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Abstract

Balancing of intermittent energy such as solar energy can be achieved by bat-

teries and hydrogen-based storage. However, combining these systems received

limited attention in a grid-connected framework and its design optimization

is often performed assuming fixed parameters. Hence, such optimization in-

duces designs highly sensitive to real-world uncertainties, resulting in a dras-

tic mismatch between simulated and actual performances. To fill the research

gap on design optimization of grid-connected, hydrogen-based renewable energy

systems, we performed a computationally efficient robust design optimization

under different scenarios and compared the stochastic performance based on

the corresponding cumulative density functions. This paper provides the opti-

mized stochastic designs and the advantage of each design based on the financial

flexibility of the system owner. The results illustrate that the economically pre-

ferred solution is a photovoltaic array, when the self-sufficiency ratio is irrelevant

(≤30 %). When a higher self-sufficiency ratio threshold is of interest, i.e. up to

59 %, photovoltaic-battery designs and photovoltaic-battery-hydrogen designs
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provide the cost-competitive alternatives which are least-sensitive to real-world

uncertainty. Conclusively, including storage systems improves the probability to

attain an affordable levelized cost of electricity over the system lifetime. Future

work will focus on the integration of the heat demand.

Keywords: Grid-connected demand, Hydrogen storage, Levelized Cost Of

Electricity, Photovoltaic, Robust design optimization, Uncertainty

Quantification.

1. Introduction

With an expected increase of 575 GW between 2018 and 2023, solar Pho-

toVoltaic (PV) systems dominate the renewable capacity growth [1]. Despite

this expected capacity expansion, PV systems are unable to cover the entire

electricity demand, due to the intermittent behavior of solar energy. To address

this intermittency, the addition of an electrical energy storage system enables

to store excess of solar energy and reproduce it when electricity demand ex-

ceeds PV production. For intermittent balancing, battery energy storage (from

days to weeks) and hydrogen energy storage (from weeks to months) provide a

flexible, adequate alternative [2]. In this framework, hydrogen energy storage

is generally performed by splitting water into hydrogen and oxygen in a Proton

Exchange Membrane (PEM) electrolyzer through excess electricity, because of

its advantages in power density and low operating temperature [3]. The reverse

reaction is performed in a PEM fuel cell to generate electricity [4].

Design optimization studies on grid-connected Hybrid Renewable Energy

Systems (HRES) including battery storage and hydrogen-based storage sys-

tems configurations received attention. Parra et al. illustrated the increase in

on-site energy production of a PV-powered, grid-connected dwelling by consid-

ering battery and hydrogen storage, resulting in an additional annual income of

£112 and £102 respectively [5]. Pellow et al. compared battery storage and hy-

drogen storage for grid-connected systems and conclude that hydrogen storage
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Nomenclature

A area, m2

C capacity, Ah

CAPEXa annual capital expense, e

E electric energy, MWh

F Faraday constant, 96 485 C/mol

Gc,a annual grid cost, e

HRES Hybrid Renewable Energy System

I current, A

LCOE Levelized Cost Of Electricity,

e/MWh

N system capacity, kW

OPEXa annual operational expense, e

p pressure, Pa

PEM Proton Exchange Membrane

PV PhotoVoltaic

R resistance, Ω

Rc,a annual replacement costs, e

RDO Robust Design Optimization

SOC State Of Charge

SSR Self Sufficiency Ratio, %

T temperature, K

U voltage, V

UQ Uncertainty Quantification

Z compressibility factor

α electrode transfer coefficient

δ membrane thickness, mm

el electric

η efficiency

pl bipolar plates

σmem membrane conductivity, S/mm

act activation

an anode

bat battery

cat cathode

ch charge

con concentration

dch discharge

EL electrolyzer

FC fuel cell

L photogenerated

lim limited

mem membrane

nom nominal

oc open-circuit

ohm ohmic

sh shunt

s series

th thermal

t tank

achieves a higher electrical Energy Stored On Invested than battery storage [6].

Zhang et al. optimized a grid-connected battery/hydrogen system, considering

several operation strategies and two different cost scenarios [7]. Under the op-

timistic cost scenario, hydrogen storage induces a higher Net Present Value.

Despite the clear advantage of this type of HRES, Eriksson et al. highlight that
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incorporating hydrogen in HRES design optimization is still an anomaly (i.e.

only 5 out of 30 surveyed HRES studies incorporated hydrogen-based energy

systems) [8].

During model-based HRES design optimization, these studies assumed de-

terministic model parameters (i.e. perfectly known and free from inherent vari-

ations). However, a HRES performance is mainly characterized by parameters

subject to uncertainty (e.g. stochastic nature of solar energy, operation and

maintenance costs, operating temperature) [9]. Moreover, in the hydrogen mar-

ket, it remains a big challenge to obtain real market values [10]. Consequently,

the uncertainty on these parameters affects the HRES performance, leading to a

stochastic behavior of the system objectives. Common methods that propagate

parameter uncertainties through a system model and quantify the statistical

moments of the objective (i.e. Uncertainty Quantification (UQ)) are surrogate

model construction methods, such as Gaussian Process Regression [11] and Poly-

nomial Chaos Expansion (PCE) [12]. During the post-process of the surrogate

model (i.e. quantification of the statistical moments), PCE provides significant

advantages, such as the analytic quantification of the statistical moments and

the Sobol’ indices out of the PCE coefficients [12].

When the mean and standard deviation of a system objective can be quanti-

fied efficiently, these statistical moments can be used as optimization objectives.

