8,9].

For the most part, studies of wrinkling have considered
planar sheets—objects without an intrinsic curvature. As
every ping-pong player knows, objects with an intrinsic
curvature suffer a surprising mode of instability in which a
large indentation localizes to form polygonal deformations
[10] with ridges connecting vertices. These polygonal
structures occur in a wide range of applications from thin
shells under point loading [11–14] through the drying of
droplets of a colloidal suspension [15] to the oscillations of
bubbles in echography [16]. Although polygonal structures
and wrinkles may both be the manifestation of azimuthal
instabilities of elastic objects subject to deformation, they
are usually thought of as occurring in very different situ-
ations. In this Letter we show that it is possible to move
continuously from polygonal structures to wrinkles within
a single physical system: the indentation of an internally
pressurized shell. We show that for ‘‘small’’ internal pres-
sures polygonal structures are observed giving way to
wrinkles for ‘‘large’’ internal pressures.

A simple demonstration of the azimuthal instability that
develops when a pressurized shell is indented may be seen

by pushing on a beach ball (see Fig. 1); a large number of
wrinkles form within an annulus of well-defined inner and
outer radii. The indentation of pressurized elastic shells has
recently received attention in its own right because of
applications to drug delivery within polymeric capsules
[17], the measurement of turgor pressure within yeast cells
[18,19], and the measurement of the mechanical properties
of thin films [20].
To understand the wrinkling instability of pressurized

shells demonstrated in Fig. 1 we consider an elastic shell of
natural radius R, thickness h, Young’s modulus E, Poisson
ratio !, and subject to an internal pressure (or pressure
difference) p. The shell is then deformed by the action of a
pointlike force F at a pole. Numerical simulations were
performed using the commercial finite element package

FIG. 1 (color online). The wrinkling of a beach ball under
indentation.
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Fig. 3.1 Wrinkling pattern breaking the radial symmetry of an indented ball (Vella et al.

2011) and nonlinear wrinkling exhibiting a period-doubling bifurcation (Brau et al. 2010).

Es
Eb
∼ Y (Z/L)4

B(Z/L2)2
∼
(
Z

h

)2

shows that pure bending mode is favored for large deformations (Z � h).
For bulk materials, this condition is clearly not fulfilled, this is why compressed bulk

materials accommodate compression with pure stretching. The formation of creases
at free surfaces, first described by Maurice Biot, can be however observed (Cai et al.
2012).

For thin sheets, the shapes that minimize energy should thus minimize stretching
and according to the Theorema Egregium of C.F. Gauss, should avoid any change of
metric, i.e. no change of Gauss curvature (Witten 2007, Audoly et al. 2010). In short,
this theorem of differential geometry states why it is impossible to wrap a sphere with
a flat surface without stretching !
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3.1 Crumpling

Look at a paper ball, Fig 3.2, the compaction of this 2D paper sheet in a 3D sphere
cannot be achieved with isometric transformations of the flat surface. This strong
constraint obviously induces changes of Gauss curvature, at least locally. To minimize
the energy, the sheet spontaneously adopts an origami-like configuration. As shown
in Fig 3.3, the opened paper ball reveals a complex polygonal network of plane facets
delimitated by sharp ridges (or tied folds) (Lobkovski et al. 1995, Blair et al. 2005).
These ridges focus all the deformation energy of the sheet, the energy related to flat
facets is negligible. These ridges can be considered as linear singularities.

Fig. 3.2 Morphology of a paper ball. Thin sheet confined in a sphere.

The ridges are connected each other by point-like singularities with a size compa-
rable to the sheet thickness. As shown in Fig 3.4, the deformations involved into such
a ridge contain bending and a non negligible amount of stretching (demonstrated by
the deflection along the fold). The stretching is directly related to the change of fold
width along the ridge, ∂W/∂x ∼ w/L. The maximum width of the ridge, w results
from a balance of stretching and bending energy (Lobkovsky et al. 1995),

w ∼ h1/3L2/3α−1/3 and U ∼ Eh3
(
L

h

)1/3

α7/3

where L and α are the fold length and the angle between the planes delimiting the
fold, respectively.

Interestingly, the width and energy of such a ridge are vanishing when the sheet
thickness vanishes. The origami-model corresponds to zero thickness/zero energy mor-
phology.
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Fig. 3.3 Morphology of a paper ball. Opened paper ball showing the polygonal network

morphology of ridges.

Fig. 3.4 The “bag shape” showing the morphology of a single ridge singularity.

