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1
Introduction

When speaking about thin films, I like to start with the aesthetic bursting of viscous
bubbles. In a single experiment, you can follow the opening dynamics of a hole in a
viscous thin film of fluid and the buckling of a thin sheet.

/Mﬂ; T

Fig. 1.1 Bursting of a viscous bubble of polydimethylsiloxane from (Debregeas et al. 1998).

The dynamics of hole opening is determined by a balance of capillary forces and
viscous dissipation within the fluid film, the radial wrinkles observed in final stages
correspond to the buckling of the collapsed bubble.

This example beautifully shows that tiny mechanical or capillary forces can desta-
bilize the homogeneous flat state of a thin film leading to the growth of complex shapes
and patterns. Experimental and theoretical studies on pattern formation are driven
by the desire to understand the fundamental mechanisms by which such forces can
lead to the spontaneous formation of multi-scale structures via symmetry breaking
processes. This understanding is fundamental to envision applications in various do-
mains such as micro and nanofluidics, flexible electronics, and the development of new
surface-pattering technologies .

In the following, we will first discuss the stability of liquid films, thinner than 1
pm, deposited on solid surfaces with an emphasis on the nature of intermolecular
forces and thermal fluctuations that conspire to generate complex morphologies. We
will see how the global dewetting dynamics is driven by the solid-fluid interface and
that dewetting can be a powerful tool to study the nano-rheology of complex fluids,
such as polymer melts, in ultra thin films.

In the second part, we will consider thin elastic sheets constrained by mechanical
forces. The canonical example of such system is given by a simple paper ball. We will
see how the global geometry of these constraints drastically affects the final shape
adopted by the sheet.



2
Films of Fluids

When a liquid is deposited on a solid surface, two situations can be observed. The fluid
can form a continuous film that perfectly wets the substrate or can be fragmented
in drops and droplets with a well defined contact angle. This contact angle, 6, is
determined by a balance of forces at the three phase contact line which yields the
Yound-Dupré relation (de Gennes et al. 2003).

yL cos = vs — YsL

with vr, vs, and gz the free surface energy related to the liquid-air, solid-air and
solid-liquid interfaces.

The ability of a liquid to wet a surface is usually described with the spreading
parameter, S = g — (ysz + 7). If S < 0, the liquid form droplets, we are in partial
wetting. By using spin-coating, it is however possible to “force” the liquid to wet the
solid surfaces even in partial wetting regime. The resulting liquid film is then unstable
and tends to spontaneously desegregate to form collections of droplets, this transi-
tion is called dewetting. Interestingly, the mechanisms of dewetting depends on the
film thickness (Bonn et al. 2009). In partial wetting conditions, the film destabilize to
expose “dry” patches, unless it is sufficiently thick to be stabilized by gravity. For rel-
atively thick films, the system is perturbed by the presence of surface heterogeneities
or dust particles, which form the initial nucleus for a hole. Dewetting proceeds via a
nucleation-growth mechanisms (i.e., heterogeneous nucleation) (Fig 2.1). In contrast,
if the nucleation is induced by thermal fluctuations, nucleation is homogeneous. This
is observed for very thin films 210 nm when long-range forces become significant. The
system can become linearly unstable, so the growth of thermal fluctuations leads to
spontaneous destabilization (Fig 2.1). This scenario has been called spinodal dewet-
ting, in analogy to the spontaneous decomposition of incompatible bulk phases (Reiter
1992; Bonn et al. 2009; Baumchen et al. 2003).

The free energy of film F(h) can explain the co-existence of these two mechanisms
(de Gennes et al. 2003). This free energy including gravity, surface energy and long
range van der Waals forces, is given by

1
F(h) =~sL +vL + §P9h2 + P(h)

The long range free energy is determined by the Hamaker constant, H via the
relation P(h) = —H/12wh?, obtained by summing all atom-atom attractive contribu-
tions (~ —1/7%). The Hamaker constant ranges between 10~% and 1072! J, for high
energy and low-energy organic surfaces, respectively (in the studies reported here,
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Fig. 2.1 (left) Labyrinthine or spinodal dewetting and (right) nucleation-growth pattern
(Baumchen et al. 2010).

we only consider positive Hamaker constants). As shown in Fig 2.2, a Maxwell con-
struction shows two transitions mechanism (similar to the VAW liquid-gas transition).
The instability domain is related to the spinodal dewetting while the metastable one
corresponds to the nucleation-growth mode.

Fe) |
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Fig. 2.2 Evolution of the free energy of a thin film of fluid with thickness.

The two mechanisms generate different patterns, i.e., a characteristic wavelength
for spinodal, a well-defined holes opening dynamics for nucleation-growth regime.
These mechanisms can be qualitatively (and quantitatively) understood from scaling
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law theoretical models.