Through a multi-objective optimization algorithm, a Pareto set of optimized

designs can be found that makes a trade-off between minimizing the objective

mean and minimizing the standard deviation (i.e. Robust Design Optimization

(RDO)). The design leading to the minimum standard deviation on the ob-

jective (i.e. the robust design) is least-sensitive to the parameter uncertainties

and therefore provides the most resilient performance. In surrogate-assisted

RDO, the objective mean and standard deviation for every design sample are

quantified via a surrogate modelling method [13, 14].

In design optimization studies of HRES, the optimal integration of battery

systems and hydrogen-based energy systems in grid-connected applications re-

ceived limited attention. Moreover, the model parameters are often assumed
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fixed and free from inherent variations, while the rare consideration of uncer-

tainty is limited to linear models and only a handful uncertain parameters (<5 ),

characterized by generic ranges based on expert judgement and assumptions [15–

18]. Akbari et al. evaluated a distributed energy system, subject to a general

variability of ±20 % for a handful of financial parameters and demand parame-

ters [17]. Parisio et al. considered the converter efficiencies related to electricity

and heat demand to be uncertain between a general range of ±10 % on a linear

model of an energy hub [18]. These linear models are subject to large inher-

ent uncertainty, while the variation of other highly-uncertain parameters (e.g.

investment cost, lifetime) during real-world design, planning and operation is

ignored. Moreover, generic variability ranges assume equal weights for every

uncertainty, which leads to biased results. Combined, these assumptions bring

forward designs that are highly sensitive to real-world uncertainties and result

in a drastic mismatch between simulated and actual performances. To fill the

research gap on design optimization of grid-connected, hydrogen-based HRES

design optimization under uncertainty, we provide the following three novelties:

All significant techno-economic uncertain parameters are characterized by their

uncertainty described in literature; the uncertainties are propagated through a

computationally-efficient sparse PCE algorithm, which provides the sensitivity

indices without additional computational cost and unlocks a computationally-

efficient RDO method subject to a large stochastic dimension; the Cumulative

Density Function (CDF) of the optimized designs is used to determine the ad-

vantage of each design, based on the financial flexibility of the system owner.

In this paper, the HRES model and the RDO method are described in sec-

tion 2. The optimized designs for every demand type and their stochastic per-

formance are presented in section 3. Conclusively, section 4 illustrates the main

conclusions of this work, while the appendix consists of the detailed dataset and

convergence curves of the sparse PCE method.
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2. Method

In the first part of this section, the HRES is introduced, followed by the

Python-based component models, the climate data and the load profiles. To

determine the optimized designs of the HRES, the second part of this section

illustrates the uncertainty characterization and the RDO algorithm.

2.1. Hybrid Renewable Energy System

The considered system is a grid-connected load, supported by a HRES (Fig-

ure 1). The HRES consists of a PV array, which is coupled to a DC bus bar

through a DC-DC converter with Maximum Power Point Tracking. A battery

stack and electrolyzer array with storage tank are integrated to store the excess

of PV array electricity. A fuel cell array is implemented to produce electric-

ity from the stored hydrogen. To transfer the DC electricity from the battery

system and fuel cell to the AC load, a DC-AC converter is connected.

To set the hierarchy between the subsystems, a typical power management

strategy is implemented, which primarily aims to satisfy the demand [19]. In

this strategy, excess PV power (i.e. remaining PV power after complying with

the power required by the load) is supplied to the battery stack. When the

determined charge current violates the maximum charge current, the nominal

charge current is considered instead. Then, or when the battery array reaches

its maximum State Of Charge (SOC), the surplus energy is used to power the

electrolyzer array. When the hydrogen tank is full, or when the surplus power

lies outside the electrolyzer array operating range, the surplus energy is sold to

the grid at the wholesale electricity price [20].

In the opposite case, when the PV array does not cover the demand, the

remaining demand is covered by the battery array, if the discharge current does

not violate the maximum discharge current and the SOC remains above the SOC

lower limit. If not, nominal discharge current is extracted and the additional

power is supplied by the fuel cell array. When insufficient, the grid covers the

remaining demand.
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In the following subsections, the PV, battery, electrolyzer, fuel cell, storage

tank, DC-DC converter and DC-AC inverter component models are described.

The final subsection illustrates the characterization of the climate profiles and

demand profiles.

~

H2H2H2

photovoltaic

battery

electrolyzer

storage tank

fuel cell

load

grid

H2

Figure 1: The considered system includes the load connected to the grid and supported by

a Hybrid Renewable Energy System (HRES). This HRES consists of a PhotoVoltaic (PV)

array which converts solar energy into electricity. The battery stack and hydrogen-based

energy system (electrolyzer, fuel cell and storage tank) enable the system to store excess of

PV array electricity and to comply, up to the available energy, with the demand when the

solar irradiance is insufficient.

2.1.1. Photovoltaic array

To determine the electricity produced by a PV array, we imported the

experimentally-validated model out of the PVlib Python library [21, 22]. The
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model quantifies the PV panel current-voltage characteristic through the fol-

lowing single-diode equation:

IPV = IL − I0
(

exp

(
U + IRs

ndiodeNsUth

)
− 1

)
− U + IRs

Rsh
. (1)

The parameters in Equation 1 are not provided by the PV manufacturer.

Therefore, we adopted the method by De Soto et al. to determine these param-

eters out of manufacturer data [23, 24].

2.1.2. Battery stack

A lead-acid battery technology is selected in this work, as it is the most

widespread technology and a mature lead-acid battery industry exists with sig-

nificant learning rates during the last decades [25]. Despite the higher power

and energy density of lithium-based electrochemical batteries and the significant

market share in the future, currently the installation experience and availabil-

ity is limited [25], and the uncertainty on the cost is still large as opposed to

lead-acid batteries [26]. To characterize the performance of a lead-acid battery

stack, we adopted the experimentally-validated model of Blaifi et al. [27]. The

general voltage-current relation for a lead-acid battery is defined as:

Ubat = Ubat,oc + IbatRbat, (2)

where the current Ibat is positive during charge and negative during discharge.

