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SUMMARY The aim of this study was to investigate two new scoring algorithms employing artificial

neural networks and decision trees for distinguishing sleep and wake states in infants

using actigraphy and to validate and compare the performance of the proposed

algorithms with known actigraphy scoring algorithms. The study employed previously

recorded longitudinal physiological infant data set from the Collaborative Home Infant

Monitoring Evaluation (CHIME) study conducted between 1994 and 1998 [http://

dccwww.bumc.bu.edu/ChimeNisp/Main_Chime.asp; Sleep 26 (1997) 553] at five clinical

sites around the USA. The original CHIME data set contains recordings of 1079 infants

<1 year old. In our study, we used the overnight polysomnography scored data and

ankle actimeter (Alice 3) raw data for 354 infants from this data set. The participants

were heterogeneous and grouped into four categories: healthy term, preterm, siblings of

SIDS and infants with apparent life-threatening events (apnea of infancy). The selection

of the most discriminant actigraphy features was carried out using Fisher�s discriminant

analysis. Approximately 80% of all the epochs were used to train the artificial neural

network and decision tree models. The models were then validated on the remaining

20% of the epochs. The use of artificial neural networks and decision trees was able to

capture potentially nonlinear classification characteristics, when compared to the

previously reported linear combination methods and hence showed improved perfor-

mance. The quality of sleep–wake scoring was further improved by including more

wake epochs in the training phase and by employing rescoring rules to remove artifacts.

The large size of the database (approximately 337 000 epochs for 354 patients) provided

a solid basis for determining the efficacy of actigraphy in sleep scoring. The study also

suggested that artificial neural networks and decision trees could be much more

routinely utilized in the context of clinical sleep search.

k e y w o r d s actigraphy, artificial neural networks, decision trees, sleep diagnosis,

sleep–wake scoring

INTRODUCTION

Polysomnography (PSG), the gold standard for evaluating

sleep disorders, suffers from several drawbacks: it is cost and

labor-intensive, usually performed in a sleep laboratory and,

due to the many sensors and wires placed on the patient, can

disrupt the very sleep architecture it is designed to measure (so-

called �first night effect�). As indicated by several recent reviews

and the newly updated practice parameters of the American
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Academy of Sleep Medicine (AASM) (Ancoli-Israel et al.,

2003; Littner et al., 2003; Morgenthaler et al., 2007; Thorpy

et al., 1995), actigraphy has been widely recognized as a low

cost alternative to conventional PSG for screening of sleep

disorders, with special emphasis on sleep–wake cycles and

more specifically, insomnia.

Actigraphy is based on the fundamental premise that the

presence of movements indicates wakefulness and the absence

of movements indicates sleep. Actigraphs or actimeters are

miniature computerized wristwatch-like devices, most com-

monly worn on the wrist or ankle, which allow for up to several

weeks of continuous recording of limb activity from which

sleep and wake can be scored. Although actigraphy provides

much less information than a full PSG and only measures sleep

indirectly, there are a number of scenarios where it is

particularly suitable due to its low cost and non-invasive

characteristics, as documented in Littner et al. (2003), Ancoli-

Israel (2000) and references therein. In particular, for infants

below the age of 1 year when electroencephalogram (EEG)

patterns are not well-established, actigraphy can provide a

viable tool for screening of sleep–wake cycles as a measure for

assessing insomnia ⁄hypersomnia (Kevin et al., 2007).

Since the publication of the first automatic scoring algo-

rithm for actigraphy by Webster et al. (1982), various com-

puter algorithms have been developed to automatically score

sleep and wake from the recorded raw actigraphy movement

data (see Ancoli-Israel et al., 2003; Littner et al., 2003;

Morgenthaler et al., 2007; Thorpy et al., 1995 for an exten-

sive bibliography). Notable among the reported actigraphy

algorithms are the ones developed by Sadeh et al. (1989, 1994,

1995) covering not only adult normal and abnormal subjects,

but also infants, the algorithm of Cole et al. (1992), the

Actigraph Data Analysis Software (adas) by Jean-Louis et al.

(1996), the algorithm reported by Sazonov et al. (2004) and

various commercially available algorithms accompanying the

different actimeters available in the market.

A variety of new actimeter devices have been introduced

into the market over the years, and each device must be

appropriately calibrated and validated against PSG to give

meaningful sleep–wake scores. However, unlike PSG that uses

the Rechtschaffen and Kales (1968) rules to get standardized

scoring, no such consensus currently exists for scoring

actigraphic signals. Part of the difficulty appears to lie in the

metric used to evaluate the quality of scoring. Many studies

use the agreement rate (defined as �accuracy� in the next

section) to compare the quality of an actigraphy algorithm

against the reference PSG. However, as discussed in de Souza

et al. (2003), accuracy alone may provide misleading conclu-

sions. For example, in studies with healthy subjects who have

normal night sleep, even if the whole night of actigraphy

recording is scored as sleep without detecting any wake epoch,

one can get accuracy as high as 92% as pointed out in Sadeh

et al. (1989). Thus evaluation parameters beyond agreement

rate, such as sensitivity and specificity (de Souza et al., 2003),

must be considered to fully understand the performance of a

scoring algorithm.

To a large extent, the aforementioned problems arise from

the difficulty in gathering large amount of informative data

covering a wide spectrum of subjects to provide statistically

significant and convincing validation of actigraphic scoring

algorithms. Most studies typically use recordings from 10 to 50

patients. The limited availability of data is an even greater

problem in the infant age group.

The objectives of our work are: (i) to develop two new

pattern recognition algorithms for scoring of actigraphy data

with the ability to model a possibly nonlinear classification

border between sleep and wake states; (ii) to employ compre-

hensive objective criteria to evaluate the quality of our

proposed algorithms; (iii) to validate our proposed algorithms

on a clinical data set larger than has been reported in the

literature for actigraphy studies; (iv) to compare the perfor-

mance of our proposed scoring algorithms with previously

reported actigraphy algorithms, under a range of possible

training and validation scenarios to illustrate the inherent

trade-offs in the scoring algorithms; and (v) to present the new

techniques in an accessible and tutorial fashion for the clinical

sleep research community to readily appreciate the broader

utility of the techniques.

This paper is organized as follows. The following section

introduces the Collaborative Home Infant Monitoring Eval-

uation (CHIME) database, the several quality indicators that

will be used to assess the performance of the actigraphy

scoring algorithms, and the algorithms of Sadeh et al. (1994)

and Sazonov et al. (2004). Next, the proposed pattern recog-

nition methods, the multilayer perceptron (MLP) and the

decision tree are introduced in a tutorial fashion. Results

section is dedicated to the analysis of the scoring results and

the comparative evaluation of the various algorithms. Discus-

sion section presents the interpretation of our results relative to

published results, and finally in the Conclusions section, we

draw conclusions from our study along with a discussion of

possible directions for future research.