2.1 Spinodal Dewetting

For temperatures higher than absolute zero, the free surface of a liquid is always dis-
turbed by thermal capillary waves. These waves are characterized by a superposition
of various independent modes described by a continuous spectra, relating their am-
plitude A to their wavenumber, q. We consider each mode disturbing the fluid-air
interface, ((r) = A(q) cos gr separately. The free energy can be adequately described
by considering gravity and capillarity.

1 1/2
U= [ o6+ (14 0.0+ 0,09 sy 21)
L 1 2 1 2
= [ 59"+ (14 5(0:07+ 5(0y¢)" | | da dy (2.2)
The excess energy due to this perturbation is given by
~[PY 42 | 7 42 2] r2
AUq_[QA +2Aq}L

The spectra A2 can now be derived by considering the equipartition theorem, the
average energy of one mode is equal to kT

kT

AlgQ)? = ———
@ pg +7¢?

(2.3)

Experimental observations of thermal waves by scattering methods, x-ray, neutron
reflectivity (via the extent of interfacial roughness) or by direct inspection of “frozen”
surfaces of glassy materials with atomic force microscopy agree well with the ¢—2 law
(eq 2.3) (Sferraza et al. 1997, Coppée et al. 2004).

For very thin films (h < 100 nm) undergoing spinodal dewetting, an additional
energy term corresponding to the interaction between air-fluid and fluid-solid interfaces
should be considered. To understand the stability of such thin films, long range VAW
forces should be added in the model. Neglecting gravity, the free energy of a perturbed
film surface (h — h + u) is given by

P / dr dy [2(VR)? + P(h+u)] (2.4)
Expanding P(h + u) yields
OF = /da: dy [g(Vu)Q +% P"(h) uQ] (2.5)

With P”(h) = —H/2rh?



Spinodal Dewetting 5

a 100

10

slope= -2

PSD

0.1
0.01

0.001

0.0001 A Ak A A Al A Ak i asasl A Al AdL
01 1 10 100

s (um1)

Fig. 2.3 Evolution of the power spectral density (PSD = A?) computed from AFM images
recorded for a “frozen” surface of random PET copolymer, T, ~ 80°C (Coppée et al. 2004).

Considering a periodic perturbation wu(r,t) = u, cosgr e!/T, the excess free energy
becomes

2 4 h4

For H < 0 the film is stable against all perturbation, for H > 0, the film surface is
unstable face to wavenumber smaller than a critical wavenumber ¢, deduced from Eq

2.6 "
H 2
4c ~ () h2 = hf
v 14

55;:[7f__ H'}ug (2.6)

(usually £ ~ 1nm).

The observed wavelength corresponds to the fastest mode, considering viscous dis-
sipation in the flow required to accommodate the perturbation of the fluid interface.
In the lubrication approximation, the viscous dissipation is given by (de Gennes et al.

2003)
. v\ > v2
TAS = — | ~n=2h 2.
5= [n(52) ~nis (27)
Considering volume conservation (divt = 0, v, /A ~ u/h), we have

u2

H
2 = lun=-— 2.
[vq y h4]uu U (2.8)

Solving this equation for u = ug e/7 yields the dispersion curve relating the growth
rate 1/7 and wavenumber ¢

1 Y3 2( 2 H
Z=_1p - 2.9
T 7 4 (q 4y h* (2.9)
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0,5

Fig. 2.4 Evolution of the growth rate 1/7 with the wavenumber g from Eq 2.9. Unstable
modes corresponds to positive value of 1/7 (0 < ¢ < q.), the fastest mode gr being obtained
by maximizing the growth rate.

The wavelength and latent time of the fastest mode are,

1/ H \'?* 1
qr = E <471"yh4> = ﬁqc and TE ~ T;,{% h5 (210)

This rather crude model predicts a wavelength A ~ h? (a density of holes N ~
1/A? ~ h™) in close agreement with experimental observations for a large variety
of samples (Fig 2.5). Interestingly, the observed wavelength can be used to estimate
important data for interfacial phenomena, i.e., the Hamaker constant, H and/or the
interfacial free energy v (see eq 2.10). Obviously, this is only valid for the first stages
of the dewetting since a coarsening of the pattern is observed due to the coalescence of
tiny holes into larger ones. Similarly, changing the environment of the fluid (replacing
air by another fluid for instance) will drastically affect the wavelength of the spinodal
dewetting (Reiter et al. 2000).

For nanometric thin films, the long range VAW forces favor spinodal dewetting
and the emergence of a labyrinthine pattern with a specific wavelength. In contrast,
for very thick films (h > 1um), a continuous spectra of modes disturb the air-fluid
interfaces (i.e., the thermal capillary waves).