The resistance component Rbat is different during charge and discharge and

depends on the temperature, the current magnitude and the capacity. Therefore,

the characterization of the voltage during charge and discharge is given by:

Uch = (2.085− 0.12 (1− SOC))− I

Cnom

(
4

1 + I1.3
+

0.27

SOC1.5 + 0.02

)
(1− 0.007∆T ) ,

(3)

Udch = (2− 0.16 SOC)+
I

Cnom

(
6

1 + I0.86
+

0.48

(1− SOC)
1.2 + 0.036

)
(1− 0.025∆T ) .

(4)
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The State Of Charge (SOC) is the fraction of the total capacity stored in the

battery:

SOC (t) = SOC0 +
1

C (t)

∫ t

0

ηbat (t) I (t) dt, (5)

In this work, the minimum SOC is set at 20 % [26, 28].

The battery stack lifetime is characterized by the Depth Of Discharge (=

1 − SOC), the charge current, discharge current and operating time in the

overcharge zone and overdischarge zone. We estimated the lifetime based on

SOC variations through the commonly implemented Rainflow cycles counting

method [29]. To avoid excessive reduction of the lifetime and active mass losses

due to gassing effects, overcharging and overdischarging are avoided, while

the maximum charge current and maximum discharge current are limited to

Cnom/10 and Cnom/3.3, respectively [30]. Because of the constraints limiting

the operation in the optimal operating zone to prolong battery life, we assumed

a yearly capacity degradation rate [31] and a fixed energy efficiency of 80 % [32].

2.1.3. Electrolyzer array

We selected a Proton Exchange Membrane (PEM) electrolyzer for its fast

response time (<1 s) and full load flexibility (0 % - 100 %) [33]. Despite the effect

of intermittent loading on degradation and lifetime is not yet well quantified,

this effect is reported to be negligible by several manufacturers [33]. There-

fore, this effect is not considered in this study and a fixed degradation rate per

operating hour is assumed. To evaluate this procedure and to determine the

voltage-current characteristic, efficiency and hydrogen flow rate, we selected the

experimentally-validated model from Abdin et al. and we consider an operating

pressure of 30 bar [34, 35]. The operating voltage is characterized according to

the following equation:

UEL = UEL,oc − UEL,act − UEL,ohm − UEL,con. (6)

In the remainder of this subsection, the subcript ”EL”, which refers to elec-

trolyzer, is left out for ease of reading. The open-circuit voltage follows out of
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the Nernst equation for electrolysis:

Uoc =
(
1.229− 0.9× 10−3 (T − 298)

)
+
RuT

2F

(
ln

(
pH2

√
pO2

aH2O

))
, (7)

where Ru, F and a represent the universal gas constant, Faraday constant and

water activity between electrode and membrane, respectively. The activation

overpotential Uact represents the voltage used to transfer electrons between the

electrodes. By inverting the Butler-Volmer equation for the reactions at the

electrode surface, the activation voltage can be quantified:

Uact =
RuT

αanF
arcsinh

(
i

2i0,an

)
+

RuT

αcatF
arcsinh

(
i

2i0,cat

)
, (8)

where values from experimental work are selected to quantify the electrode

transfer coefficients and exchange current densities [34]. At high currents, a

concentration overpotential Ucon is created due to an excess of reactants (e.g.

oxygen bubbles slowing down the reaction). To quantify this overpotential, a

combination of the Nernst equation and Fick’s law is adopted:

Ucon =
RuT

4F
ln
Cmem

O2

Cmem
O2,0

+
RuT

2F
ln
Cmem

H2

Cmem
H2,0

, (9)

where Cmem is the concentration at the membrane-electrode interface, and the

subscript 0 refers to the reference working condition. The final overpotential

that occurs in the PEM electrolyzer is the ohmic overpotential Uohm, which is

driven by the electric resistance of the electrodes Rel, bipolar plates Rpl and the

membrane Rmem:

Uohm = I (Rel +Rpl +Rmem) . (10)

The electric resistance of the electrodes and the flow plates can be quantified

by applying Ohms law. We refer to Abdin et al. for further details on the

determination of the overpotentials [34]. Finally, following the working point of

the electrolyzer array, the hydrogen molar flow rate nH2
is formulated as:

nH2 =
I

2F
. (11)
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2.1.4. Hydrogen storage tank

The pressurized hydrogen produced in the electrolyzer is stored in a stor-

age tank. Filling up the storage tank increases the tank pressure, until the

electrolyzer outlet pressure is reached, according to the ideal gas law [36]:

pt − pt,init = Z
NH2RuTt

MH2
Vt

. (12)

The compressibility factor Z for H2 is equal to 1 at room temperature and

moderate pressure (<100 bar) [36].

2.1.5. Fuel cell array

To generate electricity by converting hydrogen and oxygen into water, we

selected a PEM fuel cell. The PEM fuel cell is a widespread commercial technol-

ogy, which operates at low operational temperature (70 ◦C- 100 ◦C) and achieves

high power densities (up to 2 W/cm2). Similar to the PEM electrolyzer, the ef-

fect of intermittent operation on the degradation and lifetime is not yet fully

understood [37]. Therefore, a fixed degradation rate per operating hour is as-

sumed. To represent this conversion of hydrogen and oxygen into water, we

adopted the model from Murugesan et al. which is experimentally validated on

the Ballard-Mark-V PEM fuel cell [38].