METHODS

The CHIME database

The data we used were recorded by a multicenter collaborative

group of sleep laboratories for the CHIME study (CHIME-

website, 2004; Crowell et al., 1997) between 1994 and 1998.

The aim of the CHIME study was to answer questions about

the possible role of home infant monitors in preventing sudden

infant death syndrome (SIDS). The recordings consisted of full

overnight PSG (21 channels) for over 1000 infants below

1 year of age, with gestational ages in the range of 23–

42 weeks. The recording also contained the binary signal of a

Healthdyne actimeter placed on the ankle, with ones repre-

senting movement and zeros standing for no movement, at a

sampling frequency of 2 Hz.

We had 438 files at our disposal that contained the reference

PSG scoring necessary for our study. From these files, 84 had

to be discarded because of one or more of the following
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reasons: (i) portions of data missing; (ii) incorrect time vector

that was incompatible with the PSG recording; (iii) flat (zero)

or non-binary signal from the actimeter; (iv) visually grossly

incorrect actimeter readings based on a comparison with

reference scoring.

The actimeter signal of the 354 remaining files was divided

into 30-s epochs (with no overlap). We defined the activity

value of one epoch as the sum of its actigraphy samples. As

the actigraphy signal is binary and sampled at 2 Hz, the

activity of a 30-s epoch is an integer between 0 and 60.

Reference PSG scoring of each 30-s epoch was previously

recorded by the CHIME staff in the data files in the form of

one of the four sleep–wake states (quiet sleep, active sleep,

indeterminate sleep1 and wake) (see Clancy et al., 2003). As

the aim of our study was to distinguish sleep from wake, and

not to recognize the sleep stages, we translated these scores to

�wake� (for the wake state) or �sleep� (for the three other

states). The reasons for this choice are the following: (i) our

goal is to design algorithms generalizable to children and

adults who present different sleep stages than infants; (ii) the

distinction between sleep and wake without further classifi-

cation of sleep stages is sufficiently useful for a number of

clinical applications such as monitoring insomnia, circadian

disorders, effects of treatments, etc.; (iii) the 2-Hz binary

signal provided by the actimeters used in this study is limited

and unlikely to enable a reliable classification amongst the

sleep stages.

The resulting database of 354 infants consisted of 336 958

epochs, 70% of which were reference scored as sleep and

30% as wake. Of the 354 infants, 80 were healthy term, 125

were preterm, 69 were siblings of SIDS and 61 were infants

with apparent life-threatening events (apnea of infancy). At

the time of the recording, 161 were younger than 2 months,

92 between 2 and 3 months, 80 between 3 and 6 months, and

two over 6 months. The remaining 19 infants did not have

their health status and age data in their files, but were all

<12 months old.

Metrics for evaluation of actigraphy algorithms

Several measures can be used to evaluate the performance of

an algorithm. For classification problems, the confusion

matrix (Kohavi and Provost, 1998) is a typical evaluation

tool and evaluation measures can be directly computed from

this matrix. Each column of the matrix represents the instances

in a predicted class, while each row represents the instances in

an actual class (Kohavi and Provost, 1998). The confusion

matrix used in our case, taking the sleep class as a positive

result, is represented in Table 1.

Various ratios computed from this confusion matrix are

very useful in evaluating and understanding the performance

of an algorithm.

Accuracy (Acc). This is the proportion of objects that are

correctly classified by the algorithm. Accuracy is also often

called �agreement rate� in the literature.

Acc ¼ TP + TN

TP + TN + FN + FP
ð1Þ

Sensitivity (Sen). This is the proportion of actual positive

objects that are correctly predicted as positive.

Sen ¼ TP

TP + FN
ð2Þ

Specificity (Spe). This is the proportion of actual negative

objects that are correctly predicted as negative.

Spe ¼ TN

TN + FP
ð3Þ

In our case, sensitivity will indicate the efficiency of an

algorithm to detect the sleep epochs, while specificity will

represent its ability to detect wake epochs.

Positive predictive value (PPV). This is the probability that

an object classified as positive (sleep in our case) by the

algorithm is actually positive.

PPV ¼ TP

TP + FP
ð4Þ

Negative predictive value (NPV). This is the probability that

an object classified as negative is actually negative.

NPV ¼ TN

TN + FN
ð5Þ

As discussed in Introduction, the agreement rate (or

�accuracy�) alone may not fully capture the quality of an

actigraphy algorithm, and in fact could result in unrealistically

good but misleading outcomes (de Souza et al., 2003).

Additional parameters, such as the ones defined above,

provide a more comprehensive evaluation of the performance

and trade-offs inherent in actigraphy algorithms. We will

primarily use accuracy, specificity and sensitivity in our

evaluations but we will also report PPV and NPV as

additional information.

Linear combination methods

In this section, we will describe how one can apply two

previously reported actigraphy algorithms (Sadeh et al., 1994;

Sazonov et al., 2004) to the CHIME data set. These two

Table 1 Confusion matrix

Actual class

Predicted class

Sleep Wake

Sleep TP FN

Wake FP TN

TP, true positive; FN, false negative; FP, false positive; TN, true

negative.

1Indeterminate sleep was scored when the infant was undoubtedly

sleeping but the sleep stage, quiet or active, was uncertain.
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algorithms use linear combinations of features computed from

the actigraphic signal to distinguish sleep from wake. As the

original algorithms in Sadeh et al. (1994) and Sazonov et al.

(2004) were optimized for different actimeters than the one used

in our chosen data set, wewill recalculate the parameters in these

algorithms using the CHIME data set before testing them for

their predictive capabilities. The results of applying these

algorithms to our chosen data set are presented in the Results

section.

Parameter optimization

To find the best set of parameters in a linear combination

algorithm during the supervised2 training phase, an appropri-

ate cost function is minimized or maximized. One classical cost

function that can be minimized is the sum of the squares of the

errors (SSE) between the output of the algorithm and the

known or true output. If there are N epochs in total, and if ti
and pi are respectively the target (true or PSG scored, 0 for

wake, 1 for sleep) and the predicted values of the ith epoch, the

parameters of the classification function will be chosen so as to

minimize the sum of the squares of the prediction errors (SSE):

SSE ¼
XN

i¼1
ðti � piÞ2 ð6Þ

However, the high proportion of sleep epochs in our training

database is likely to lead to algorithm parameters that

overpredict sleep, due to an excessive weighting on sleep

epochs. This typically leads to a high accuracy value but

generally low specificity compared with sensitivity. In order to

reach a better trade-off between sensitivity and specificity and

to improve the detection of wake epochs, we have chosen to

maximize an alternate cost function, the sum of sensitivity and

specificity (SESP), in this training phase.