3.2 Curtains

As discussed in the previous section, geometrically constrained thin sheets tend to
adopt an origami-like morphology, as close as possible to isometric solutions including
singularities. However, there could be specific geometrical constraints that are not
compatible with such faceted morphology. As shown by mathematicians, an origami
solution should follow some rules, i) the two colors rule, stating that no two colors can
share a common face (or two colors are enough to colorize an origami), ii) the vertices
follows the equation m− v = ±2 (m/v are the number of mountain/valley folds), iii)
the sum of alternative angles around a vertex must be equal to π, and iv) the paper
sheet cannot intersecting itself !

Thin sheets constrained at one edge and free at the other, i.e. a curtain-like mor-
phology (Fig 3.5), develop a self-similar hierarchy of folds, a morphology that contra-
dicts these rules (Huang et al. 2010, Vandeparre et al. 2011).
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Fig. 3.5 Detail of a rubber curtain constrained at one edge with an imposed sinusoidal

deformation z(0, y) = A(0) sin(q(0)y)(Vandeparre et al. 2011).
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constrained edge (Vandeparre et al. 2011).

As shown in Fig 3.5, sheets made of various materials constrained at one edge
develop a hierarchical pattern of folds. These patterns consist of a hierarchy of suc-
cessive generations of folds whose wavelength gradually increases along x. For the
sake of clarity, the structure of the deformed sheet is described by a periodic func-
tion z(x, y) = A(x) sin q(x)y, with z the amplitude of out-of-plane deflections, y being
parallel to the edge (q = 2π/λ). To rationalize these various hierarchical patterns,
we consider the evolution of the average wavelength, λ, with the distance to the con-
strained edge, x (Fig 3.6). For inextensible sheets, the amplitude of the folds is deter-
mined by the compression ratio and the inextensibility of the sheet, A ∼ λ

√
δ. Since,

inextensibility ensures that

W0 =

∫ W

0

ds cos θ '
∫ W

0

ds

(
1− 1

2
ż2
)
'W − 1

2
W

(
A

λ

)2
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and δ = (W −W0)/W
The bending energy density related to a fold is thus given by

ub ∼ Eh3 κ2 ∼ Eh3δ/λ2

Since ub is proportional to 1/λ2, the membrane adopts the largest possible wave-
length compatible with the imposed constraints. The minimization of bending energy
is thus the “driving force” toward larger and larger folds and is the source of the ob-
served hierarchy. Fig. 3.6 shows that the evolution of the average fold width, < λ(x) >
is adequately described by simple power laws, < λ >∼ xm. Interestingly, curtains
made of various materials with contrasted properties can be sorted in two classes with
different exponents ∼ 2/3 for “light” sheets and ∼ 1/2 for “heavy” sheets (we will see
later the meaning of light and heavy). We will now try to answer the questions, What
energy terms do determine these exponents ? What processes do limit the evolution
dynamics of fold width ?

To increase the wavelength, adjacent folds should merge. Looking carefully a cur-
tain, you would probably observe the merging of 2, 3 and very rarely 4 folds, some folds
remaining almost unaltered. We will however make the assumption, first proposed by
mathematicians Jin and Sternberg, that the observed morphology can be described
by successive period-doubling transitions (Jin et al. 2001). The global hierarchy is
obtained by stitching these building-blocks. The key feature of a single block, named
wrinklon, is its length, L, i.e., the sheet length required to accommodate the λ − 2λ
transition. This length should be determined by material properties, E, h the con-
straint/compression ratio δ and the wavelength. The power law describing self-similar
patterns is then obtained from the relation

dλ

dx
∼ λ

L

In fact, close inspection of the wrinklon morphology reveals the occurrence of a
curved ridge at the tip of the merging folds (Fig 3.7). Such curved ridge is characterized
by a non vanishing Gauss curvature. From the Theorema Egregium, the sheet around
these curved ridge should concentrate stretching energy (i.e., the surface is no more
isometric of a flat surface). The length of these elementary building-block can be
obtained from energy minimization. The energy terms involved into a single λ − 2λ
transition should be related to local stretching, bending and the curved fold.