To determine the electric power production, the operating current and volt-

age are required. The operating current depends on the converted hydrogen

molar flow rate:

IFC = 2FnFC,H2
. (13)

The electric potential produced during water composition out of hydrogen and

oxygen is equal to the Nernst potential minus the losses:

UFC = UFC,Nernst − UFC,act − UFC,ohm − UFC,con. (14)

In the remainder of this subsection, the subcript FC is again left out for ease

of reading. The Nernst equation determines the maximum fuel cell voltage and
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considers the operating temperature and reactant pressures:

UNernst = 1.229−0.85× 10−3(T−298.15)+4.31× 10−5T (ln (pH2) + 0.5ln (pO2)) .

(15)

The activation losses Uact occur due to a low rate of charge transfer at lower

current densities. This activation loss corresponds to:

Uact = −0.948 + 0.00354T + 7.6× 10−5T ln (CO2) +−1.93× 10−4T ln (I) . (16)

The ohmic losses Uohm occur out of electrolyte resistance, contact resistance at

the collector plates and at the graphite electrodes. This loss is linearly depen-

dent to the load:

Uohm = iRohm = i
δmem

σmem
, (17)

where Rohm is the electrical resistance that depends on the membrane thickness

δmem and membrane conductivity σmem (Nafion 117). The concentration loss

occurs due to changes in concentration of reactants at higher current density

region:

Ucon = −0.016ln

(
1− i

ilim

)
. (18)

We refer to the work of Murugesan et al. for the detailed quantification of these

losses [38].

2.1.6. Power conversion

The components are connected to a DC bus bar through DC-DC converters.

To provide the power to the load or the grid, the DC bus bar is connected

through a DC-AC inverter. The conversion efficiency of a DC-DC converter

ηconv depends on the component output power:

PDC,out = ηconv (PDC,out)PDC,in. (19)

The conversion efficiency depends on the converter type. We considered the ex-

perimentally buck-boost converter efficiency profile presented by Taghvaee et al.

for the PV array, PEM electrolyzer array and fuel cell array and a bidirectional

buck-boost converter efficiency profile for the battery stack [39]. Similar to the
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DC-DC converter, the DC-AC inverter efficiency profile ηinv depends on the AC

output power PAC,out:

PAC,out = ηinv (PAC,out)PDC,in. (20)

In this work, the inverter efficiency profile is determined by the experimentally-

validated method described by Rampinelli et al. [40].

2.1.7. Climate and demand data

The HRES performance depends on the climate and demand characteristics.

In this work, we evaluated a dwelling and a community (i.e. 2500 dwellings)

in Brussels (Belgium). When adopting climate data and demand data, it is

important to adopt the climate data that was used to generate the demand data,

as the solar irradiance and ambient temperature affect how the demand behaves.

Therefore, we appeal to Typical Meteorological Year data and hourly demand

data from the National Renewable Energy Laboratory, as the former is used to

construct the latter [41, 42]. As the data only exists for locations in the United

States of America, we applied the method presented by Montero Carrero et al.

to adapt the climate and demand profiles for Belgium [43] (Figure 2).

2.2. Robust Design Optimization

This section introduces the design parameters of the HRES are introduces,

as well as the objective and indicator to characterize the performance of each

design. Additionally, this section also provides the uncertainty characterization

of the model parameters, followed by the UQ technique to propagate these

uncertainties through the model and by the optimization algorithm.

2.2.1. Design parameters, objective and indicator

The capacity of the PV array, battery stack, PEM electrolyzer array, PEM

fuel cell array and storage tank are selected as continuous design parameters. By

considering the capacities as independent design parameters, the optimization

algorithm is able to exclude any technology from the HRES. Selecting large sys-

tem capacities enables to cover a significant part of the demand with the HRES,
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spring summer fall winter

demand

solar
irradiance
[W/m2]

ambient
temperature

[oC]

Figure 2: The climate data (solar irradiance and ambient temperature) and demand data are

inversely proportional, resulting in a reduced demand during spring and summer and a peak

demand during fall and winter.

but induces large investment, operating and replacement costs. To evaluate the

techno-economic performance of the HRES designs, minimizing the Levelized

Cost Of Electricity (LCOE) is defined as the system objective. The LCOE of

the hybrid system reflects the system cost per unit of electricity covered [28]:

LCOE =
CAPEXa + OPEXa +Rc,a +Gc,a −Gs,a∑8760

i=0 Pload

. (21)

14



To determine the system cost, the annualized investment cost CAPEXa,

operational cost OPEXa, replacement cost Rc,a, grid electricity cost Gc,a and the

gain from selling excess electricityGs,a are evaluated. We refer to Zakeri et al. for

the detailed quantification of these parameters [28]. The specific cost parameters

values are listed in Table A.3.

To indicate the fraction of the load that is covered by the HRES, the

Self-Sufficiency Ratio (SSR) is quantified as an indicator for the HRES per-

formance [7]:

SSR = 1− Egrid

Eload
, (22)

where Eload is the total energy demand over the system lifetime. The SSR is

an important factor for adopters of HRES, as it illustrates the resilience against

large electricity price increases and the protection against power cuts, which are

more likely in the future [44]. Moreover, reaching a significant SSR threshold

is beneficial for grid operators, as it reduces the simultaneous power extraction

from the grid and therefore reduces the risk of black-outs.