Sadeh�s algorithm

Sadeh et al. (1994) developed an algorithm suited for a

particular wrist actigraph (Ambulatory Monitoring, Ardsley,

NY, USA). They created a discriminant function by first

identifying the five-most efficient actigraphy-derived variables

and then carrying out an analysis to propose the following

discriminant function:

SI¼ 7:601� 0:065l� 0:056r� 0:0703LogAct� 1:08nat; ð7Þ

where SI is the sleep indicator of the current epoch (if SI ‡ 0,

the current epoch is classified as sleep); l is the mean activity

on a 11-min window centered on the current epoch; r is the

standard deviation of activity for the last 6 min; LogAct is the

natural logarithm of the activity of the current epoch increased

by 1 and nat is the number of epochs that satisfy the criterion

50 £ epoch activity < 100 in an 11-min window centered on

the current epoch.

The algorithm was evaluated on 16 healthy children and

adolescents and gave accuracy, sensitivity and specificity of

91.16%, 94.95% and 74.5% respectively.

Sadeh�s algorithm was designed for 1-min epochs, because

the actimeter was set in the �zero-crossing� mode and the

activity count was calculated and scored with a period of

1 min. As the PSG standard is 30-s epochs, Sadeh�s original

algorithm can be compared with reference PSG scores by

applying the following rule: if at least one of the two

adjacent 30-s epochs was scored as wake by PSG, the

corresponding 1-min epoch is reference scored as wake,

otherwise as sleep.

Although not included in the original algorithm of Sadeh,

the output SI from equation (7) can be transformed into the

standard range 0–1 to represent the probability of sleep (PS) by

passing it through a sigmoid function (Fig. 1):

PS (SI) ¼ 1

1þ e�SI
ð8Þ

Thus, if PS < 0.5, the epoch is classified as wake and as sleep

otherwise.

While Sadeh�s algorithm was derived for a different acti-

meter, the discriminant variables that it identified are of

interest for actigraphy, independent of the actimeter used. To

verify this, we apply Sadeh�s unaltered algorithm using

equation (7) (appropriately scaled for the magnitude of the

actimeter reading) and also apply Sadeh�s algorithm optimized

for the values of the parameters in equation (7) specifically to

match the CHIME data set. The results for both of these

scenarios are presented in the Results section.

Sazonov�s algorithm

Using the data from the CHIME study, but from another

actimeter placed on the diaper of each infant, Sazonov et al.

Figure 1. Sigmoid function.

2Supervised training is a training phase during which objects are

presented to the algorithm together with their desired output (in our

case, 1 for sleep and 0 for wake).
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(2004) developed an algorithm for sleep–wake scoring using

data from 26 CHIME subjects. The signal used is named the

�position� signal in the CHIME study and is a continuous

measurement of acceleration, sampled at 50 Hz. This signal is

very different from the actimeter signal we are using for our

study, which is a binary signal from the ankle of the infant,

sampled at 2 Hz.

The proposed algorithm of Sazonov, using the �position�
signal, was based on using the activity values of the current

epoch and eight preceding epochs in a logistic regression. A

linear combination of the chosen features was passed through

a sigmoid function (equation 10, Fig. 1) to obtain a PS as

follows:

g ¼ 1:99604� 0:1945maxACC0 � 0:09746maxACC�1

� 0:09975maxACC�2 � 0:10194maxACC�3

� 0:08917maxACC�4 � 0:08108maxACC�5

� 0:07494maxACC�6 � 0:073maxACC�7

� 0:10207maxACC�8

ð9Þ

PSðgÞ ¼ 1

1þ e�g
; ð10Þ

where maxACC)i is the maximum of the position signal in the

epoch located i epochs before the current epoch. PS is the

predicted probability of sleep.

Sazonov et al. (2004) reported the following performance

with their algorithm: 75.4% accuracy, 93.2% sensitivity, 41%

specificity.

As with Sadeh�s algorithm, we adapted Sazonov�s algorithm,

originally developed for the �position� signal, to the �actimeter�
signal in our study. As the �actimeter� signal is binary, the

maximum of the signal for each epoch is not meaningful.

Instead, we used the activity signal, which is the sum of the

samples of the actimeter signal for each epoch to evaluate

Sazonov�s algorithm.

Once again, as with Sadeh�s algorithm, and in the spirit of

validating if the chosen variables in Sazonov�s algorithm are

indeed generally useful for actigraphy, we applied Sazonov�s
unaltered algorithm using equation (9) (appropriately replac-

ing maxACC with the activity) and, in addition, we also

optimized the values of the parameters in equation (9)

specifically to match the CHIME actimeter signal for our

chosen data set of 354 subjects. The results for both of these

scenarios are presented in the Results section.

Pattern recognition methods

We propose the use of two pattern recognition algorithms,

namely, artificial neural networks (ANNs) and decision trees,

to perform actigraphy-based sleep–wake classification. There

are a number of reasons why the use of these techniques from

the pattern recognition literature is appropriate in our

context: (i) they are input ⁄output modeling techniques that

build the model exclusively from data (data-driven); (ii) they

are particularly well suited for scenarios where the system

cannot be completely characterized by first principle models,

while empirical evidence suggests that the input ⁄output
system behavior is nonlinear; (iii) they are capable of

generating possibly nonlinear classification borders between

two or more classes; (iv) classification functions of the kind

that maps actigraphy-derived variables to PS scores can, in

theory, be approximated with arbitrary precision using neural

network models of appropriate complexity (�universal
approximation theorem for neural networks�; Lloyd, 2003).

Similarly, decision trees with sufficiently many nodes and

leaves can provide comparable accuracy (Breslow and Aha,

1997).

Artificial neurons

The idea of artificial neurons and neural networks originated

from the notion that emulating brain functions and neuronal

activity would allow the achievement of a high-level of pattern

recognition comparable to human recognition. An artificial

neuron is a model of a biological neuron and serves as a

building block in this recognition task. As shown in Fig. 2, the

inputs xi (i = 1,..., d) (�dendrites�) are multiplied by synaptic

weights wi, summed and compared to a threshold h, yielding
the intermediate variable u:

u ¼
Xd

i¼1
wixi � h ð11Þ

The output y of the neuron is a nonlinear function /(u) of this
intermediate variable. Typically, the activation function / is

chosen to be a sigmoid function as in Fig. 1. This model

captures the essence of a biological neuron by ensuring that the

neuron is excited (output = 1) if the weighted sum of the

�dendritic� inputs surpasses the threshold, while the neuron

remains quiet (output = 0) otherwise.

A single neuron can be �trained� to distinguish between two

classes (1 and 0) by appropriately choosing the synaptic

weights wi, using data sets of inputs and outputs. This system is

then called a perceptron.