2.2 Dewetting by nucleation and growth

As shown in the previous section, spinodal dewetting cannot be observed for thick
films. If the spreading parameter is negative, the “forced” fluid will break with a
nucleation mechanisms. As other phase transitions, the nucleation of holes in a liquid
film can be homogeneous (very rare) or heterogeneous (by far most frequent). In the
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Fig. 2.5 Evolution of the density of holes vs film thickness for polydimethylsiloxane thin
films in various environments water (PW), ethylene glycol (EG) and a surfactant (L77) see
(Reiter et al. 2000) for details. The dotted lines correspond to h™* laws.

following, we will not discuss the nucleation stage but focus instead on the dynamics
of hole opening. This dynamics is indeed directly related to the internal properties of
the fluid and to the boundary condition for the flow at the buried fluid-solid interface.

For relatively thick films of Newtonian fluids, such as PDMS oil, (we will see
later what means “thick”), the holes open with a constant velocity, independent of
the film thickness. As shown by Brochard-Wyart, this constant opening velocity can
be adequately described by a balance of capillary energy gained by dewetting (S =
~vs — (vsz. + 7)) and viscous dissipation in the rim wedge (Redon et al. 1991)

Y 53
Ve~ =0 2.11
” (2.11)

For thin films of complex fluid such a a polymer melts, completely different be-
haviors are observed. The opening velocities strongly depend on the film thickness
and decrease gradually with time according a well-defined power law V oc t=1/3 (re-
iter et al. 2000b; Damman et al. 2003; Gabriele et al. 2006). This behavior cannot
be understood by considering the energy dissipation within a flow through the whole
film (which yields a constant velocity). It was however suggested by de Gennes (1985)
that polymer melts could slip at repulsive solid surfaces (Fig 2.6). This slippage can
be quantified with the slippage length determined by a balance of friction and shear
stress at the solid-fluid interface.
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i O0vy Vs
z=0

where 7, k, and b are the viscosity, the friction coefficient and the slippage length,
respectively.

Interestingly, we are now able to determine when a film of fluid is “thick” (h > b)
or “thin” (h < b). The dissipation mechanisms are characterized by different boundary
conditions, no-slip for thick films (viscous flow dissipation) and full-slip for thin ones
(friction at fluid-solid interface).

no slip partial slip full slip
>
o >
u u U
>
>
>
b=0 W / b=x

b /

/

/

v

Fig. 2.6 Scheme slip vs no-slip boundary conditions

For entangled polymer melts, the viscosity is given by the reptation model (Ru-
binstein et al. 2003). Considering the diffusion of the polymer chain through its tube,
made by the entanglements with neighboring chains, we obtain the viscosity,

¢ N?

Where a, N, ¢, N are the monomer size, the number of chain segments between two
entanglements, the monomer friction coefficient and the number of segments in the
whole chain, respectively.

The friction coefficient & can be easily related to the monomer friction coefficient
with the relation k ~ (/a?. With these relations, we can show that the slippage length
for entangled polymer melts is given by,

b=a* - ~a — (2.14)

As shown in Fig 2.8, the observed slippage length agree well with this law in
principle valid for chains on a perfectly repulsive surface. Due to the entanglements,
very large slippage length are observed for polymer melts. For example, a polystyrene,
PS, melt of very large chains (M, = 10°Da) has a slippage length exceeding one
centimeter ! In contrast, slippage lengths observed for small molecules are nanometric
and barely exceeds a few molecular sizes (Bocquet et al. 2010).

This drastic change of the boundary conditions at the solid-fluid interface have a
strong impact on dewetting dynamics. For the opening of holes in viscous bubbles,
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Fig. 2.7 Evolution of slippage length with molecular weight (Baumchen et al. 2009).

the capillary stress at the edge of the hole propagates throughout the entire fluid films
(Debregeas et al. 1998). In contrast, for a viscous film on a solid substrate, the capillary
stress will propagate on a much smaller distance, determined by the slippage length
(or the friction at the fluid-solid interface). Balancing friction and viscous forces (for
large slippage length, we can assume a plug flow: o, ~ nd,V,) yields a differential
equation (Vilmin et al. 2006, Vilmin 2006)

ka ~ h05x(0m) - nhOameac

Solving this ODE shows that the velocity field exponentially decays from the dewet-
ted edge with a characteristic length-scale, A = /bhg

”T_L(t)> (2.15)

v(z,t) =V exp (— A

where L(t) is the dewetted distance.

Due to the friction of the fluid at the solid surface, there is a minimum size for the
rim A ~ V/bh, even for the very initial stages of dewetting.

