
Computer Aided Process Engineering FORUM 2019 – CAPE 2019 

Backstepping observer design for a tubular catalytic cracking 
reactor  

I. Yupanquia,b, D. Coutinhob, A. Vande Wouwerb 

aPPGEAS, UFSC, Campus Universitário Trindade, Florianópolis - SC, 88040-900, Brazil  
bService d’Automatique, Université de Mons, 7000 Mons, Belgium  

 
Keywords: nonlinear parabolic PDEs, boundary observation, backstepping method. 

Abstract 
 

Distributed parameter systems (DPSs) are a class of important processes in which process variables 
depend not only on time but also on spatial coordinates. The description of DPSs often takes the form 
of hyperbolic, parabolic or elliptic partial differential equations (PDEs). Parabolic PDEs represent the 
dynamics of industrial processes involving convection and diffusion effects. One of the most important 
examples of such class of systems is the chemical tubular reactor (CTR) with axial dispersion. In order 
to capture the effects of reactions, diffusion and convection in the reactor, the reactor model may take 
the form of a set of coupled parabolic PDEs. 

 
This work aims at designing boundary observers for systems described by sets of nonlinear parabolic 
PDEs. By linearizing the nonlinear equations about the steady state profile of the system, a set of 
linear parabolic PDEs with spatially varying coefficients is produced. Then, the state estimation 
problem is transformed into a well-posed boundary stabilization problem for the dynamics of the state 
estimation error which is approached using the backstepping method. 

 
The backstepping method for PDEs, as it is known today, was first introduced in the seminal work of 
Smyshlyaev and Krstic (Smyshlyaev and Krstic, 2004). Their approach, first developed for a general 
1-D linear reaction-diffusion-advection PDE, is based on a constructive strategy with a design in the 
continuous space domain followed by discretization for implementation and simulation. The 
backstepping method has three main stages: 
 

1. the selection of a target system which verifies the desired properties (typically stability, proven 
with a Lyapunov function), but still closely resembles the original system; 

2. the use of an invertible integral transformation (the backstepping transformation), that maps 
the original plant into the target system in the appropriate functional spaces; 

3. and the kernel equations, which are determined from the original and target systems and the 
transformation, and whose solution determine the kernel of the integral transformation. These 
equations can be usually proven solvable by transforming them to integral equations and then 
using the method of successive approximations or numerical methods. 

 
These stages are closely connected. A suitable choice of the target system will result in solvable kernel 
equations and an invertible transformation. The observer gains is then determined so that the error 
system is converted into the selected exponentially stable target system by the backstepping 
transformation. The resulting observer gains stabilize the error system exponentially with a given 
decay rate. The backstepping observer has been extended to systems described by other types of 
PDEs (Krstic et al., 2008; Vazquez and Krstic, 2010; Krstic et al., 2011). More recently, systems of 
coupled PDEs were considered in the backstepping-based boundary control and observer design 
settings. The most intensive efforts of the current literature seem however to be oriented towards 
coupled hyperbolic processes of the transport type PDEs (Vazquez et al., 2011; Moura et al., 2013). 
 
The motivation behind the present study is the observer design for the tubular catalytic cracking reactor 
process (Mohammadi et al., 2012) described by the following coupled mass-balance parabolic PDEs: 
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This application requires an extension of the method which is far from being trivial because the 
underlying backstepping treatment gives rise to complex developments to find an explicit form of the 
observer gains using matrix Bessel series. Figure 1 shows the evolution of the actual states (red lines) 
and the estimated states (blue lines) related to the proposed observer. 

 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 

 
Figure 1:  Actual and estimated states for the tubular catalytic cracking reactor. 

 

References 
 
 

Smyshlyaev, A. & Krstic, M. (2004), ‘Closed-form boundary state feedbacks for a class of 1-d partial integro-
differential equations’, IEEE Transactions on Automatic Control 49(12), 2185–2202. 
 
Krstic, M., Guo, B. Z., Balogh, A., & Smyshlyaev, A. (2008). Output-feedback stabilization of an unstable wave 
equation. Automatica, 44(1), 63-74. 
 
Vazquez, R., & Krstic, M. (2009). Boundary observer for output-feedback stabilization of thermal-fluid convection 
loop. IEEE Transactions on Control Systems Technology, 18(4), 789-797. 
 
 Krstic, M., Guo, B. Z., & Smyshlyaev, A. (2011). Boundary controllers and observers for the linearized 
Schrödinger equation. SIAM Journal on Control and Optimization, 49(4), 1479-1497. 
 
Vazquez, R., Krstic, M., & Coron, J. M. (2011). Backstepping boundary stabilization and state estimation of a 2× 
2 linear hyperbolic system. In  50th IEEE Conference on Decision and Control and European Control Conference 
(pp. 4937-4942). IEEE. 
 
Moura, S., Bendtsen, J., & Ruiz, V. (2013, December). Observer design for boundary coupled PDEs: Application 
to thermostatically controlled loads in smart grids. In 52nd IEEE conference on decision and control (pp. 6286-
6291). IEEE. 
 
 Mohammadi, L., Aksikas, I., Dubljevic, S., & Forbes, J. F. (2012). LQ-boundary control of a diffusion-convection-
reaction system. International Journal of Control, 85(2), 171-181. 