Figure 2. Structure of an artificial neuron.
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Multilayer perceptrons

A single perceptron as described above is quite similar to any

linear combination method. However, when several layers of

artificial neurons are arranged in series, parallel and cascade

configurations, one obtains a �multilayer perceptron�, shown in

Fig. 3 in its simplest configuration (only two layers), which has

the capability of modeling highly nonlinear classification

borders between two or more classes. This is also called an

ANN.

Each neuron in the MLP in Fig. 3 takes as inputs the

outputs from the neurons of the previous layer and sends its

own output to all the neurons of the following layer. The last

layer of neurons is called the output layer; all preceding layers

are called hidden layers as their outputs are invisible. The

nonlinearity of the activation function / in one or more of the

neurons in the hidden layers makes the overall map from input

to output nonlinear, thereby giving the MLP the capability to

model complex nonlinear functions.

For our sleep–wake classification problem, we need one

output neuron from the MLP to get a probability of sleep,

using appropriate actigraphy-based variables as inputs to the

MLP. Thus, the task of building an MLP classifier for sleep–

wake scoring using actigraphy amounts to choosing the most

appropriate actigraphy features as inputs to the MLP,

followed by the choice of the number of hidden layers and

number of neurons in each layer of the MLP and, finally,

tuning of the weights for each of the neurons by �training� the
MLP using data.

An important property of an MLP is that one hidden layer is

sufficient to approximate, with arbitrary precision, any con-

tinuous function mapping inputs to outputs, through appro-

priate �learning� or training using data (Lloyd, 2003). However,

this property does not indicate how many neurons are required

in the hidden layer, which can be large in practice. Sometimes,

neural networks with more than one hidden layer are more

effective, but their learning process is more difficult. We

employed MLPs with one hidden layer and one neuron in the

output layer, as we only have two classes to discriminate. Trial

and error was used to determine the optimal number of

neurons.

For our study, we evaluated 25 features derived from

actigraphy as possible inputs to our MLP model. Of these, the

five-most discriminant features were determined using Fisher�s
discriminant analysis and used as inputs for our MLP model

with one hidden layer. The weights in our MLP model were

determined by minimizing the SSE between the MLP output

and reference PSG sleep–wake scoring, using the netlab

Toolbox (Nabney, 2002), freely available on the web for use

under matlab
� as well as using the Neural Network Toolbox of

matlab
� (http://www.mathworks.com/products/neuralnet).

The results are presented in the Results section.

Decision trees

A decision tree is a pattern recognition or classification

algorithm, similar in spirit to an MLP, which is capable of

mapping the input space into predefined classes using data-

based learning. However, unlike MLPs, decision trees are

expressed in terms of rules (IF ... THEN ... ELSE ...) that are

easier to understand and interpret than ANNs. Decision trees

have been studied extensively in various disciplines that

include statistics, machine learning, data mining and pattern

recognition (Breslow and Aha, 1997).

A typical decision tree is shown in Fig. 4 and consists of one

or more terminal nodes called leaf nodes (shown with

rectangles) and intermediate nodes called decision nodes

(shown with ovals). The leaf nodes indicate the final classifi-

cation reached by the classifier while the decision nodes specify

a test based on which the subsequent branches are followed.

The example in Fig. 4 illustrates the following situation: a

person needs to choose between three modes of transport to

reach a final destination, depending on the distance to the

destination, weather conditions and easy accessibility by public

Figure 3. Multilayer perceptron with one hidden layer: each circle is

one artificial neuron.

Figure 4. Example of decision tree: which transportation means

should I take?
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transport. The tree shown is developed from a training data set

gathering the features (distance, access by public transport,

weather) and the decision taken (walk, take the car or use

public transport). The decision process starts at the top root

node with the three features, and as we descend the tree, the

decision nodes recursively partition the instance space into

successively purer sets, until we reach the final classification

indicating which transportation means is the best choice.

The training phase of a decision tree from data is called the

induction phase and involves the development of a sufficient

number of decision nodes and the choice of the �splitting
criterion� at each node so as to optimally classify new data

points with minimal error. Extensive discussion of the various

criteria used to determine the splitting functions, �pruning� of
the resulting tree to manage complexity and techniques to

achieve reasonable trade-off between accuracy, classifier com-

plexity and noise sensitivity goes beyond the scope of our

paper. Several of these details can be found in recent surveys

(Breslow and Aha, 1997; Rokach and Maimon, 2005) and also

in several standard texts on machine learning (Mitchell, 2008).

For our sleep–wake classification problem, the terminal

nodes of our decision tree classifier are one of two classes, viz.

sleep or wake. The task of building a decision tree classifier

using actigraphy involves choosing the most appropriate

actigraphy features as inputs to the decision tree, followed by

the choice of the number and levels of decision nodes, choice of

the splitting function at each node and, finally, �pruning� of the
resulting decision tree to manage the classifier complexity.

For the decision tree induction, we evaluated 25 features

derived from actigraphy as possible inputs of which nine

features were ultimately used as inputs for induction of the

decision tree. The actual construction of the decision tree was

made using the Statistics Toolbox in matlab
�. The results are

presented in the following section.

RESULTS

Here, we summarize and compare the results obtained from

the various algorithms described in the previous section, when

applied to the database of 354 infants from the CHIME study

as described in section �The CHIME database�. We recall that

we have 336 958 epochs of 30 s of which 236 869 (� 70%) are

reference scored as sleep and 100 089 (� 30%) are reference

scored as wake. We begin with the classification results

obtained using linear combination methods.

Linear combination methods

Sadeh�s algorithm

Using Sadeh�s original unaltered algorithm (Sadeh et al., 1994)

applied to our data set with 1-min epochs, we obtained an

overall global accuracy of 77.6%, sensitivity of 89%, specific-

ity of 52%, PPV of 81% and NPV of 68%. Note that, in this

case, the 30-s epoch reference scoring in our data set was

translated to 1-min epoch reference as discussed in �Sadeh�s

algorithm� in the Methods section. Also, the actigraphy

measurements had to be renormalized because the maximum

activity in a given epoch in the original work of Sadeh et al.

(1994) is not the same as in our case.

By computing the same features in Sadeh�s original equation
but this time for 30-s epochs and renormalizing the equation to

account for the different maximum activity in Sadeh�s data and
in the CHIME data, we obtained a global accuracy of 75.3%,

sensitivity of 81.3%, specificity of 61.2%, PPV of 83.2% and

NPV of 57.9%.