2.2.2. Uncertainty characterization and quantification

To represent the uncertainty during design and operation of the HRES, the

model parameters are characterized by a uniform distribution based on litera-

ture (Table A.3). During operation, the system is subject to natural variability

of the technical parameters, e.g. fluctuating operating temperature and pressure,

varying degradation speed and an uncertain component lifetime. Additionally,

inter-annual variability is present on the electricity demand, solar irradiance

and ambient temperature [9]. From an economic point of view, the system is

subject to commissioning and maintenance quality, which affects the operating

and maintenance cost, an uncertain replacement cost due to evolving market

conditions and a highly-uncertain wholesale electricity price due to an evolving

energy mix, improved energy efficiency and increased electrification of fossil-

based energy sectors [45]. The interest rate and the investment cost can be con-

sidered deterministic or uncertain, depending on the actual step of the design

process and the finance type considered [9]. Most studies assume a single-stage
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investment at the project start, which implies a deterministic characterization

of these parameters. However, a change in the finance type of the project and

a significant timeframe between the design stage and investment stage, which

increases the possibility for the market conditions to change between the stages,

implies uncertainty on the interest rate and investment costs. Therefore, in

this work, two scenarios are assumed. The first scenario considers the interest

rate and investment costs as deterministic (i.e. fixed market conditions), while

the second scenario treats these parameters as uncertain (i.e. varying market

conditions). As the results are significantly influenced by the design step and

investment type, the handling of two scenarios enables to compare with both

commonly adopted scenarios in scientific literature.

The uncertainty on the input model parameters propagates through the

model, inducing variability on the performance indicators of the HRES. Follow-

ing the computational cost of the model evaluation (≈150 s) and the large num-

ber of uncertainties considered (36 in the variable market conditions scenario

and 28 in the fixed market conditions scenario), we considered a computation-

ally efficient sparse Polynomial Chaos Expansion (PCE) method to propagate

the uncertainty and quantify the statistical moments of the model output [46].

The method deals with the computational intractability when a large stochas-

tic dimension (> 10) is considered in state-of-the-art methods, such as Monte

Carlo Simulation and full PCE. Next to these statistical moments, the contri-

bution of each stochastic parameter to the variance of the objective provides

valuable information on the system behavior under uncertainty. Generally, this

contribution is quantified through Sobol’ indices. PCE provides an analytical

solution to quantify these Sobol’ indices through post-processing of the coeffi-

cients (i.e. no additional model evaluations required). Additional details of this

sparse PCE method are described by Abraham et al. [46]. In this work, a poly-

nomial order of 3 is required to approximate the real model behavior accurately

(<1 % error on the statistical moments, compared to a Monte Carlo Simulation

result). The sparse PCE method achieves a similar accuracy with only 29 % of

the required evaluations for PCE (Figure A.9), leading to a significant increase
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in computational efficiency of the method.

2.2.3. Robust design optimization

During system design, several design parameters have to be quantified such

that they simultaneously lead to the optimal system performance. For this sys-

tem, the system performance is determined by the mean and standard deviation

of the LCOE. While minimizing the LCOE mean is beneficial for the average

expected cost of electricity paid by the system owner, reducing the LCOE stan-

dard deviation increases the probability of operating near that LCOE mean

in reality. For every evaluated design, the sparse PCE method is applied to

quantify the statistical moments. The sparse PCE method is coupled to the

Nondominated Sorting Genetic Algorithm (NSGA-II) to find the set of design

that make a trade-off between minimizing the mean and standard deviation of

the LCOE [47, 48]. In this work, the population size is fixed at 50 design samples

(i.e. based on a rule of thumb of 10 samples per design parameter [49]). The op-

timization algorithm is characterized with a crossover and mutation probability

of 0.9 and 0.1 respectively.

3. Results and discussion

The UQ and RDO method are applied to the HRES to determine the op-

timized designs and to evaluate their performance under the variable market

conditions scenario and fixed market conditions scenario. First, the Pareto set

of optimized designs is presented, supplemented by a global sensitivity anal-

ysis to capture the driving uncertainties. Additionally, the stochastic design

performance of these optimized designs is compared based on the Cumulative

Distribution Function (CDF).

3.1. Robust Design Optimization and global sensitivity analysis

The RDO method is applied four times independently on the HRES: for

the dwelling and community in the fixed market conditions scenario and the

variable market conditions scenario. In both scenarios, a trade-off exists between
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minimizing the LCOE mean and minimizing the LCOE standard deviation for

the dwelling (Figure 3) and for the community (Figure 4), which is illustrated

by the Pareto set of optimized designs. For each optimized design, the total

Sobol’ indices of the LCOE and the statistical moments of the corresponding

SSR are quantified.

The minimum LCOE mean is achieved by a PV array (e.g. 2.7 kWp for the

dwelling), which in the variable market conditions scenario induces a slightly

larger LCOE standard deviation (e.g. 55.9e/MWh for the dwelling) than in

the fixed market conditions scenario (e.g. 55.1e/MWh for the dwelling), due to

the additional uncertainty present on the PV array investment cost and interest

rate (Figure 3 and Figure 4). For this design, the uncertainty related to the grid

electricity price (i.e. wholesale electricity price and proportion of the wholesale

electricity price in the total charged cost per MWh consumed) dominates the

LCOE standard deviation, due to the significant dependency on the grid to

comply with the electricity demand (SSR mean = 30%). To reduce the LCOE

standard deviation, at the expense of a minimal increase in LCOE mean, the

Pareto set of optimized designs implies to increase the PV array capacity, which

consequently increases the SSR mean and therefore decreases the Sobol’ indices

related to grid electricity. To illustrate for the dwelling, increasing the PV array

capacity proves to be a cost-efficient approach (i.e. with minimal increase in

LCOE mean) to decrease the LCOE standard deviation down to 48.5e/MWh

in the variable market conditions scenario and down to 42.6e/MWh in the

fixed market conditions scenario. Despite the LCOE standard deviation can

be reduced modestly by increasing the PV array capacity, the proposed PV

designs remain primarily dependent on grid electricity (SSR mean < 40%) and

the envisioned LCOE is therefore subject to a significant standard deviation.