For polymer melts in thin films (h < b), the dynamics of hole opening is thus given
by a balance of capillary power gained by dewetting (SV') and the energy dissipated
by the friction of the moving rim (kWV?2).

Sb
SV~ %W V2 and V= 7W—1 (2.16)
where S, V, and W are the spreading parameter, the dewetting velocity and the rim

width (k = n/b).
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The rapid decrease of dewetting velocity when the rim width increases (V o< 1/W)
is a signature of the slippage mechanisms. For dissipation in a purely viscous flow in
the rim wedge, the velocity is insensitive to the rim width (and the film thickness)
(Redon et al. 1991).

The global dynamics can be easily obtained from volume conservation, the dewetted
fluid should be in the rim hD ~ §W?2. We obtain,

dD Sb 0
—_— = —— 2.17
dt 1 vhD (2.17)

where D is the dewetted distance.
Solving this equation fully characterize the dewetting dynamics,

95/2 2/3
D(t) ~ (3}&/2) b2/342/3 (2.18)

56 \*/?
Vo~ (M) t=1/3 (2.19)

AN
W(t) ~ (717> p/3¢1/3 (2.20)
n_(DOW(t)

b~ — | ——= 2.21
o (P (2.21)

These relations are in close agreement with the dewetting dynamics observed for
various polymers (Fig 2.8). The last relation also suggests that the slippage length can
be easily estimated from the dewetting data (Reiter et al. 2000).

2.3 \Viscoelasticity

In the previous section, we discussed the dewetting dynamics for purely viscous poly-
mer melts (i.e., very small Deborah numbers, De < 1). This behavior is usually
observed at temperatures well above the glass transition temperature, such as room
temperature experiments with PDMS, T'g ~ 150K. It can be however interesting to
adjust the dewetting temperature to follow the elastic - viscous transition which oc-
curs at the reptation time (De ~ 1). Indeed, slightly above T, the elastic/rubber
state of the polymer melt extents over large time intervals, for PS T, ~ 373K. To
describe the dynamics of entangled polymer melts, two characteristic times are used
the entanglement time, 75 and disentanglement/reptation time, 7,.,. We will focus
our discussion on the reptation time corresponding to the elastic-viscous transition.
Due to entanglements, the reptation time is a strong function of the chain length (or
the molecular weight) and is given by the relation (Rubinstein et al. 2003),

¢a® o (N ’
~=N; | — 2.22
mren ~ SN (3 (2:22)

The temperature dependence of the relaxation times, related to friction coeffi-
cient (, is usually accounted for by using the William-Landel-Ferry relation. This
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Fig. 2.8 Dewetting dynamics for PDMS on Si wafer coated with PDMS brushes (Reiter et
al. 2000).

(quasi)universal law gives an estimate of the ar coefficient used to re-scale the exper-
imental curves (with T as reference temperature).

™(T) (T - Tg)
ar = (7o) exp (—17.4 T = (To = 51.6K))> (2.23)

The dewetting of PS at temperatures close to T, thus reveals the occurrence of
two well defined morphologies for the rim collecting the dewetted fluid. For short
times (t < Tyep), when PS behaves as a purely elastic material, asymmetric rims
shapes are observed with an exponential decay morphology (Fig 2.9) that can be
related to the interfacial slippage (Vilmin et al. 2006). For long times (¢ >> Trep),
equilibrated rim with a round shape are observed. This cylindrical rim morphology
equilibrates the Laplace pressure within the fluid in motion. This rounded morphology
is usually observed for purely viscous fluids in the mature regime (already discussed
in the previous section).

The dewetting dynamics of PS at temperature close to T also show different
regimes. From the evolution of dewetted distance with time, Fig 2.10, three regimes can
be observed, i) constant velocity, ii) decrease of velocity with time (t~1/2) followed by
a change of slope indicating iii) a shallower decrease of velocity (t’l/ 3). Interestingly,
the first two regimes (V oc 1%, V t_1/2) are independent of the M,,, while the
last one (V oc t~1/3) exhibits a strong influence of chain length (Damman et al.
2007). These regimes are related to the two major relaxation times, 7. and 7y.p,. The
short relaxation time 7, corresponds to the Rouse dynamics of single strands between
entanglements, the melt behaves like a viscous fluid (of very low viscosity). Since the
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a)

Fig. 2.9 Short (a) and long (b) time morphology of the rim collecting the liquid for a high
molecular weight PS close to the glass transition.
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Fig. 2.10 Dewetting dynamics, evolution of the dewetted distance for PS at temperature
close to T, (T' ~ 400K). As indicated.

density of entanglements is constant, 7, is independent of the chain length. The long
relaxation time .., corresponds to the time required for the chain to escape from
the tube or to disentangle from other chains. The length of the tube is determined by
the density of entanglements and the chain length, 7., thus strongly varies with the
molecular weigth (7,¢, o< N3).