These results by themselves are quite impressive given that

the original equations of Sadeh et al. (1994) were developed for

a different actimeter. The results suggest that the variables l, r,
LogAct and nat are indeed the most appropriate discriminant

variables to be used in any classification algorithm, regardless

of the specific actimeter used, and this is also confirmed later in

our own models developed independently. However, to provide

a more realistic evaluation of the classification capabilities of

Sadeh�s algorithm, we decided to recompute the parameters in

Sadeh�s original discriminant function in equation (7) using our

chosen CHIME data. We retained the same five features in the

discriminant function but slightly modified one of them – �nat�
to represent the number of epochs in a 10.5-min window

centered on the current epoch, which have an appropriately

rescaled activity ‡48. This change was motivated by an analysis

based on Fisher�s generalized criterion for determining the most

discriminant form of this feature.

We decided to use 30-s epochs, in keeping with the gold

standard in sleep studies. Using 80% randomly selected epochs

from the set of 336 958 epochs available, we minimized the

SSE (see equation 6) and thereby obtained the following

modified discriminant function of Sadeh:

SI ¼ 1:574� 0:0056l� 0:006r� 0:088LogAct� 0:0854nat

ð12Þ

Using this equation, we classified the remaining 20% of the

epochs not used in the parameter fitting for validation and

achieved the following performance: 78.9% accuracy, 93.8%

sensitivity, 43.7% specificity, 79.8% PPV and 73.8% NPV.

Alternatively, by maximizing SESP (see ‘Parameter optimi-

zation’, section), the modified discriminant function of Sadeh

became:

SI ¼ 44:4398� 0:302l� 0:2835r� 2:8459LogAct� 5:2709nat

ð13Þ

Validating this equation on the remaining 20% of the epochs

not used in the parameter fitting gave the following perfor-

mance: 76.3% accuracy, 83.4% sensitivity, 59.2% specificity,

82.9% PPV and 60.2% NPV. The results are summarized in

Table 2.

Sazonov�s algorithm

We evaluated Sazonov�s algorithm (see �Sazonov�s algorithm�
in the Methods section) using the same scenarios as in the
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previous section, i.e. using the original unaltered equation of

Sazonov (equation 9) and using equation (9) with parameters

that were optimized for various objectives. Additionally, we

extended the features included in Sazonov�s equation by

incorporating not only the current and previous eight epochs

as in the original equation (9), but also the eight following

epochs. Indeed, the original algorithm of Sazonov used the

basic principle that the patient is more likely to be asleep or

awake if the preceding epochs show the same sleep–wake state.

We extended this principle to incorporate subsequent epochs

as well and re-estimated the parameters. As in the previous

section, we used 80% randomly selected epochs to optimize the

chosen objective and then used the remaining 20% of the

epochs for validation. The results for these various scenarios

are summarized in Table 3.

As expected, tuning the algorithm improves the results, the

extended algorithm is slightly better than the original and

using the SESP cost functions gives better trade-offs between

sensitivity and specificity than SSE.

Pattern recognition methods

Multilayer perceptrons

In order to develop an MLP classifier, we first created a list of

25 features derived from actigraphy data. These features

included the ones used by Sadeh et al. (1994) and Sazonov

et al. (2004) as well as a dozen new features that we added. The

discriminant power of these 25 features was evaluated using

Fisher�s generalized discriminant analysis criterion (Hair et al.,

2006). Table 4 lists these features along with their discriminant

power.

The learning or training phase of the MLP is performed

through supervised training. The proposed actigraphy features

are computed for each epoch from the training data set and

serve as the inputs to the MLP. The reference PSG scores

(sleep = 1, wake = 0) serve as the corresponding target or

�true� value of the output of the MLP. The training phase then

involves computing the weights and thresholds in the MLP so

as to minimize a chosen cost function. In our case, we chose to

minimize the SSE as shown in equation (6).

There are several numerically efficient methods available to

solve the problem of minimizing the SSE objective function in

order to obtain the optimal parameters in the MLP. We used

two software packages, viz. netlab (Nabney, 2002) and

the Neural Network Toolbox of matlab
� (http://www.

mathworks.com/products/neuralnet). Both these packages

work under the matlab
� environment for technical computing

and provide extensive capabilities for building, optimizing and

validating neural networks using a variety of numerical solving

options.

A few points are worth mentioning in the context of training

of MLPs:

1 The patterns in the training database and the proportion of

classes (sleep versus wake) should be representative of what

the trained MLP will be faced with for its eventual

classification task.

2 The database for training the MLP must be large enough –

several thousands of patterns of each class are often required

to reach good classification performance. This is perhaps the

reason why few attempts have been reported on the use of

MLPs for sleep–wake as large actigraphy databases are

difficult to obtain.

3 The training phase should be judiciously terminated when

no further improvement in the cost function is observed.

This avoids �over-learning� that has the tendency to increase

noise sensitivity. Typically, after each training iteration, the

MLP is validated using a portion of the database not used in

the training, until the cost function on the validation data no

longer shows any substantial improvement.

4 There is currently no algorithm that can determine the

optimal number of neurons and number of inner layers in

the MLP for a given desired accuracy of the classifier.

Typically, we fix the size of the neural network (number of

layers and neurons in each layer) and then optimally find the

weights and thresholds.

5 There is no guarantee that the learning process will lead to

the global minimum of the cost function as the optimization

problem is nonlinear due to the nonlinear nature of the

activation functions.

6 The learning phase of the MLP may be computationally

demanding and can take a long time, but once trained, the

actual use of the resulting MLP for classification is relatively

fast as it involves simple additions, multiplications and

functional evaluations to get the output value.

Table 5 presents the performance achieved with MLP,

trained with 80% of the available epochs with realistic

proportions of sleep and wake epochs and validated on the

Table 2 Performance (%) of Sadeh�s algorithm optimized for vari-

ous objectives, using 30-s epochs

Optimization Acc Sen Spe PPV NPV

None 75.3 81.3 61.2 83.2 57.9

Min SSE 78.9 93.8 43.7 79.8 73.8

Max Acc 78.9 94.3 42.5 79.5 75.8

Max SESP 76.2 83.4 59.2 82.9 60.2

Acc, accuracy; Sen, sensitivity; Spe, specificity; PPV, positive

predictive value; NPV, negative predictive value; SSE, sum of the

squares of the errors; SESP, sum of sensitivity and specificity.

Table 3 Performance (%) of Sazonov�s algorithm

Algorithm Tuning Acc Sen Spe PPV NPV

Original None 77 87.1 53.1 81.5 63.5

Original SSE 78.3 94.9 39.1 78.6 76.3

Original SESP 75.7 83.4 57.5 82.3 59.5

Extended SSE 78.7 94.7 40.7 79.1 76.5

Extended SESP 75.2 81.5 60.3 82.9 57.9

Acc, accuracy; Sen, sensitivity; PPV, positive predictive value; NPV,

negative predictive value; SSE, sum of the squares of the errors;

SESP, sum of sensitivity and specificity.