To further decrease the LCOE standard deviation over a higher SSR mean

threshold (e.g. SSR mean > 40% for the community, Figure 4), PV-battery de-

signs are configured by the optimization algorithm, instead of further increasing

solely the PV array capacity. This because the SSR mean stagnates over a

certain PV capacity threshold, while the inclusion of a battery stack enables to
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Figure 3: For the dwelling, the Pareto front illustrates that a trade-off exists between minimiz-

ing the Levelized Cost Of Electricity (LCOE) mean and LCOE standard deviation. Reducing

the LCOE standard deviation cost-efficiently is suggested by subsequently expanding a PV

array and battery stack. This system capacity evolution improves the mean Self-Sufficiency

Ratio (SSR) and consequently reduces the importance of the grid price uncertainty. Instead,

the uncertainty related to the interest rate (in the variable market conditions scenario) and

the battery stack gradually gain in importance in the LCOE variation.

cover part of the demand when insufficient solar irradiance is available. Hence,

the optimization algorithm suggests designs which subsequently increase in both

PV array capacity and battery stack capacity to further reduce the LCOE stan-

dard deviation (and thus increase in SSR mean). For these designs, the LCOE

standard deviation is significantly characterized by the uncertainty related to

the battery (e.g. total Sobol’ index up to 16% in the variable market conditions

scenario for the dwelling, Figure 3). Therefore, improving the battery lifetime

estimation is considered an effective approach to reduce the LCOE standard

deviation of these designs with an external measure.
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Figure 4: For the community, the Pareto front illustrates that a trade-off exists between

minimizing the Levelized Cost Of Electricity (LCOE) mean and LCOE standard deviation.

Reducing the LCOE standard deviation cost-efficiently is suggested by subsequently expand-

ing a PV array, battery stack and the hydrogen-based energy system. This system capacity

evolution improves the mean Self-Sufficiency Ratio (SSR) and consequently reduces the im-

portance of the grid price uncertainty. Instead, the uncertainty related to the interest rate (in

the variable market conditions scenario) and the battery stack gradually gain in importance

in the LCOE variation.

For the dwelling, a PV-battery configuration defines the robust design which

achieves an SSR mean of 54 % in the variable market conditions scenario and

an SSR mean of 57 % in the fixed market conditions scenario. Consequently,

from this point, improving the SSR mean leads to an increase in LCOE stan-

dard deviation due to the significant increase in system capacity, from which

the corresponding uncertainty overcompensates the reduction in the uncertainty

related to grid electricity. As lower uncertainty is related to the system capacity

in the fixed market conditions scenario (i.e. deterministic investment costs), the
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SSR mean for the robust design in this scenario is higher than for the robust

design in the variable market scenario. Therefore, the LCOE standard deviation

for the robust design in the fixed market conditions scenario (35.4e/MWh) is

lower than for the robust design characterized in the variable market scenario

(42.7e/MWh). For the community, the robust design includes both a battery

stack and a hydrogen-based energy system (Figure 4), despite the large uncer-

tainty related to the specific cost of the electrolyzer and fuel cell (e.g. σCAPEXEL

= 202e/kW as opposed to σCAPEXbat
= 73e/kWh). The decoupling of power

(i.e. electrolyzer and fuel cell) and energy (i.e. hydrogen tank, σCAPEXtank
=

1.2e/kWh) enables to curb the uncertainty related to the hydrogen-based en-

ergy system present in the LCOE standard deviation. Moreover, this decoupling

enables to provide a cost-efficient alternative for a large battery stack at mod-

erate SSR. Therefore, a PV-battery-hydrogen design is configured as a robust

alternative in both scenarios for the community.

Table 1: The characteristics of the three evaluated optimized designs for the dwelling: a

PV design and a PV-battery design that achieve the lowest LCOE mean among their corre-

sponding category and the PV-battery robust design that achieves the lowest LCOE standard

deviation.

NPV NBat µLCOE σLCOE µSSR

kWp kWh e/MWh e/MWh %

variable market scenario

PV 2.7 269 55.9 30

PV + bat 5.1 1.0 280 48.5 36

PV + bat robust 5.2 6.9 350 42.7 54

fixed market scenario

PV 2.7 269 55.1 30

PV + bat 6.9 1.1 293 42.6 39

PV + bat robust 9.1 5.8 367 35.4 57
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Table 2: The characteristics of the three evaluated optimized designs for the community: a

PV design and a PV-battery design that achieve the lowest LCOE mean among their corre-

sponding category and the PV-battery-hydrogen robust design that achieves the lowest LCOE

standard deviation.

NPV NBat NELEC NFC Ntank µLCOE σLCOE µSSR

MWp MWh MW MW MWh e/MWh e/MWh %

variable market scenario

PV 6.9 269 55.6 30

PV + bat 11.6 6.1 300 46.4 41

PV + bat + H2 16.3 7.1 1.7 0.5 16.7 363 41.9 54

fixed market scenario

PV 6.5 269 55.3 29

PV + bat 15.0 6.9 312 40.5 45

PV + bat + H2 21.2 8.4 2.3 0.5 16.7 404 32.5 59

3.2. Comparison of stochastic performance

Due to the trade-off between minimizing the LCOE mean and minimizing the

LCOE standard deviation, each design out of the Pareto set of optimized designs

carries an advantage in either average performance or robustness. To evaluate

the overall stochastic performance, the CDF is constructed for three representa-

tive optimized designs: the PV design that achieves the lowest LCOE mean, the

PV-battery design that achieves the lowest LCOE mean among the proposed

PV-battery designs and a robust design, which corresponds to the lowest LCOE

standard deviation for the dwelling (Table 1) and for the community (Table 2).