For very short times t < 7, (for PS at dewetting temperatures, 7, ~ 1s), the melt
behaves as a fluid of low viscosity 7;. Very large dewetting velocity is then expected,
and can be related to the monomer viscosity and moderate slippage length. As for
viscous fluids, we assume a balance of capillary and friction at solid-fluid interface,
equ 2.16,

VimSaiio 2
kot VEkh n;

For intermediate times 7, < ¢ < T,¢p, the rheology of melt is dominated by elas-
ticity. We thus assume that the polymer behaves as a true elastomer (Damman et al.
2007). The capillary stress at the three phase contact line o ~ S/h generates a strain
given by the relation
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S (H —h) N
R E T =
where S, E, H, h are the spreading parameter, the plateau elastic modulus, the actual
and initial film thicknesses.
The observation of a constant film thickness during the elastic plateau agrees with

a maximum of deformation and supports this assumption (Fig 2.11 (a)).
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Fig. 2.11 (a) Evolution of the maximum rim height, H with time for a PS melt at temper-
ature close to Ty (M = 100k, T ~ 400K, h ~ 100nm). (b) Evolution of the rim width with
the dewetted distance.

The volume conservation of the dewetted fluid yields the relation

hoD ~ WH ~ W% (2.24)
Eh
W~ TOD (2.25)

The linear dependance of the rim width with the dewetted distance is perfectly
supported by various experimental observations in the plateau regime, see Fig 2.11
(b). For such polymer melt in a rubber state, we expect a very large slippage length
(b =n/k ~ c0). The dewetting velocity is then determined by a balance of capillarity
gain vs friction dissipation, V ~ S/k W=, Combining this relation with the volume
conservation, the velocity is expected to decrease as t~'/2 during all the plateau elastic
regime, in close agreement with the experimental observations (Fig 2.10).

Vo~ <\/1557h0> t1/2 (2.26)

For very long times 7., < t, the melt flows like a highly viscous fluid n > n;,
its viscosity being determined by the relaxation of entanglements (n ~ ET.¢p). The
dewetting dynamics of such a viscous fluid on a slippery surface was described in the
previous section, and is given by the relation,

_Sb

n S0\ /3
SV~ W V2 V="W"1 andV ~ () 13 (2.27)
b n kvVh
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The predicted decrease of dewetting velocity according t~1/3 is in agreement with
experimental observations. At the transition between elastic and viscous regime, both

velocities should be equal,
S i) < S ) -1/2
A 2.28
/rih[) n /7]6Eh0 7—'r‘ep ( )

This equation can be easily re-organized to yield the classical relation for viscoelas-
tic fluids, 7 ~ ET,¢p showing the self-consistency of the model.

The elastic - slippage model can be tested by using the dependence of viscosity
with temperature and My since the maximum viscous dewetting velocity (Vi,qe at
the elastic-viscous transition) is given by,

S S i —3/2 ,—1/2
Vmam ~ EA = \/ﬁn / X Mw / Qp (229)

With these relations, all the data collapse on master curves, V/V,,4, vs time (Fig

2.12).
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Fig. 2.12 Master curve obtained for the dewetting velocity for various PS at different tem-
peratures. The normalized velocity are obtained with the relation Viaz o< My, 8/2 a;l/ 2
Normalization of temperatures was achieved with the ar parameter (see text).

2.4 Conclusions - Nano-rheology

The model based on the elastic-viscous transition is a very powerful tool to study
the rheology of strongly confined fluids. The very large slippage length associated to
long polymer chains, that can be as large as one centimeter, enhances the minute
modifications in the fluid or at the interface (Coppée et al. 2011). From the dewetting
dynamics recorded with various experimental conditions, the evolution of the reptation
time with temperature and molecular weigth can be obtained for thin films ~ 100nm
thick (Fig 2.13). Interestingly, the observed reptation times follow the bulk behavior
Trep X ap and Tpep o< M%/l. The adequacy between bulk and confined chain dynamics
clearly shows that confinement has no influence on the collective dynamics of chains
(at least for h ~ 100nm, for comparison 10 < R, < 200nm for the studied chains).
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3
Stability of thin sheets

Homogeneous states of constrained thin sheets are very often unstable. Their final
states can exhibit a zoo of complex morphologies made of wrinkles, creases, crumples,
folds, and blisters, several morphologies sometimes co-existing in a single experiments.
Transition from one morphology to another can be observed depending on various
experimental conditions. For instance, by decreasing adhesion, you switch from reg-
ular wrinkles to blister. Increasing compression could also reveal nonlinear regimes
with increasing complexity. As fluids, thin elastic sheets appears to be very promising
systems that bear similarity with classical problems of linear and nonlinear pattern for-
mation such as period-doubling bifurcations, Fig 3.1. Their study open new prospects
to understand the emergence of complexity, breaking of symmetry and singularities.