92 J. Tilmanne et al.

� 2009 European Sleep Research Society, J. Sleep Res., 18, 85–98



remaining 20% of the epochs. The table shows performance

with different numbers of neurons in the single hidden layer,

with the proposed set of 25 input features from Table 4. The

computations were carried out using both the software

packages (netlab and the Neural Network Toolbox) in

matlab
� to crosscheck results. Overall, netlab provided better

models that reached lower values of the SSE cost function.

The table also includes performance measures using only

five of the most discriminant features (features 2, 8, 20, 22, 25

from Table 4). Three of these five features were also used by

Sadeh et al. (1994), confirming the choices made by Sadeh. We

then utilized Fisher�s generalized criterion to determine the

optimal length of the window for features 2, 8, 20 and 22. The

resulting five-most discriminant attributes are the following:

Feature 2 optimized: sum of all the activities of a 37-epoch

centered window, D = 0.2426.

Feature 8 optimized: activity standard deviation on a 25-epoch

centered window, D = 0.2531.

Feature 20 optimized: maximum epoch activity on a 19-epoch

centered window, D = 0.2427.

Feature 22 optimized: number of epochs in a 47-epoch

centered window that have an activity superior to 2.025 times

the mean activity of the file, D = 0.3804.

Feature 25: logarithm of the current epoch activity increased

by one, D = 0.1762.

We see that the results with the five best features are better

than those with 25 input features. Table 5 also shows that the

performance with only five neurons in the hidden layer is close

to that achieved with 10 neurons and our experiments showed

no advantage in increasing this number. As expected, there is a

big difference between the sensitivity and specificity.

Table 6 shows the results obtained when varying the

proportion of wake in the learning database (PWL), for an

MLP with five neurons in the hidden layer and using the five

input features listed above. As expected, the specificity

dramatically increases with the proportion of wake in the

learning database, while sensitivity falls and global accuracy

slightly decreases. Varying PWL enables us to reach very good

trade-offs between sensitivity and specificity, without really

worsening the accuracy. We note that including a greater

proportion of wake epochs during training contradicts the

common guideline that the MLP should be trained with data

that are representative of the anticipated data it will have to

Table 5 Performance (in %) of multilayer perceptron trained with

realistic proportion of sleep and wake epochs

Input

features

Hidden

neurons Acc Sen Spe PPV NPV

25 5 79.1 94.4 43 79.7 76.5

25 10 77.5 85.6 58.4 83 63.1

5 5 80.3 92.6 51.1 81.9 74.4

5 10 80.5 92.7 51.6 82 74.7

Acc, accuracy; Sen, sensitivity; Spe, specificity; PPV, positive

predictive value; NPV, negative predictive value.

Table 6 Performance of multilayer perceptron for increasing pro-

portions of wake epochs in learning data from top to bottom

PWL Acc Sen Spe PPV NPV

30 80.3 92.6 51.1 81.9 74.4

39 79.8 88.6 58.8 83.7 68.5

44 79.1 85.7 63.3 84.8 65

49 78.1 82.4 67.8 85.9 61.8

51 77.5 81.1 68.9 86.1 60.5

56 75 75.8 73.2 87 56

All values are in %.

PWL, proportion of wake in learning database; Acc, accuracy; Sen,

sensitivity; Spe, specificity; PPV, positive predictive value; NPV,

negative predictive value.

Table 4 Proposed actigraphy features with their discriminant power D

N Feature D

1 Activity of current epoch 0.1381

2 Sum of activities in a 10.5-min centered window 0.2212

3 Activity of current minus previous epoch 0.00001

4 Activity of current minus next epoch 0.0006

5 Mean activity of the file 0.005

6 Activity of current epoch divided by the number of periods of successive one-value signal

in this epoch

0.0698

7 Same as feature 6 in a 5.5-min centered window 0.0998

8 Standard deviation of activity in a 10.5-min centered window 0.2289

9 Number of epochs in centered window with an activity ‡9 and £16 0.0688

10–14 Activity of epoch located respectively 5, 4, 3, 2, 1 epochs before the current one 0.0988, 0.1047, 0.113, 0.126, 0.136

15–19 Activity of epoch located respectively 1, 2, 3, 4, 5 epochs after the current one 0.1215, 0.101, 0.083, 0.0714, 0.064

20,21 Max, min epoch activity in a 10.5-min centered window 0.2333, 0.0158

22 Number of epochs in a 10.5-min centered window with activity value greater than five

times the mean activity

0.2167

23 Longer one-period in epoch 0.1049

24 Number of one values in actigraphic signal in a 5.5-min centered window that are not

between 2 zeros

0.0987

25 Natural logarithm of the activity of current epoch, incremented by 1 0.1762
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classify. Thus, accuracy is expected to drop, but wake

classification improves.

Decision trees

The same 25 features listed in Table 4 were used as inputs to the

training or induction phase of the decision tree classifier. The

classical approach for inducing a decision tree is to choose

splitting functions at the intermediate nodes so as to minimize

either the total entropy or total impurity of the terminal nodes.

In the limit, if all terminal nodes are completely pure, the tree

entropy or tree impurity is zero, an ideal case. More realisti-

cally, induction develops sufficiently many nodes and depth in

the decision tree so that the terminal node classes are as pure as

possible. For our induction task, we chose to minimize Gini�s
impurity (Breslow and Aha, 1997; Mitchell, 2008).

We used the Statistics Toolbox in matlab
� for building our

decision tree classifier from data by using Gini�s impurity as

the splitting function. The Statistics Toolbox also contains

various functions to build the tree, prune it and validate the

resulting classifier. A few points are worth listing in the context

of induction of decision trees:

1 There does not exist a computationally efficient method for

determining the optimal number of nodes and decision tree

depth needed for a prespecified accuracy (Rokach and

Maimon, 2005), but heuristics can be applied through trials.

Reducing the number of nodes from a very detailed decision

tree by removing less relevant nodes is called �pruning� and is

accomplished using such heuristics.

2 Decision trees have a slight advantage over MLPs in that

they require less data for training or induction. On the other

hand, decision trees are more sensitive to noise and the

patterns presented in the training data. Thus, an error in

the decision function at a higher node will propagate to the

lower nodes uncorrected leading to poor classification

performance.

3 �Bagging� (also called �bagstrap aggregating�) algorithms for

decision trees are employed to reduce the effect of noise

sensitivity (Mitchell, 2008). In this approach, several train-

ing sets are created randomly from the original training set

of epochs, allowing an epoch to belong to several training

sets. A decision tree is built with each training set and the

predicted class of an unknown object is the majority of the

classes predicted from the different trees. This is known to

reduce the variance of the classification results, improve

stability and reduce sensitivity to noise and specific training

patterns.

4 Decision trees can directly handle categorical or qualitative

data (�sleep� or �wake�, �sunny� or �rainy�) unlike MLPs that

require numerical data.