Among these designs, the PV design achieves the highest probability that in

reality, the resulting LCOE over the lifetime will be lower than any predefined

LCOE upper limit for the dwelling and community (yellow CDF on Figure 5 and

Figure 6, respectively). To illustrate in a variable market conditions scenario, if

the dwelling owner predefines an LCOE upper limit of 250e/MWh to ensure an

affordable cost of electricity, the PV design provides a probability of 44 % that

the LCOE in reality will be below or equal to that upper limit. Alternatively, a

lower probability that the real LCOE will be below this upper limit is achieved

by the PV-battery design (33 %) and by full grid-dependency (24 %). However,
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when the upper limit value is determined higher or equal to 350e/MWh in the

variable market conditions scenario (374e/MWh in the fixed market conditions

scenario), the PV-battery design achieves a similar probability to result in an

LCOE below the upper limit as the PV design. This observation is explained by

the lower LCOE standard deviation of the PV-battery design, which steepens

the corresponding CDF and therefore realises the intersection between the PV

and PV-battery CDF, despite the larger LCOE mean of the PV-battery design.

mean LCOE [€/MWh]mean LCOE [€/MWh]

cumulative
probability

full grid-dependencyPV

PV + bat

PV + bat
robust

variable market conditions fixed market conditions

Figure 5: The Cumulative Density Functions (CDF) of three optimized designs and full grid-

dependency for the dwelling. The intersection point between two CDFs illustrates the mini-

mum LCOE upper limit that has to be defined, in order for the optimized design to achieve

a higher probability than full grid-dependency to achieve an LCOE below this upper limit in

reality.

LCOE mean [€/MWh]LCOE mean [€/MWh]

cumulative
probability

PV

PV + bat

PV + bat + H2

full grid-dependency

variable market conditions fixed market conditions

Figure 6: The Cumulative Density Functions (CDF) of three optimized designs and full grid-

dependency for the community. The intersection point between two CDFs illustrates the

minimum LCOE upper limit that has to be defined, in order for the optimized design to

achieve a higher probability than full grid-dependency to achieve an LCOE below this upper

limit in reality.
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The PV design achieves a rather low SSR mean (30 %), which makes this

design vulnerable to grid behavior, fluctuating electricity prices and potential

power cuts. Moreover, operating over a higher SSR threshold reduces the risk

of black-out, as it avoids the simultaneous power extraction from the grid of

different demand types. Therefore, the PV-battery design and robust design are

of interest when operating over a larger SSR threshold is preferred (Figure 7 for

the dwelling and Figure 8 for the community). To illustrate for the dwelling in

a variable market scenario, the PV-battery design with the lowest LCOE mean

achieves an SSR mean of 36 %, while the robust PV-battery design achieves an

SSR mean of 54 %.

SSR [%]

probability
density

SSR [%]

fixed market conditionsvariable market conditions

PV

PV + bat

PV + bat
robust

Figure 7: For the dwelling, the probability density functions of the SSR for three optimized

designs illustrate the different SSR thresholds over which the designs operate.

fixed market conditions

SSR [%]

probability
density

SSR [%]

variable market conditions

PV
PV + bat

PV + bat + H2

Figure 8: For the community, the probability density functions of the SSR for three optimized

designs illustrate the different SSR thresholds over which the designs operate.

When operating over a higher SSR threshold is considered, the performance

of the PV-battery design (green CDF on Figure 5 and Figure 6) is of interest and
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can be compared with full grid-dependency (red CDF on Figure 5 and Figure 6).

In this comparison, the preferred design depends on the predefined LCOE upper

limit (and thus on the financial flexibility of the owner). To illustrate for the

dwelling in the variable market conditions scenario, both the PV-battery design

and full grid-dependency result in a probability of 16 % that the LCOE in reality

will be below or equal to 231e/MWh. If the LCOE upper limit is estimated

even lower by the building owner to ensure an affordable cost of electricity, full

grid-dependency results in a higher probability to end up below the upper limit

than the PV-battery design: e.g. full grid-dependency achieves a probability of

6 % that the LCOE in reality will be below 200e/MWh, while the PV-battery

design ensures a probability of only 1 %. Instead, if the LCOE upper limit is set

higher than 231e/MWh, the PV-battery design ensures a higher probability:

e.g. full grid-dependency results in a probability of 49 % that the LCOE in reality

will be below or equal to 300e/MWh, while the PV-battery design ensures a

probability of 68 %. Conclusively, when the household projects an LCOE of at

least 231e/MWh as a maximum to ensure an affordable cost of electricity, the

PV-battery design provides a higher probability to comply with this upper limit

than full grid-dependency. Similar results are presented for the community.

Despite the lowest LCOE standard deviation, the CDF of the robust de-

signs do not intersect with the other evaluated optimized designs and is there-

fore only of interest when operating over a larger SSR threshold. If so, then

the robust PV-battery design for the dwelling (darkgreen CDF on Figure 5)

proves to be beneficial over full grid-dependency when the LCOE upper limit

is set above 384e/MWh in the variable market conditions scenario and above

405e/MWh in the fixed market conditions scenario. For the community, a PV-

battery-hydrogen configuration is characterized as a robust design (blue CDF on

Figure 6). This design is beneficial over full grid-dependency when the LCOE

upper limit is defined higher than 414e/MWh in the variable market conditions

scenario and higher than 456e/MWh in the the fixed market conditions sce-

nario. Consequently, a PV-battery-hydrogen design presents a cost-competitive

alternative over full grid-dependency and moreover operates over a significant
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SSR threshold (≥54 %), which reduces the risk of black-out and power cuts.

4. Conclusion

The robust design optimization method illustrates a trade-off between min-

imizing the levelized cost of electricity mean and minimizing the standard de-

viation for a dwelling and a community. A photovoltaic array achieves the

lowest levelized cost of electricity mean (i.e. 269e/MWh). Additionally, such

a system ensures the highest probability that the levelized cost of electric-

ity in reality will be below an upper limit, which has been predicted by the

system owner to ensure an affordable cost of electricity. Nevertheless, the

proposed photovoltaic arrays remain primarily dependent on grid electricity

(self − sufficiency ratio mean ≈ 30%) and therefore subject to a significant stan-

dard deviation, risk of black-out and power cuts.