Even the buckling of a sheet shows intrinsic behaviors that raise fundamental ques-
tions such as, why do films become folded upon confinement whereas a thick slab of
an identical material generates creases 7 why does paper sheets crumple into singu-
larities whereas rubber sheets would smoothly wrinkle ? Answering these questions
(and many others) is important, first for our natural curiosity, and to understand the
emergence of complex shapes and patterns in Nature. Understanding thin sheets be-
havior is also extremely important for many technological applications. The design
of new materials combining extreme mechanics with optical, electronic or chemical
properties is very often achieved with specific coatings on thin sheets. In this case, the
failure of the coating, or even the thin sheet itself, should be avoided. The opposite
is also true ! These complex features can be very interesting for some applications,
essentially in micro- and nano-technology . Indeed, understanding how complex pat-
terns emerge spontaneously under featureless forces may inspire efficient methods for
tailoring a desired surface pattern to achieve the required property (e.g., reversible
superhydrophoby, flexible electronics).

The energy of a thin sheet is usually described within the Foppl-von Karman
approximation. It includes stretching and bending energy related to the different modes
of deformation of the sheet, quantified by strains and curvatures.

U ~ Y (strain)?® + B(curvature)?

where Y ~ Eh and B ~ Eh®, E, h being the elastic modulus and sheet thickness,
respectively.

For constrained thin sheets, e.g. a paper sheet confined in a sphere, the deformation
energy can be distributed in pure stretching and/or pure bending modes. Considering
an out-of-plane deformation (amplitude Z) of a sheet (size L), the balance of stretching
and bending energy
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Fig. 3.1 Wrinkling pattern breaking the radial symmetry of an indented ball (Vella et al.
2011) and nonlinear wrinkling exhibiting a period-doubling bifurcation (Brau et al. 2010).

E, Y(Z/L)* Z\?
B, " B(z/L?? " (ﬁ)

shows that pure bending mode is favored for large deformations (Z > h).

For bulk materials, this condition is clearly not fulfilled, this is why compressed bulk
materials accommodate compression with pure stretching. The formation of creases
at free surfaces, first described by Maurice Biot, can be however observed (Cai et al.
2012).

For thin sheets, the shapes that minimize energy should thus minimize stretching
and according to the Theorema Egregium of C.F. Gauss, should avoid any change of
metric, i.e. no change of Gauss curvature (Witten 2007, Audoly et al. 2010). In short,
this theorem of differential geometry states why it is impossible to wrap a sphere with
a flat surface without stretching !
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3.1 Crumpling

Look at a paper ball, Fig 3.2, the compaction of this 2D paper sheet in a 3D sphere
cannot be achieved with isometric transformations of the flat surface. This strong
constraint obviously induces changes of Gauss curvature, at least locally. To minimize
the energy, the sheet spontaneously adopts an origami-like configuration. As shown
in Fig 3.3, the opened paper ball reveals a complex polygonal network of plane facets
delimitated by sharp ridges (or tied folds) (Lobkovski et al. 1995, Blair et al. 2005).
These ridges focus all the deformation energy of the sheet, the energy related to flat
facets is negligible. These ridges can be considered as linear singularities.

Fig. 3.2 Morphology of a paper ball. Thin sheet confined in a sphere.

The ridges are connected each other by point-like singularities with a size compa-
rable to the sheet thickness. As shown in Fig 3.4, the deformations involved into such
a ridge contain bending and a non negligible amount of stretching (demonstrated by
the deflection along the fold). The stretching is directly related to the change of fold
width along the ridge, 0W/dx ~ w/L. The maximum width of the ridge, w results
from a balance of stretching and bending energy (Lobkovsky et al. 1995),

1/3
w e~ RYBL2B3a3 and U ~ ER? (i) a3

where L and « are the fold length and the angle between the planes delimiting the
fold, respectively.

Interestingly, the width and energy of such a ridge are vanishing when the sheet
thickness vanishes. The origami-model corresponds to zero thickness/zero energy mor-

phology.
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Fig. 3.3 Morphology of a paper ball. Opened paper ball showing the polygonal network
morphology of ridges.

Fig. 3.4 The “bag shape” showing the morphology of a single ridge singularity.