Decision trees were trained with 80% of the available epochs

with realistic proportions of sleep and wake epochs and

validated on the remaining 20% of the epochs. The inputs to

the decision tree classifier were the 25 actigraphy features from

Table 4. Table 7 presents the results obtained with the full tree

and with a tree pruned to a more suitable number of nodes.

The characteristic �level� of each tree is given by matlab, and

represents the number of branches that can still be pruned.

It was noted from the obtained decision trees that only

features 2, 5, 7, 10, 14 and 22 appeared in the upper nodes of

the decision tree. To these features, we added the five-most

discriminant features similar to the case with MLPs. The

resulting nine features (2, 5, 7, 8, 10, 14, 20, 22, 25) were

optimized for their window sizes using Fisher�s discriminant

analysis and gave the optimized windows reported in the

previous section on Multilayer perceptrons.

Table 8 presents the performance of decision trees trained

with realistic proportions of sleep and wake epochs and using

the five-most discriminant features (used with MLP) and the

nine features discussed above.

We see that the best results are achieved with the nine

features selected for decision trees. However, sleep is again

much better detected than wake. To overcome this problem,

we increased the proportion of wake epochs in the learning

phase (PWL). Table 9 summarizes the results obtained when

the decision tree is trained with increasing proportion of wake

epochs in the training data. The improvement in specificity is

apparent at the expense of sensitivity, thereby indicating the

inherent trade-off in the classifier performance.

�Bagging� to reduce sensitivity to noise and specific training

features did not improve the results appreciably. We believe

this was because the epochs used for training were already

sufficiently random.

Performance summary

Table 10 gathers the highest accuracy and SESP achieved by

each algorithm. It is obvious that pattern recognition methods,

and in particular decision trees, improve the classification

Table 7 Performance (in %) of decision trees with 25 input features

Levels Nodes Acc Sen Spe PPV NPV

288 27923 79.2 88.9 56.3 82.8 68.2

29 185 80.3 94.6 46.7 80.7 78.4

Acc, accuracy; Sen, sensitivity; Spe, specificity; PPV, positive

predictive value; NPV, negative predictive value.

Table 8 Performance (in %) of decision trees with the five and nine

input features

Levels Nodes Acc Sen Spe PPV NPV

Five-most discriminant features (same as in MLP)

244 21397 81.7 92.1 57.1 83.5 75.4

24 131 80.1 94 47.4 80.9 76.9

Proposed nine features

232 12603 85.1 91.8 69 87.6 78

48 355 82.1 92.2 58.1 83.9 75.8

MLP, multilayer perceptron; Acc, accuracy; Sen, sensitivity; Spe,

specificity; PPV, positive predictive value; NPV, negative predictive

value.
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performance significantly. The advantage of using these

methods is already substantial when considering accuracy

alone, but the most impressive improvement lies in the better

detection of wake we can achieve without deteriorating the

detection of sleep, as indicated by the higher SESP, surpassing

the linear methods by more than 10%.

Rescoring rules

Noting the trend of actigraphy to overestimate sleep, Webster

et al. (1982) proposed the use of postprocessing rules to

rescore previously classified epochs. These �rescoring rules�
have been shown in several studies to improve specificity by

several percentage points by rescoring sleep epochs as wake

epochs. The rules are listed below:

After at least 4 min (respectively 10 and 15 min) scored wake,

the first minute (respectively 3 and 4 min) scored sleep is

rescored wake.

Six minutes or less (10 min or less) scored sleep are rescored

wake if they are surrounded by at least 10 min (respectively

20 min) before and after scored wake.

Table 11 summarizes the results obtained by applying these

rescoring rules to the decision tree classifier and the MLP

classifier. The decision tree and MLP were trained with two-

third of the infant files randomly chosen by cross-validating

with the remaining one-sixth of the infant files randomly

chosen and then rescoring was evaluated on the last one-sixth

of the infant files. We see that specificity and accuracy

improves with rescoring for decision trees but the improve-

ment is smaller for MLP. The performance of the decision tree

before rescoring is slightly worse than the figures presented

previously because, in this case, we excluded entire files from

the training rather than randomly picking epochs across all

files. The MLP did not suffer from this training process, which

reinforces the idea that decision trees are more sensitive to the

training set than MLPs. The results presented in this section

are close to the previously reported results, which indicate a

good generalizability of the performance of the developed

algorithms.

Influence of age and health group

It has been shown previously by Sadeh et al. (1995) that

developing different algorithms to score sleep–wake in infants

of different ages did not improve the performance compared to

developing only one algorithm for all the infants. We adopted

this same approach and developed only one classification

model applicable to the entire infant group. Similarly, we used

randomly selected epochs for training our classification mod-

els, without any consideration of the age or health status of the

chosen infant file.

Tables 12 and 13 summarize the performance of the decision

tree with 48 levels, for the various age and health groups. The

column �NI� stands for number of infants available for the

given age or health group. The results presented in this table

do not strictly satisfy the cross-validation principle since the

epochs used for training the decision tree are included in the

Table 9 Performance of decision trees for increasing proportions of

wake epochs in learning data from top to bottom

PWL Acc Sen Spe PPV NPV

30 82.1 92.2 58.1 83.9 75.8

39 81.4 87.4 67.2 86.4 69.1

44 80.8 85.2 70.3 87.2 66.5

49 78.9 80.7 74.6 88.3 61.9

56 76.9 77 76.7 88.7 58.3

Nine input features are used. All values are in %.

Acc, accuracy; Sen, sensitivity; Spe, specificity; PPV, positive

predictive value; NPV, negative predictive value.

Table 10 Summary table: best performance (in %) achieved by each

algorithm when considering accuracy or the sum of sensitivity and

specificity

Algorithm Highest accuracy Highest Sen + Spe

Sadeh 78.9 142.6

Sazonov 78.7 141.8

MLP (five hidden neurons) 80.3 150.2

�Small� decision tree 82.1 155.5

MLP, multilayer perceptron; Sen, sensitivity; Spe, specificity.

Table 11 Performance (%) of a decision tree taking nine input

features with 39 levels and 217 nodes, and multilayer perceptron

with five input features with five hidden neurons, trained with real

proportions of sleep and wake, before and after rescoring

Evaluation Acc Sen Spe PPV NPV

Decision tree with nine input features

Before rescoring 80.7 91.3 54.3 83.3 80.7

After rescoring 81 90.1 58.3 84.3 70.3

MLP with five input features

Before rescoring 80.5 91.9 52.2 82.7 72

After rescoring 80.6 90.6 55.9 83.6 70.4

MLP, multilayer perceptron; Acc, accuracy; Sen, sensitivity; Spe,

specificity; PPV, positive predictive value; NPV, negative predictive

value.