The stretching energy can be estimated from the slope of the sheet which deter-
mines the strain ε induced by the change of amplitude A− 2A (related to the change
of wavelength since A ∼

√
δλ). For a wrinklon of size Lλ, the strain is given by

ε ∼ A2/L2 ∼ δλ2/L2 which yields the stretching energy

us ∼ Eh Lλ ε2 ∼ Ehδ2λ5L−3

The energy focalized in a curved fold was extensively studied by Pogorelov (1988) and
later by Pauchard (1997),

uc ∼ Eh5/2 α5/2 ρ1/2



22 Stability of thin sheets
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Fig. 3.7 (a) Wrinklon morphology. (b) Origami model of the λ− 2λ transition (Vandeparre

et al. 2011).

where α and ρ are the change of slope at the ridge and the radius of curvature of the
fold, respectively. Since α ∼ A2/L2 and ρ ∼ λ2/L (assuming a parabolic shape for the
curved fold), this energy becomes

uc ∼ Eh5/2 δ5/4 λ7/2L−3

This energy term is however negligible compared to stretching energy since uc/us ∼
(h/A)3/2 � 1. The wrinklon morphology results then from a balance of stretching and
bending energy, ub ∼ Eh3 Lλκ2 which yields the length of a single building-block

L(λ) ∼ h−1/2δ1/4λ3/2

The scaling for the wavelength describing the whole hierarchical pattern of folds is
obtained by the integration of equation dλ/dx ∼ λ/L, and is found to be,

λ(x)δ1/6

h
∼
(x
h

)2/3
The class of patterns related to “light” curtains is in close agreement with this scaling,
λ ∝ x2/3. In addition to yielding the proper exponent, this relation enables the com-
parison of the data obtained from seemingly disparate systems, over a wide range of
lengthscales and independently of material properties. Fig 3.8 provides a remarkable
collapse of the data measured with paper, fabric and various plastic sheets.
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Fig. 3.8 Master curves, normalized wavelength vs normalized distance from edge for the

“light” curtains (Vandeparre et al. 2011).
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Fig. 3.9 Master curves, normalized wavelength vs normalized distance from edge for the

“heavy” curtains (Vandeparre et al. 2011).

As shown in Fig. 3.6, “heavy” curtains, made of nanometric films of polystyrene
on water (Huang et al. 2010), rubber sheets, and constrained graphene do not follow
the 2/3 scaling. instead, their dynamics obey λ ∝

√
x). The main difference between

both families is related to the lack or occurrence of a significant tensile force, T . For
all “heavy” curtains, an additional tensile force is acting on the sheet. For graphene
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sheets, this tension is related to the longitudinal tensile strain induced by thermal
manipulations of the compression device (Bao et al. 2009). For rubber curtains, the
tension is determined by gravity (T ∼ ρcghH, where ρc and H are the density and
height of the curtain). For compressed nanometric polystyrene films on water, a tensile
force is exerted by the surface tension of water at the free edges of the polymer film
(Huang et al. 2010).

The tension per unit width, imposes an additional stretching energy given by,

Ut ∼ T α2 Lλ ∼ Tδλ3L−1

where α is the slope of the sheet within the wrinklon (α ∼ A2/L2).
This energy becomes dominant when Ut > Us, that is when T > Eh2δ/A. Ne-

glecting the stretching term, the total energy of the distorted membrane becomes
Utot = Ut +Ub. The length of a wrinklon which minimizes Utot (balancing tension and
bending energies) is given by,

L(λ) ∼ λ2

h

√
T

Eh
. (3.1)

As expected, the tensile force increases the length of wrinklons for a given wavelength
and can thus be used to tune the energy penalty associated to λ − 2λ transitions.
Considering the equation dλ/dx ∼ λ/L with L(λ) given by Eq 3.1, we obtain the
scaling for the wavelength along a heavy sheet

λ(x)

h
∼
(
Eh

T

)1/4 (x
h

)1/2
. (3.2)

This scaling is in excellent agreement with the power laws observed for heavy curtains
and graphene bilayers, (Fig 3.6). The data of various macroscopic curtains, graphene
bilayers and nanometric polystyrene thin films indeed collapse onto a single master
curve without any fitting parameters (see Fig 3.9) which highlight the universality of
our description. Our formalism is thus validated for 7 orders of magnitude in thickness
from graphene sheets to rubber and fabric curtains.

3.3 Conclusions

In addition to the ridge and point-like singularities used to describe the crumpling of
elastic sheets, diffuse stretching domain should be considered. Due to geometrical con-
straints that do not fill the “origami rules”, the self-similar patterns of folds observed
in curtain-like sheets are built by stitching together building-blocks, called wrinklons
characterized by a diffuse stretching energy. The self-similar structure is then related
to the size of the λ− 2λ transition that depends on material properties and the local
wavelength.

This example gives a little bit of flavor to the emergent research field related to
constrained elastic sheets, where wrinkles, creases, sharp folds, crumples, wrinkle-to-
fold transition and period-doubling bifurcation meet.
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