3.2 Curtains

As discussed in the previous section, geometrically constrained thin sheets tend to
adopt an origami-like morphology, as close as possible to isometric solutions including
singularities. However, there could be specific geometrical constraints that are not
compatible with such faceted morphology. As shown by mathematicians, an origami
solution should follow some rules, i) the two colors rule, stating that no two colors can
share a common face (or two colors are enough to colorize an origami), ii) the vertices
follows the equation m — v = £2 (m/v are the number of mountain/valley folds), iii)
the sum of alternative angles around a vertex must be equal to 7, and iv) the paper
sheet cannot intersecting itself !

Thin sheets constrained at one edge and free at the other, i.e. a curtain-like mor-
phology (Fig 3.5), develop a self-similar hierarchy of folds, a morphology that contra-
dicts these rules (Huang et al. 2010, Vandeparre et al. 2011).
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Fig. 3.5 Detail of a rubber curtain constrained at one edge with an imposed sinusoidal
deformation z(0,y) = A(0) sin(g(0)y)(Vandeparre et al. 2011).

d 0.25F Shoft fabric cuttain (22011;“)

o
o Paper Curtain (125pm)
0 Long fabric curtain (220pm)
0.20 O Latex curtain (400pm)
gl Ballasted latex curtain (400um) ° 7]
Latex curtain (220um)
0 Ballasted latex curtain (220pm)
- 0.15 ° -
E T T g
~ Graphene sheet
<
0.10 H
0.05 H
L 0.0 0.5 1.0 1.5
0.00|-r ! ! ! ! Xl(“m) ! H
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
X (m)

Fig. 3.6 Power laws describing the evolution of the wavelength with the distance from the
constrained edge (Vandeparre et al. 2011).

As shown in Fig 3.5, sheets made of various materials constrained at one edge
develop a hierarchical pattern of folds. These patterns consist of a hierarchy of suc-
cessive generations of folds whose wavelength gradually increases along z. For the
sake of clarity, the structure of the deformed sheet is described by a periodic func-
tion z(x,y) = A(zx) sin¢(x)y, with z the amplitude of out-of-plane deflections, y being
parallel to the edge (¢ = 2w /)\). To rationalize these various hierarchical patterns,
we consider the evolution of the average wavelength, A, with the distance to the con-
strained edge, = (Fig 3.6). For inextensible sheets, the amplitude of the folds is deter-
mined by the compression ratio and the inextensibility of the sheet, A ~ A\v/§. Since,
inextensibility ensures that

w w 2

1 1 A

= o~ 1— =22 ) o W—=-W|[=
Wo /0 dscos 0 /0 ds< 2z> 2 ()\)
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and 6 = (W — Wy)/W
The bending energy density related to a fold is thus given by

uy ~ Eh3 k% ~ ER*S§/\?

Since wuy, is proportional to 1/A?, the membrane adopts the largest possible wave-
length compatible with the imposed constraints. The minimization of bending energy
is thus the “driving force” toward larger and larger folds and is the source of the ob-
served hierarchy. Fig. 3.6 shows that the evolution of the average fold width, < A(z) >
is adequately described by simple power laws, < A >~ z™. Interestingly, curtains
made of various materials with contrasted properties can be sorted in two classes with
different exponents ~ 2/3 for “light” sheets and ~ 1/2 for “heavy” sheets (we will see
later the meaning of light and heavy). We will now try to answer the questions, What
energy terms do determine these exponents ? What processes do limit the evolution
dynamics of fold width 7

To increase the wavelength, adjacent folds should merge. Looking carefully a cur-
tain, you would probably observe the merging of 2, 3 and very rarely 4 folds, some folds
remaining almost unaltered. We will however make the assumption, first proposed by
mathematicians Jin and Sternberg, that the observed morphology can be described
by successive period-doubling transitions (Jin et al. 2001). The global hierarchy is
obtained by stitching these building-blocks. The key feature of a single block, named
wrinklon, is its length, L, i.e., the sheet length required to accommodate the A — 2\
transition. This length should be determined by material properties, F, h the con-
straint/compression ratio ¢ and the wavelength. The power law describing self-similar
patterns is then obtained from the relation

dx A

dz " L

In fact, close inspection of the wrinklon morphology reveals the occurrence of a
curved ridge at the tip of the merging folds (Fig 3.7). Such curved ridge is characterized
by a non vanishing Gauss curvature. From the Theorema Egregium, the sheet around
these curved ridge should concentrate stretching energy (i.e., the surface is no more
isometric of a flat surface). The length of these elementary building-block can be
obtained from energy minimization. The energy terms involved into a single A — 2
transition should be related to local stretching, bending and the curved fold.