Photovoltaic-battery designs reduce this grid-dependency by increasing the

self-sufficiency ratio and therefore decrease the levelized cost of electricity stan-

dard deviation. When operating over a higher self-sufficiency ratio is of interest,

these photovoltaic-battery design are able to ensure a higher probability than

full grid-dependency to operate below the maximum affordable levelized cost

of electricity predicted (e.g. 231e/MWh for a dwelling in a variable market

scenario).

For a community, the robust design achieves a significant self-sufficiency ra-

tio (≥54 %) and includes both a battery stack and a hydrogen-based energy

system. This design is least-sensitive to real-life uncertainty as the decoupling

of hydrogen power and hydrogen energy enables to curb the contribution of

the uncertainty related to the electrolyzer and fuel cell in the levelized cost

of electricity uncertainty. Moreover, these designs prove beneficial over full

grid-dependency when the maximum allowed levelized cost of electricity is de-

termined above 414e/MWh in the fixed market conditions scenario and above

456e/MWh in the variable market conditions scenario. Conclusively, depend-

ing on the financial flexibility of the system owner, battery and hydrogen storage
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provide a higher probability to realize a levelized cost of electricity below the

maximum allowed levelized cost of electricity to ensure affordability than full-

grid dependency. Future work will focus on the integration of different locations.

Moreover, a heat demand will be included, to fully exploit the fuel cell capability.

5. Acknowledgements

The first author acknowledges the support of Fonds de la Recherche Scien-

tifique - FNRS [35484777 FRIA-B2].

References

[1] F. Birol, Renewables 2018: Market analysis and forecast from 2018 to 2023,

Tech. rep., International Energy Agency (2018).

[2] M. Aneke, M. Wang, Energy storage technologies and real life applications–

A state of the art review, Applied Energy 179 (2016) 350–377.

[3] T. Taner, S. A. H. Naqvi, M. Ozkaymak, Techno-economic analysis of a

more efficient hydrogen generation system prototype: a case study of PEM

electrolyzer with Cr-C coated SS304 bipolar plates, Fuel Cells 19 (2019)

19–26.

[4] T. Taner, Energy and exergy analyze of PEM fuel cell: a case study of

modeling and simulations, Energy 143 (2018) 284–294.

[5] D. Parra, G. S. Walker, M. Gillott, Modeling of PV generation, battery

and hydrogen storage to investigate the benefits of energy storage for single

dwelling, Sustainable Cities and Society 10 (2014) 1–10.

[6] M. A. Pellow, C. J. Emmott, C. J. Barnhart, S. M. Benson, Hydrogen or

batteries for grid storage? A net energy analysis, Energy & Environmental

Science 8 (2015) 1938–1952.

27



[7] Y. Zhang, P. E. Campana, A. Lundblad, J. Yan, Comparative study of

hydrogen storage and battery storage in grid connected photovoltaic sys-

tem: Storage sizing and rule-based operation, Applied Energy 201 (2017)

397–411.

[8] E. L. Eriksson, E. M. A. Gray, Optimization and integration of hybrid

renewable energy hydrogen fuel cell energy systems – A critical review,

Applied Energy 202 (2017) 348–364.

[9] G. Mavromatidis, K. Orehounig, J. Carmeliet, A review of uncertainty

characterisation approaches for the optimal design of distributed energy

systems, Renewable and Sustainable Energy Reviews 88 (2018) 258–277.
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Appendix A. Additional data and figure

parameter, unit min max Ref.

photovoltaic

G, % -9.9 +7.7 [50]

Tamb, K -0.9 +0.9 [50]

power tolerancePV, % 0 5 [24]

CAPEXPV, e /kWp 430 780 [51]

OPEXPV, e /kWp 16 19 [52]

hydrogen

CAPEXelec, e/kW 1400 2100 [33]

OPEXelec, % 3 5 [33]

Rc,elec, % 15 20 [53, 54]

nelec, kh 60 100 [33]

Telec, K 347 359 [55]

pelec, bar -0.1 0.1 [56]

degradationelec, µV/h 4 8 [33]

CAPEXtank, e /kWh 10.4 14.4 [57]

OPEXtank, % 1 2 [7, 53]

CAPEXFC, e /kW 1500 2400 [58–60]

OPEXFC, e /h 0.045 0.135 [58, 59]

Rc,FC, % 25 30 [58, 59]

nFC, kh 20 30 [7, 26]

TFC, K 347 359 [55]

pFC, bar -0.1 0.1 [56]

degradationFC, µV/h 2 10 [61]

battery

CAPEXbat, e /kWh 102 354 [26]

OPEXbat, e /kWh 15 28 [26, 28]
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Rc,bat, e /kWh 61 141 [26, 28]

nbat, cycles 500 2000 [26]

self dischargebat, %/day 0.1 0.3 [28]

degradationbat, %/year 3.5 4.0 [31]

converter/inverter

CAPEXDCDC, e /kW 100 200 [62, 63]

OPEXDCDC, % 1 5 [64, 65]

CAPEXDCAC, e /kW 342 519 [51]

OPEXDCAC, % 1 5 [64, 65]

other

Eload, % +2 +7 [45]

w, e /MWh 46 97 [45]

fw 0.2 0.4 [66]

f , % 1 3 [67]

i′, % 4 8 [68–70]

Table A.3: The ranges for the stochastic parameters, used in the

Robust Design Optimization (RDO) process.
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Figure A.9: The gradual increase of the initial number of real model evaluations for 3 design

samples illustrates that accurate statistical moments can be acquired by evaluating only 29 %

of the required full PCE model evaluations.
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