Table 12 Performance (%) of best decision tree, with 48 levels, for

the different age groups

Age

(months) NI Acc Sen Spe PPV NPV

<2 161 82 91.9 60 83.6 77

2–3 92 81.7 91.8 57.7 83.8 74.7

>3 82 84.2 93.7 57.3 86.1 76.4

Acc, accuracy; Sen, sensitivity; Spe, specificity; PPV, positive

predictive value; NPV, negative predictive value; NI, number of

infants available for the given age or health group.
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results. But they give a good indication of how the decision

tree performs qualitatively for these groups.

The overall trend appears to be a slightly better classification

performance for infants older than 3 months and a bigger

influence of health status: the best performance is achieved for

healthy infants with considerably worse classification for

premature infants.

DISCUSSION

The linear classification algorithms proposed by Sadeh et al.

(1994) and Sazonov et al. (2004) performed well with our

chosen data even without optimization of the parameters, thus

confirming the choices of the key discriminant variables for the

classification task, regardless of the actimeter used. Tuning

these parameters enabled us to improve the results, and to

reach better trade-offs between sensitivity and specificity

depending on the cost function chosen for optimization. The

results show a slight advantage for Sadeh�s algorithm, which

uses more discriminant features than Sazonov�s chosen

features. However, the results presented in the previous section

show that, as expected, pattern recognition methods have the

potential to improve the results substantially due to their

ability to generate nonlinear classification borders, using very

similar discriminant variables for the classification task.

All methods have a tendency to overpredict sleep. We

investigated three ways of reaching better trade-offs between

sensitivity and specificity. The first involved changing the cost

function used for training the algorithm so that more

importance is given to the detection of wake. This method

was successfully used with linear algorithms. The second

approach involved increasing the proportion of wake epochs in

the learning database. This method yielded excellent results

with pattern recognition techniques. And thirdly, we evaluated

rescoring rules and confirmed that specificity improves by a

few percentage points.

Each algorithm evaluated in this study needed a relatively

time-consuming and computationally demanding learning

phase (up to several hours). However, once trained, the

resulting classifier can then rapidly classify new objects: the

developed neural networks can compute the classes of 418 000

epochs (3500 h of recording) in 1 s, while the developed

decision trees predict the classes of 120 000 epochs (1000 h of

recording) in 1 s.

The performance we achieved was better than that reported

by Sazonov et al. (2004), who worked with the same database

as we did. It is worth noting that the study of Sazonov et al. is

the only one performed on a population of healthy and non-

healthy infants. Several other studies have reported results for

healthy infants only, e.g. see So et al. (2005) and Sadeh et al.

(1995).

By comparing sensitivity and specificity, the performance of

our classifier is in the same range as that obtained by So et al.

(2005). However, their database contained very few wake

epochs (<10%). This is why with similar sensitivity and

specificity, the global accuracy we reached is lower than theirs.

In fact, So et al. obtained a global accuracy lower than the

percentage of sleep epochs, which means that they would have

reached a better accuracy by merely scoring all the epochs as

sleep. This illustrates the fallacy in using global accuracy alone

to compare classifier performance.

However, our results are slightly worse than those of Sadeh

et al. (1995) (88.9% of accuracy and 82.8% of specificity for

infants younger than 3 months, which is the major age group

of the CHIME database). Again, it is important to notice that

Sadeh et al. worked with healthy children and that their

database contained 79.1% of sleep epochs. Also, Sadeh et al.

removed the epochs scored as uncertain and the transition

epochs between sleep and wake, which represented 5.2% of

their database and are the epochs where prediction errors are

the most likely to occur. Additionally, the actimeter used in

their study appeared to give much more information than the

one used for the CHIME study. Several other studies involving

adults (Cole et al., 1992; Jean-Louis et al., 2001) also yielded a

greater accuracy but poor trade-offs between sensitivity and

specificity.

We reiterate that we designed and evaluated our algorithms

with a very large database. This was necessary to train pattern

recognition algorithms (especially MLPs) and is important to

ensure that our results are stable. To the best of our

knowledge, such a large database has not been previously

employed in sleep–wake classifier design.

Concerning the features, our experiments confirmed that

Sadeh�s features perform well. Indeed, three of the five-most

discriminant features we obtained were inspired by the features

suggested by Sadeh. Nevertheless, the most discriminant

feature involved the mean (average) activity of the entire

overnight recording of a subject. No previous study mentions

the use of this feature based on a global trend of the recording.

This feature is very important to correctly detect sleep when

there are frequent small movements, and correctly predict

wake when there are few movements. This is illustrated in

Figs 5 and 6.

Figure 5 presents a recording (number 41090) with very little

activity and it appears that each time there is a non-zero

activity, the epoch must be scored as wake. The decision trees

perform rather well for this file. Figure 6 shows a recording

(number 20145) with frequent activity, and in fact, some sleep

Table 13 Performance (%) of best decision tree, with 48 levels, for

the different health groups

Group NI Acc Sen Spe PPV NPV

Healthy 80 86.9 94.1 65.5 89 78.7

SIDS 69 82.1 93.3 56.9 83 79.1

Apnea 61 83.6 93.3 56 85.7 74.7

Premature 125 79.3 90 57.7 81 74.3

Acc, accuracy; Sen, sensitivity; Spe, specificity; PPV, positive

predictive value; NPV, negative predictive value; SIDS, sudden

infant death syndrome; NI, number of infants available for the

given age or health group.
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epochs have higher activity than wake epochs in Fig. 5. It can

be seen, however, that the decision tree was able to adapt to

this very different kind of file and generate a very good

classification.

CONCLUSIONS

We have proposed two new pattern recognition classifiers and

applied them to a large training and validation database of

infants to demonstrate their improved sleep–wake scoring

performance. The algorithms are robust and suggest that

neural network and decision tree classifiers can find broader

applicability in the context of clinical sleep research, much in

the spirit of traditional statistical methods, which are now been

widely employed in a clinical setting.

A variety of advanced actimeters has been developed since

the CHIME study, and provides much more detailed measure-

ments. We believe that validating and testing our algorithms

with state-of-the art actimeters would further confirm the

efficacy of our models. New features suited for more precise

actigraphy signals (not just binary signal but, e.g. the amplitude

of the movement) could be developed. The actimeter used in the

CHIME study was placed on the ankle. Current practice is to

use the non-dominant hand for actigraphy studies. Developing

and validating our proposed classifiers for this scenario would

be needed to generalize our results to wrist actigraphy.

Validating our proposed classifiers on adult populations in

which sleep–wake cycles are well developed would be a natural

testing scenario. And finally, fusion of actigraphy with another

signal (e.g. EEG) could be investigated to improve the

predictive capabilities of actigraphy.
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