The stretching energy can be estimated from the slope of the sheet which deter-
mines the strain € induced by the change of amplitude A — 2A (related to the change
of wavelength since A ~ \[6)\) For a wrinklon of size LA, the strain is given by
€~ A?/L? ~ 6)\?/L? which yields the stretching energy

us ~ Eh L\ € ~ Eh62N°L 73

The energy focalized in a curved fold was extensively studied by Pogorelov (1988) and
later by Pauchard (1997),

gy ~ ERP/? o5/? p1/2
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Fig. 3.7 (a) Wrinklon morphology. (b) Origami model of the A — 2\ transition (Vandeparre
et al. 2011).

where a and p are the change of slope at the ridge and the radius of curvature of the
fold, respectively. Since o ~ A%/L? and p ~ A\2/L (assuming a parabolic shape for the
curved fold), this energy becomes

Up ~ Eh5/2 55/4 )\7/2L73

This energy term is however negligible compared to stretching energy since u./us ~
(h/A)3/? < 1. The wrinklon morphology results then from a balance of stretching and
bending energy, u, ~ Eh3 LAx? which yields the length of a single building-block

L()\) ~ h71/251/4)\3/2

The scaling for the wavelength describing the whole hierarchical pattern of folds is
obtained by the integration of equation dA/dx ~ A\/L, and is found to be,

A(z)o61/6 (x)2/3
h h

The class of patterns related to “light” curtains is in close agreement with this scaling,
A o< 22/3. In addition to yielding the proper exponent, this relation enables the com-
parison of the data obtained from seemingly disparate systems, over a wide range of
lengthscales and independently of material properties. Fig 3.8 provides a remarkable
collapse of the data measured with paper, fabric and various plastic sheets.
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Fig. 3.8 Master curves, normalized wavelength vs normalized distance from edge for the
“light” curtains (Vandeparre et al. 2011).
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Fig. 3.9 Master curves, normalized wavelength vs normalized distance from edge for the
“heavy” curtains (Vandeparre et al. 2011).

As shown in Fig. 3.6, “heavy” curtains, made of nanometric films of polystyrene
on water (Huang et al. 2010), rubber sheets, and constrained graphene do not follow
the 2/3 scaling. instead, their dynamics obey A o /z). The main difference between
both families is related to the lack or occurrence of a significant tensile force, T'. For
all “heavy” curtains, an additional tensile force is acting on the sheet. For graphene
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sheets, this tension is related to the longitudinal tensile strain induced by thermal
manipulations of the compression device (Bao et al. 2009). For rubber curtains, the
tension is determined by gravity (T ~ p.ghH, where p. and H are the density and
height of the curtain). For compressed nanometric polystyrene films on water, a tensile
force is exerted by the surface tension of water at the free edges of the polymer film
(Huang et al. 2010).

The tension per unit width, imposes an additional stretching energy given by,

U ~Ta? LA~ TéNL™!

where « is the slope of the sheet within the wrinklon (o ~ A%/L?).

This energy becomes dominant when U; > Us, that is when T > FEh2§/A. Ne-
glecting the stretching term, the total energy of the distorted membrane becomes
Uiot = Uy + Up. The length of a wrinklon which minimizes Uy, (balancing tension and
bending energies) is given by,

X T
h V Eh
As expected, the tensile force increases the length of wrinklons for a given wavelength
and can thus be used to tune the energy penalty associated to A — 2\ transitions.
Considering the equation dA\/dx ~ A\/L with L()\) given by Eq 3.1, we obtain the
scaling for the wavelength along a heavy sheet

GO0 02

LX) ~ (3.1)

This scaling is in excellent agreement with the power laws observed for heavy curtains
and graphene bilayers, (Fig 3.6). The data of various macroscopic curtains, graphene
bilayers and nanometric polystyrene thin films indeed collapse onto a single master
curve without any fitting parameters (see Fig 3.9) which highlight the universality of
our description. Our formalism is thus validated for 7 orders of magnitude in thickness
from graphene sheets to rubber and fabric curtains.

3.3 Conclusions

In addition to the ridge and point-like singularities used to describe the crumpling of
elastic sheets, diffuse stretching domain should be considered. Due to geometrical con-
straints that do not fill the “origami rules”, the self-similar patterns of folds observed
in curtain-like sheets are built by stitching together building-blocks, called wrinklons
characterized by a diffuse stretching energy. The self-similar structure is then related
to the size of the A — 2\ transition that depends on material properties and the local
wavelength.

This example gives a little bit of flavor to the emergent research field related to
constrained elastic sheets, where wrinkles, creases, sharp folds, crumples, wrinkle-to-
fold transition and period-doubling bifurcation meet.
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